Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.599
Filter
1.
Acta Orthop ; 95: 200-205, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708569

ABSTRACT

BACKGROUND AND PURPOSE: Reduced range of motion (ROM) and spasticity are common secondary findings in cerebral palsy (CP) affecting gait, positioning, and everyday functioning. These impairments can change over time and lead to various needs for intervention. The aim of this study was to analyze the development path of the changes in hamstring length, knee extension, ankle dorsiflexion, and spasticity in hamstrings and gastrosoleus from childhood into adulthood in individuals with CP at the Gross Motor Function Classification System (GMFCS) levels I-V. METHODS: A longitudinal cohort study was undertaken of 61,800 measurements in 3,223 individuals with CP, born 1990-2017 and followed for an average of 8.7 years (range 0-26). The age at examination varied between 0 and 30 years. The GMFCS levels I-V, goniometric measurements, and the modified Ashworth scale (MAS) were used for repeated assessments of motor function, ROM, and spasticity. RESULTS: Throughout the follow-up period, knee extension and hamstring length exhibited a consistent decline across all individuals, with more pronounced decreases evident in those classified at GMFCS levels III-V. Ankle dorsiflexion demonstrated a gradual reduction from 15° to 5° (GMFCS I-IV) or 10° (GMFCS V). Spasticity levels in the hamstrings and gastrosoleus peaked between ages 5 and 7, showing a propensity to increase with higher GMFCS levels. CONCLUSION: Passive ROM continues to decrease to 30 years of age, most pronouncedly for knee extension. Conversely, spasticity reached its peak at a younger age, with a more notable occurrence observed in the gastrosoleus compared with the hamstrings. Less than 50% of individuals had spasticity corresponding to MAS 2-4 at any age.


Subject(s)
Ankle Joint , Cerebral Palsy , Knee Joint , Muscle Spasticity , Range of Motion, Articular , Humans , Cerebral Palsy/physiopathology , Cerebral Palsy/complications , Muscle Spasticity/physiopathology , Muscle Spasticity/etiology , Longitudinal Studies , Range of Motion, Articular/physiology , Child , Adolescent , Male , Female , Adult , Young Adult , Knee Joint/physiopathology , Child, Preschool , Ankle Joint/physiopathology , Infant , Hamstring Muscles/physiopathology , Cohort Studies
2.
AAPS J ; 26(3): 57, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689016

ABSTRACT

The aim of this study was to develop a model to predict individual subject disease trajectories including parameter uncertainty and accounting for missing data in rare neurological diseases, showcased by the ultra-rare disease Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS). We modelled the change in SARA (Scale for Assessment and Rating of Ataxia) score versus Time Since Onset of symptoms using non-linear mixed effect models for a population of 173 patients with ARSACS included in the prospective real-world multicenter Autosomal Recessive Cerebellar Ataxia (ARCA) registry. We used the Multivariate Imputation Chained Equation (MICE) algorithm to impute missing covariates, and a covariate selection procedure with a pooled p-value to account for the multiply imputed data sets. We then investigated the impact of covariates and population parameter uncertainty on the prediction of the individual trajectories up to 5 years after their last visit. A four-parameter logistic function was selected. Men were estimated to have a 25% lower SARA score at disease onset and a moderately higher maximum SARA score, and time to progression (T50) was estimated to be 35% lower in patients with age of onset over 15 years. The population disease progression rate started slowly at 0.1 points per year peaking to a maximum of 0.8 points per year (at 36.8 years since onset of symptoms). The prediction intervals for SARA scores 5 years after the last visit were large (median 7.4 points, Q1-Q3: 6.4-8.5); their size was mostly driven by individual parameter uncertainty and individual disease progression rate at that time.


