Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.149
Filter
1.
mBio ; 15(5): e0255223, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38567992

ABSTRACT

Since the discovery of extracellular vesicles (EVs) in mycobacterial species 15 years back, we have learned that this phenomenon is conserved in the Mycobacterium genus and has critical roles in bacterial physiology and host-pathogen interactions. Mycobacterium tuberculosis (Mtb), the tuberculosis (TB) causative agent, produces EVs both in vitro and in vivo including a diverse set of biomolecules with demonstrated immunomodulatory effects. Moreover, Mtb EVs (MEVs) have been shown to possess vaccine properties and carry biomarkers with diagnostic capacity. Although information on MEV biogenesis relative to other bacterial species is scarce, recent studies have shed light on how MEVs originate and are released to the extracellular space. In this minireview, we discuss past and new information about the vesiculogenesis phenomenon in Mtb, including biogenesis, MEV cargo, aspects in the context of host-pathogen interactions, and applications that could help to develop effective tools to tackle the disease.


Subject(s)
Extracellular Vesicles , Host-Pathogen Interactions , Mycobacterium tuberculosis , Tuberculosis , Extracellular Vesicles/metabolism , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Tuberculosis/diagnosis , Animals , Biomarkers , Mycobacterium/genetics , Mycobacterium/metabolism
2.
Life Sci ; 346: 122632, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615748

ABSTRACT

Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Humans , Antitubercular Agents/pharmacology , Cell Cycle/drug effects , Drug Resistance, Bacterial , Mycobacterium/drug effects , Mycobacterium/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis/microbiology , Tuberculosis/drug therapy
3.
PLoS One ; 19(4): e0291404, 2024.
Article in English | MEDLINE | ID: mdl-38626036

ABSTRACT

We determined the impact of the COVID-19 pandemic on mycobacterial diagnostic services. 40 laboratories from 22 countries completed an online questionnaire covering the redeployment of the laboratory infrastructure and/or staff for SARS-CoV-2 testing, staff shortages and supply chain disruptions. 28 laboratories reported monthly numbers of samples processed for mycobacterial investigations and monthly numbers of M. tuberculosis complex (MTBC) PCRs performed between October 1st 2018 and October 31st 2020. More than half (23/40) of the participating TB laboratories reported having performed COVID-19 diagnostics in the early phase of the pandemic, in part with negative impact on the mycobacterial service activities. All participating laboratories reported shortages of consumables and laboratory equipment due to supply chain issues. Average monthly sample numbers decreased by 24% between January 2020 and October 2020 compared to pre-pandemic averages. At the end of the study period, most participating laboratories had not returned to pre-pandemic average MTBC PCR throughput.


Subject(s)
COVID-19 , Mycobacterium , Tuberculosis , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , COVID-19 Testing , SARS-CoV-2 , Tuberculosis/diagnosis , Tuberculosis/epidemiology
4.
BMC Infect Dis ; 24(1): 437, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658840

ABSTRACT

BACKGROUND: Immunodeficient patients, particularly HIV patients, are at risk of opportunistic infections. Nontuberculous mycobacteria can cause severe complications in immunodeficient patients. CASE PRESENTATION: We describe a 57-year-old HIV patient, primarily presented with coughs and constitutional symptoms, with a unique Mycobacterium genavense abdominal, pulmonary, and central nervous system infection, accompanied by intracranial masses. CONCLUSION: The diagnosis of NTM, including M. genavense, must always be considered by clinicians in immunodeficient patients, especially those with HIV, who have a compromised immune system.


Subject(s)
HIV Infections , Mycobacterium Infections, Nontuberculous , Humans , Middle Aged , HIV Infections/complications , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , Male , Nontuberculous Mycobacteria/isolation & purification , Mycobacterium/isolation & purification , AIDS-Related Opportunistic Infections/microbiology , AIDS-Related Opportunistic Infections/drug therapy , AIDS-Related Opportunistic Infections/diagnosis
6.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 360-362, 2024 Apr 12.
Article in Chinese | MEDLINE | ID: mdl-38599813

ABSTRACT

Here, we reported the diagnosis and treatment of a case of HIV infected person complicated by an extremely rare infection with Mycobacterium celatum. Due to the similarity of homologous sequence regions between Mycobacterium celatum and Mycobacterium tuberculosis complex, the identification of conventional Mycobacterium species was incorrect, which was corrected after first-generation 16S rRNA sequencing. This report aimed to improve the clinical understanding of Mycobacterium celatum infection and the level of differential diagnosis between non-tuberculous mycobacterial disease and tuberculosis.


Subject(s)
HIV Infections , Mycobacterium Infections , Mycobacterium , Humans , RNA, Ribosomal, 16S/genetics , Mycobacterium/genetics , Mycobacterium Infections/diagnosis , Mycobacterium Infections/microbiology , Nontuberculous Mycobacteria/genetics , HIV Infections/complications
7.
Mol Pharm ; 21(5): 2238-2249, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38622497

ABSTRACT

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.


Subject(s)
Mycobacterium smegmatis , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Mycobacterium smegmatis/drug effects , Lipids/chemistry , Drug Synergism , Cell Membrane/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/administration & dosage , Mycobacterium/drug effects , Berberine/pharmacology , Berberine/chemistry , Drug Carriers/chemistry , Tuberculosis/drug therapy
8.
Int J Infect Dis ; 141S: 106992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458426

ABSTRACT

In recent years, novel specific Mycobacteria tuberculous (TB) antigen-based skin