Subject(s)
Disease Progression , Muscle Spasticity , Spinocerebellar Ataxias , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Muscle Spasticity/genetics , Prospective Studies , Rare Diseases/genetics , Registries , Severity of Illness Index , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/congenital , Uncertainty , Infant, Newborn , Infant , Child, Preschool
3.
Toxins (Basel) ; 16(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38668597

ABSTRACT

INTRODUCTION: The rehabilitation medical team is responsible for the therapeutic management of post-stroke patients and, therefore, for the complex therapeutic approach of spasticity. Considering the generous arsenal at our disposal in terms of both pharmacological treatment, through the possibility of administering botulinum toxin to combat spasticity, and in terms of accurate assessment through developed functional scales such as the GAS (Goal Attainment Scale), one of our purposes is to monitor the parameters that influence the achievement of functional goals set by patients together with the medical team in order to render the patients as close as possible to achieving their proposed functional goals, thus enhancing their quality of life. By assessing and establishing statistical and clinical correlations between the GAS and quantifiable parameters related to the affected post-stroke upper limb, namely degree of spasticity, motor control, pain level and evolution of pain under treatment with BoNT-A (abobotulinum toxin A), and patients' overall response to BoNT-A treatment, we aim to quantify the improvement of the therapeutic management of post-stroke patients with spasticity and develop a more personalized and effective approach to their disability and impairment. RESULTS AND DISCUSSIONS: The analysis concluded that there were two independent predictors of the Achieved GAS-T score (the study's endpoint parameter) motor control at any level of the upper limb and number of prior BoNT-A injections. The number of prior BoNT-A injections was an independent predictor of Achieved GAS-T score improvement but had no significant influence over Baseline GAS-T score. Enhancement in proximal and intermediate motor control showed a GAS score improvement of 3.3 points and a 0.93-point GAS score improvement for wrist motor control progress. From a separate viewpoint, patients with motor deficit on the left side have shown significantly greater improvement in Changed GAS-T scores by 2.5 points compared to patients with deficits on the right side; however, we note as a study limitation the fact that there was no statistical analysis over the dominant cerebral hemisphere of each patient. CONCLUSIONS: Improvement in the Achieved GAS-T score means better achievement of patients' goals. Thus, after the BoNT- A intervention, at follow-up evaluation, GAS was found to be directly correlated with improvement in motor control of the affected upper limb. Mobility of the corresponding limb was enhanced by pain decrease during p-ROM (passive range of motion) and by amelioration of spasticity. MATERIALS AND METHODS: We conducted an observational, non-randomized clinical study on 52 stroke patients, a representative sample of patients with post-stroke spasticity and disability from our neurological rehabilitation clinic, who have been treated and undergone a specific rehabilitation program in our tertiary diagnostic and treatment medical center, including BoNT-A focal treatment for spasticity in the affected upper limb. The primary objective of the study was to assess the influence of abobotulinum toxin A treatment on the Goal Attainment Scale. Secondary objectives of the study included the assessment of BoNT-A treatment efficacy on spasticity with the MAS (Modified Ashworth Scale), pain with the NRS (Numerical Rating Scale), and joint passive range of motion (p-ROM), identifying demographic, clinical, and pharmacological factors that influence the response to BoNT-A treatment, as well as to conduct a descriptive and exploratory analysis of the studied variables.


Subject(s)
Botulinum Toxins, Type A , Muscle Spasticity , Stroke Rehabilitation , Stroke , Humans , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Stroke/drug therapy , Stroke/complications , Male , Botulinum Toxins, Type A/therapeutic use , Female , Middle Aged , Stroke Rehabilitation/methods , Aged , Treatment Outcome , Neuromuscular Agents/therapeutic use , Upper Extremity , Goals , Quality of Life , Adult
4.
Mol Genet Genomic Med ; 12(4): e2435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618971

ABSTRACT

BACKGROUND: Hypomyelinating leukodystrophy-9 (HLD-9) is caused by biallelic pathogenic variants in RARS1, which codes for the cytoplasmic tRNA synthetase for arginine (ArgRS). This study aims to evaluate the clinical, neuroradiological, and genetic characteristics of patients with RARS1-related disease and determine probable genotype-phenotype relationships. METHODS: We identified three patients with RARS1 homozygous pathogenic variants. Furthermore, we performed a comprehensive review of the literature. RESULTS: Homozygous variants of RARS1 (c.2T>C (p.Met1Thr)) were identified in three patients with HLD-9. Clinical symptoms were severe in all patients. Following the literature review, thirty HLD-9 cases from eight studies were found. The 33 patients' main symptoms were hypomyelination, language delay, and intellectual disability or developmental delay. The mean age of onset for HLD9 in the group of 33 patients with a known age of onset was 5.8 months (SD = 8.1). The interquartile range of age of onset was 0-10 months. Of the 25 variants identified, c.5A>G (p.Asp2Gly) was identified in 11 patients. CONCLUSION: Pathogenic variants in RARS1 decrease ArgRS activity and cause a wide range of symptoms, from severe, early onset epileptic encephalopathy with brain atrophy to a mild condition with relatively maintained myelination. These symptoms include the classic hypomyelination presentation with nystagmus and spasticity. Furthermore, the pathogenicity of the variation c.2T>C (p.Met1Thr) has been shown.


Subject(s)
Amino Acyl-tRNA Synthetases , Intellectual Disability , Humans , Infant , Infant, Newborn , Iran , Homozygote , Muscle Spasticity
5.
Pan Afr Med J ; 47: 26, 2024.
Article in English | MEDLINE | ID: mdl-38558551

ABSTRACT

During the 1970s, scientists first used botulinum toxin to treat strabismus. While testing on monkeys, they noticed that the toxin could also reduce wrinkles in the glabella area. This led to its widespread use in both medical and cosmetic fields. The objective of the study was to evaluate the potential use of Botox in managing post-operative contracture after below-knee amputation. We conducted a systematic review In Pubmed, Cochrane Library, Embase, and Google Scholar using the MESH terms Botox, botulinum toxin, post-operative contracture, amputation, and below knee amputation. Our goal was to evaluate the potential use of Botox to manage post-operative contracture in patients who have undergone below-knee amputation. Our findings show evidence in the literature that Botox can effectively manage stump hyperhidrosis, phantom pain, and jumping stump, but no clinical trial has been found that discusses the use of Botox for post-operative contracture. Botox has been used in different ways to manage spasticity. Further studies and clinical trials are needed to support the use of Botox to manage this complication.


Subject(s)
Botulinum Toxins, Type A , Contracture , Joint Dislocations , Neuromuscular Agents , Humans , Amputation, Surgical , Contracture/drug therapy , Contracture/surgery , Contracture/etiology , Amputation Stumps/surgery , Muscle Spasticity/drug therapy
6.
Eur Rev Med Pharmacol Sci ; 28(6): 2117-2126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38567574

ABSTRACT

OBJECTIVE: Children with hemiplegic cerebral palsy (CP) are typically ambulant with high motor functioning levels but with gait asymmetry and a greater risk of instability and falling. Physiotherapy is considered the core part of CP rehabilitation due to the risk of neurosurgery and the side effects of drug interventions. Although growing evidence has looked at the effect of upper limb loading during walking in many populations, such interventions in children with CP remain unexplored yet. The purpose of this study was to investigate if loading the upper limbs with external weights could improve walking speed, trunk control, and balance in ambulatory children with hemiplegic CP. PATIENTS AND METHODS: The following outcome measures were recorded at baseline and six weeks after the intervention: gait speed [10-Meter Walk Test (10 MWT)], trunk control [Trunk Control Measurement Scale (TCMS)], and balance [Pediatric Balance Scale (PBS)]. Multiple 2 (groups) x 2 (time-points) mixed analysis of variance models (ANOVAs) were used for analysis. RESULTS: Both groups showed a significant improvement (p < 0.001) in 10 MWT, TCMS, and PBS scores post-intervention. However, the magnitude of change in the outcome measures was higher in the intervention group (10 MWT = 0.59 m/s, TCMS = 10.41, PBS = 9.35) compared to the control group (10 MWT = 0.37 m/s, TCMS = 6.43, PBS = 4.68). CONCLUSIONS: This study demonstrated that although both control and intervention groups showed improvements in terms of gait speed, trunk control, and balance, the intervention group that had upper limb loading showed higher significant improvements.  Clinicaltrial.gov ID: NCT05444387.


Subject(s)
Cerebral Palsy , Muscle Spasticity , Child , Humans , Hemiplegia , Gait , Upper Extremity
7.
Toxins (Basel) ; 16(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38668622

ABSTRACT

Post-stroke spasticity is a common complication that limits the functional performance of patients. Botulinum toxin (BTx) is an effective treatment for spasticity. Numerous researchers have applied extracorporeal shock wave therapy (ESWT) to address post-stroke spasticity, yielding positive clinical outcomes. We aimed to clarify the add-on effects of ESWT on BTx therapy for spasticity in patients with post-stroke. Sixteen eligible patients with upper extremity spasticity after stroke were recruited for this study. They were randomized to either a BTx with focused ESWT treatment group or a BTx alone group. Spasticity, measured using the modified Ashworth score (MAS) and modified Tardieu scale (MTS), showed statistically significant improvements in the elbow and wrist flexor muscles in both BTx + ESWT group and BTx alone groups. However, no significant differences were observed between the two groups with time flow. The BTx + ESWT group showed significantly decreased MAS of the finger flexors at follow-up and increased R1 (MTS) of the finger flexors at 3 weeks after treatment, which was not observed in the BTx alone group. This is the first study to identify the add-on effect of ESWT on BTx injections to improve post-stroke upper limb spasticity.


Subject(s)
Extracorporeal Shockwave Therapy , Muscle Spasticity , Stroke , Upper Extremity , Humans , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Muscle Spasticity/therapy , Male , Female , Middle Aged , Stroke/complications , Aged , Treatment Outcome , Botulinum Toxins, Type A/therapeutic use , Botulinum Toxins, Type A/administration & dosage , Neuromuscular Agents/therapeutic use , Neuromuscular Agents/administration & dosage , Combined Modality Therapy , Adult
8.
BMC Neurol ; 24(1): 143, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678195

ABSTRACT

BACKGROUND: Spasticity can significantly affect a patient's quality of life, caregiver satisfaction, and the financial burden on the healthcare system. Baclofen is one of only a few options for treating spasticity. The purpose of this study is to investigate the impact of intrathecal baclofen (ITB) therapy on severe40.23 spasticity and motor function in patients with cerebral palsy. METHODS: We conducted a systematic review in PubMed, Scopus, Ovid, and the Cochrane Library in accordance with the PRISMA guidelines. We included studies based on eligibility criteria that included desired participants (cerebral palsy patients with spasticity), interventions (intrathecal baclofen), and outcomes (the Ashworth scales and the Gross Motor Function Measure [GMFM]). The within-group Cohen's d standardized mean differences (SMD) were analyzed using the random effect model. RESULTS: We screened 768 papers and included 19 in the severity of spasticity section and 6 in the motor function section. The pre-intervention average spasticity score (SD) was 3.2 (0.78), and the post-intervention average score (SD) was 1.9 (0.72), showing a 40.25% reduction. The SMD for spasticity reduction was - 1.7000 (95% CI [-2.1546; -1.2454], p-value < 0.0001), involving 343 patients with a weighted average age of 15.78 years and a weighted average baclofen dose of 289 µg/day. The SMD for the MAS and Ashworth Scale subgroups were - 1.7845 (95% CI [-2.8704; -0.6986]) and - 1.4837 (95% CI [-1.8585; -1.1088]), respectively. We found no relationship between the participants' mean age, baclofen dose, measurement time, and the results. The pre-intervention average GMFM (SD) was 40.03 (26.01), and the post-intervention average score (SD) was 43.88 (26.18), showing a 9.62% increase. The SMD for motor function using GMFM was 0.1503 (95% CI [0.0784; 0.2223], p-value = 0.0030), involving 117 patients with a weighted average age of 13.63 and a weighted average baclofen dose of 203 µg/day. In 501 ITB implantations, 203 medical complications were reported, including six new-onset seizures (2.96% of medical complications), seven increased seizure frequency (3.45%), 33 infections (16.26%), eight meningitis (3.94%), and 16 cerebrospinal fluid leaks (7.88%). Delivery system complications, including 75 catheter and pump complications, were also reported. CONCLUSION: Despite the risk of complications, ITB has a significant impact on the reduction of spasticity. A small but statistically significant improvement in motor function was also noted in a group of patients.


Subject(s)
Baclofen , Cerebral Palsy , Injections, Spinal , Muscle Relaxants, Central , Muscle Spasticity , Baclofen/administration & dosage , Humans , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Cerebral Palsy/drug therapy , Cerebral Palsy/complications , Injections, Spinal/methods , Muscle Relaxants, Central/administration & dosage , Muscle Relaxants, Central/therapeutic use , Treatment Outcome , Severity of Illness Index , Motor Activity/drug effects , Motor Activity/physiology
9.
J Neuroeng Rehabil ; 21(1): 50, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594696

ABSTRACT

BACKGROUND: The pendulum test is a quantitative method used to assess knee extensor spasticity in humans with spinal cord injury (SCI). Yet, the clinical implementation of this method remains limited. The goal of our study was to develop an objective and portable system to assess knee extensor spasticity during the pendulum test using inertial measurement units (IMU). METHODS: Spasticity was quantified by measuring the first swing angle (FSA) using a 3-dimensional optical tracking system (with external markers over the iliotibial band, lateral knee epicondyle, and lateral malleolus) and two wireless IMUs (positioned over the iliotibial band and mid-part of the lower leg) as well as a clinical exam (Modified Ashworth Scale, MAS). RESULTS: Measurements were taken on separate days to assess test-retest reliability and device agreement in humans with and without SCI. We found no differences between FSA values obtained with the optical tracking system and the IMU-based system in control subjects and individuals with SCI. FSA values from the IMU-based system showed excellent agreement with the optical tracking system in individuals with SCI (ICC > 0.98) and good agreement in controls (ICC > 0.82), excellent test-retest reliability across days in SCI (ICC = 0.93) and good in controls (ICC = 0.87). Notably, FSA values measured by both systems showed a strong association with MAS scores ( ρ  ~ -0.8) being decreased in individuals with SCI with higher MAS scores, reflecting the presence of spasticity. CONCLUSIONS: These findings suggest that our new portable IMU-based system provides a robust and flexible alternative to a camera-based optical tracking system to quantify knee extensor spasticity following SCI.


Subject(s)
Lower Extremity , Spinal Cord Injuries , Humans , Reproducibility of Results , Muscle Spasticity/etiology , Muscle Spasticity/complications , Knee , Spinal Cord Injuries/complications
10.
Toxins (Basel) ; 16(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38668609

ABSTRACT

Botulinum toxin type-A (BoNT-A) has emerged as a key therapeutic agent for the management of spasticity. This paper presents a comprehensive bibliometric and visual analysis of research concerning BoNT-A treatment of spasticity to elucidate current trends and future directions in this research area. A search was conducted in the Web of Science database for articles focused on the use of BoNT-A in spasticity published between 2000 and 2022. We extracted various metrics, including counts of publications and contributions from different countries, institutions, authors, and journals. Analytical methods in CiteSpace were employed for the examination of co-citations, collaborations, and the co-occurrence of keywords. Our search yielded 1489 publications. Analysis revealed a consistent annual increase in research output. The United States, United Kingdom, and Italy were the leading contributors. The top institution in this research was Assistance Publique Hopitaux, Paris. The journal containing the highest number of relevant publications was Toxins. Key frequently occurring keywords were 'stroke', 'cerebral palsy', 'adult spasticity', and 'upper extremity'. This study identified 12 clusters of keywords and 15 clusters of co-cited references, indicating the main focus areas and emerging themes in this field. This study comprehensively analyzed and summarized trends in BoNT-A research in the field of spasticity over the past 22 years.


Subject(s)
Bibliometrics , Botulinum Toxins, Type A , Muscle Spasticity , Muscle Spasticity/drug therapy , Humans , Botulinum Toxins, Type A/therapeutic use , Neuromuscular Agents/therapeutic use
11.
Eur J Paediatr Neurol ; 49: 131-140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38518417

ABSTRACT

AIM: To identify short-term effects of botulinum neurotoxin type A (BoNT) injections on gait and clinical impairments, in children with spastic cerebral palsy (CP), based on baseline gait pattern-specific subgroups. METHOD: Short-term effects of BoNT injections in the medial hamstrings and gastrocnemius were defined in a retrospective convenience sample of 117 children with CP (median age: 6 years 4 months; GMFCS I/II/III: 70/31/16; unilateral/bilateral: 56/61) who had received gait analyses before and 2 months post-BoNT. First, baseline gait patterns were classified. Statistical and meaningful changes were calculated between pre- and post-BoNT lower limb sagittal plane kinematic waveforms, the gait profile score, and non-dimensional spatiotemporal parameters for the entire sample and for pattern-specific subgroups. These gait waveforms per CP subgroup at pre- and post-BoNT were also compared to typically developing gait and composite scores for spasticity, weakness, and selectivity were compared between the two conditions. RESULTS: Kinematic improvements post-BoNT were identified at the ankle and knee for the entire sample, and for subgroups with apparent equinus and jump gait. Limbs with baseline patterns of dropfoot and to a lesser extent true equinus showed clear improvements only at the ankle. In apparent equinus, jump gait, and dropfoot, spasticity improved post-BoNT, without leading to increased weakness or diminished selectivity. Compared to typical gait, knee and hip motion improved in the crouch gait subgroup post-BoNT. CONCLUSION: This comprehensive analysis highlighted the importance of investigating BoNT effects on gait and clinical impairments according to baseline gait patterns. These findings may help identify good treatment responders.


Subject(s)
Botulinum Toxins, Type A , Cerebral Palsy , Neuromuscular Agents , Humans , Cerebral Palsy/drug therapy , Cerebral Palsy/physiopathology , Cerebral Palsy/complications , Botulinum Toxins, Type A/administration & dosage , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/therapeutic use , Child , Male , Female , Neuromuscular Agents/administration & dosage , Neuromuscular Agents/pharmacology , Retrospective Studies , Child, Preschool , Biomechanical Phenomena/drug effects , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/drug effects , Adolescent , Treatment Outcome , Muscle Spasticity/drug therapy , Muscle Spasticity/physiopathology , Muscle Spasticity/etiology , Gait/drug effects , Gait/physiology
12.
Handchir Mikrochir Plast Chir ; 56(1): 65-73, 2024 Feb.
Article in German | MEDLINE | ID: mdl-38508205

ABSTRACT

Selective neurectomy refers to the targeted transection of motor nerve fibres at their entry into the muscle in order to reduce the increased muscle tone in cases of spastic paralysis. This procedure has regained popularity in recent years, especially in the upper extremity. First and foremost, it requires an exact knowledge of the topographical anatomy of muscle innervation. To be able to control the extent and localisation of the denervation, the terminal nerve branches must be visualized precisely during the procedure. For a meaningful reduction of muscle tone, 2/3 to 4/5 of nerve fibres must be resected. This article presents the historical development, principles and operative details of this technique as well as clinical results.


Subject(s)
Muscle Spasticity , Upper Extremity , Humans , Muscle Spasticity/surgery , Upper Extremity/surgery , Denervation/methods , Paralysis/surgery
13.
Phys Med Rehabil Clin N Am ; 35(2): 445-462, 2024 May.
Article in English | MEDLINE | ID: mdl-38514229

ABSTRACT

Pain can be a significant barrier to a stroke survivors' functional recovery and can also lead to a decreased quality of life. Common pain conditions after stroke include headache, musculoskeletal pain, spasticity-related pain, complex regional pain syndrome, and central poststroke pain. This review investigates the evidence of diagnostic and management guidelines for various pain syndromes after stroke and identifies opportunities for future research to advance the field of poststroke pain.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Quality of Life , Pain , Stroke/complications , Headache , Muscle Spasticity/etiology
14.
Phys Med Rehabil Clin N Am ; 35(2): 399-418, 2024 May.
Article in English | MEDLINE | ID: mdl-38514226

ABSTRACT

Botulinum toxin (BonT) is the mainstream treatment option for post-stroke spasticity. BoNT therapy may not be adequate in those with severe spasticity. There are a number of emerging treatment options for spasticity management. In this paper, we focus on innovative and revived treatment options that can be alternative or complementary to BoNT therapy, including phenol neurolysis, cryoneurolysis, and extracorporeal shock wave therapy.


Subject(s)
Botulinum Toxins, Type A , Neuromuscular Agents , Stroke , Humans , Botulinum Toxins, Type A/therapeutic use , Neuromuscular Agents/therapeutic use , Treatment Outcome , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Stroke/complications , Stroke/drug therapy
15.
Stem Cell Res ; 76: 103363, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437768

ABSTRACT

Spastic Ataxias (SA) are a group of neurodegenerative disorders with combined pyramidal and cerebellar system affection, leading to an overlap phenotype between Hereditary Spastic Paraplegias (HSP) and Cerebellar Ataxias (CA). Here we describe the generation of iPSCs from three unrelated patients with an ultra-rare subtype of SA caused by compound heterozygous mutations in POLR3A, that encodes the largest subunit of RNA polymerase III. iPSCs were reprogrammed from normal human dermal fibroblasts (NHDFs) using episomal reprogramming with integration-free plasmid vectors: HIHRSi004-A, derived from a 44 year-old male carrying the mutations c.1909 + 22G > A/c.3944_3945delTG, HIHRSi005-A obtained from a 66 year-old male carrying the mutations c.1909 + 22G > A/c.1531C > T, and HIHRSi006-A from a 27 year-old male carrying the mutations c.1909 + 22G > A/c.2472_2472delC (ENST00000372371.8).


Subject(s)
Induced Pluripotent Stem Cells , Intellectual Disability , Optic Atrophy , Spinocerebellar Ataxias , Adult , Aged , Humans , Male , Cell Line , Induced Pluripotent Stem Cells/metabolism , Muscle Spasticity/genetics , Mutation , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Spinocerebellar Ataxias/genetics
16.
Article in English | MEDLINE | ID: mdl-38526884

ABSTRACT

Joint hyper-resistance is a common symptom in neurological disorders. It has both neural and non-neural origins, but it has been challenging to distinguish different origins based on clinical tests alone. Combining instrumented tests with parameter identification based on a neuromechanical model may allow us to dissociate the different origins of joint hyper-resistance in individual patients. However, this requires that the model captures the underlying mechanisms. Here, we propose a neuromechanical model that, in contrast to previously proposed models, accounts for muscle short-range stiffness (SRS) and its interaction with muscle tone and reflex activity. We collected knee angle trajectories during the pendulum test in 15 children with cerebral palsy (CP) and 5 typically developing children. We did the test in two conditions - hold and pre-movement - that have been shown to alter knee movement. We modeled the lower leg as an inverted pendulum actuated by two antagonistic Hill-type muscles extended with SRS. Reflex activity was modeled as delayed, linear feedback from muscle force. We estimated neural and non-neural parameters by optimizing the fit between simulated and measured knee angle trajectories during the hold condition. The model could fit a wide range of knee angle trajectories in the hold condition. The model with personalized parameters predicted the effect of pre-movement demonstrating that the model captured the underlying mechanism and subject-specific deficits. Our model may help with the identification of neural and non-neural origins of joint hyper-resistance and thereby opens perspectives for improved diagnosis and treatment selection in children with spastic CP, but such applications require further studies to establish the method's reliability.


Subject(s)
Cerebral Palsy , Muscle Spasticity , Child , Humans , Reproducibility of Results , Movement , Knee , Muscle, Skeletal/physiology
17.
Exp Neurol ; 376: 114754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493983

ABSTRACT

Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.


Subject(s)
Homeostasis , Rats, Sprague-Dawley , Reflex, Abnormal , Spinal Cord Injuries , Spinal Cord Stimulation , Animals , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Rats , Homeostasis/physiology , Reflex, Abnormal/physiology , Spinal Cord Stimulation/methods , Female , Chlorides/metabolism , Muscle Spasticity/etiology , Muscle Spasticity/therapy , Neuronal Plasticity/physiology
18.
Zhonghua Er Ke Za Zhi ; 62(4): 357-362, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38527507

ABSTRACT

Objective: To explore the diagnosis and treatment of adolescence-onset methylenetetrahydrofolate reductase (MTHFR) deficiency. Methods: This was a retrospective case study. Nine patients with adolescence-onset MTHFR deficiency were diagnosed at Peking University First Hospital from January 2016 to December 2022, and followed up for more than 1 year. Their general information, clinical manifestations, laboratory tests, cranial images, MTHFR gene variants, diagnosis, treatment, and outcome were analyzed retrospectively. Results: The 9 patients came from 8 families. They had symptoms at age of 8.0 years to 17.0 years and diagnosed at 9.0 years to 17.5 years. Eight were male and 1 was female. Two patients were brothers, the elder brother developed abnormal gait at 17.0 years; and the younger brother was then diagnosed at 15.0 years of age and treated at the asymptomatic stage, who was 18.0 years old with normal condition during this study. The main manifestations of the 8 symptomatic patients included progressive dyskinesia and spastic paralysis of the lower limbs, with or without intellectual decline, cognitive impairment and behavioral abnormalities. Totally, 15 variants of MTHFR gene were identified in the 9 patients, including 8 novel variants. Five patients had brain image abnormalities. Increased plasma total homocysteine level (65-221 µmol/L) was found in all patients, and decreased to 20-70 µmol/L after treatment with betaine and calcium folinate. Besides, the 8 symptomatic patients had their behavior and cognitive problems significantly improved, with a legacy of lower limb motor disorders. Conclusions: Late-onset MTHFR deficiency can occur in adolescence. The diagnosis is usually delayed because of non-specific clinical symptoms. The test of blood total homocysteine could be used as a selective screening test. Eight novel varients of MTHFR gene were identified. Timely treatment can improve clinical condition significantly, and pre-symptomatic treatment may prevent brain damage.


Subject(s)
Methylenetetrahydrofolate Reductase (NADPH2) , Muscle Spasticity , Adolescent , Child , Female , Humans , Male , Homocysteine/therapeutic use , Homocystinuria , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Muscle Spasticity/diagnosis , Muscle Spasticity/genetics , Muscle Spasticity/drug therapy , Psychotic Disorders , Retrospective Studies
19.
J Med Case Rep ; 18(1): 125, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38521912

ABSTRACT

BACKGROUND: Dry needling is an intervention used by physiotherapists to manage muscle spasticity. We report the effects of three sessions of dry needling on ankle plantar flexor muscle spasticity and cortical excitability in a patient with multiple sclerosis. CASE PRESENTATION: The patient was a 40-year-old Iranian woman with an 11-year history of multiple sclerosis. The study outcomes were measured by the modified modified Ashworth scale, transcranial magnetic stimulation parameters, and active and passive ankle range of motion. They were assessed before (T0), after three sessions of dry needling (T1), and at 2-week follow-up (T2). Our result showed: the modified modified Ashworth scale was improved at T2 from, 2 to 1. The resting motor threshold decreased from 63 to 61 and 57 at T1 and T2, respectively. The single test motor evokes potential increased from 76.2 to 78.3. The short intracortical inhibition increased from 23.6 to 35.4 at T2. The intracortical facilitation increased from 52 to 76 at T2. The ankle active and passive dorsiflexion ROM increased ~ 10° and ~ 6° at T2, respectively. CONCLUSION: This case study presented a patient with multiple sclerosis who underwent dry needling of ankle plantar flexors with severe spasticity, and highlighted the successful use of dry needling in the management of spasticity, ankle dorsiflexion, and cortical excitability. Further rigorous investigations are warranted, employing randomized controlled trials with a sufficient sample of patients with multiple sclerosis. Trial registration IRCT20230206057343N1, registered 9 February 2023, https://en.irct.ir/trial/68454.


Subject(s)
Cortical Excitability , Multiple Sclerosis , Adult , Female , Humans , Iran , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , Muscle Spasticity/therapy , Muscle Spasticity/etiology , Percutaneous Collagen Induction , Range of Motion, Articular/physiology
20.
Rev Paul Pediatr ; 42: e2023093, 2024.
Article in English | MEDLINE | ID: mdl-38537033

ABSTRACT

OBJECTIVE: To describe the current state of the art in the therapeutic administration of botulinum toxin with indications, efficacy, and safety profile for children and adolescents with cerebral palsy. DATA SOURCE: An integrative review was conducted. The MEDLINE/PubMed database was searched twice within the last decade using distinct terms, and only studies written in the English language were included. The study population was limited to those aged 0-18 years. Articles that were duplicates or lacked sufficient methodology information were excluded. DATA SYNTHESIS: We found 256 articles, of which 105 were included. Among the included studies, most were conducted in developed countries. Botulinum toxin demonstrated good safety and efficacy in reducing spasticity, particularly when administered by a multidisciplinary rehabilitation team. It is primarily utilized to improve gait and upper limb function, facilitate hygiene care, reduce pain, prevent musculoskeletal deformities, and even decrease sialorrhea in patients without a functional prognosis for walking. CONCLUSIONS: The administration of botulinum toxin is safe and efficacious, especially when combined with a multi-professional rehabilitation team approach, which increases the probability of functional improvement. It can also be beneficial for patients with significant functional impairments to help with daily care tasks, such as hygiene, dressing, and reducing sialorrhea. Pediatricians must be familiar with this treatment and its indications to attend to and refer patients promptly when necessary, and to exploit their neuroplasticity. Further research on this topic is required in developing countries.


Subject(s)
Botulinum Toxins , Cerebral Palsy , Neuromuscular Agents , Sialorrhea , Child , Adolescent , Humans , Botulinum Toxins/therapeutic use , Sialorrhea/drug therapy , Neuromuscular Agents/therapeutic use , Cerebral Palsy/drug therapy , Muscle Spasticity/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...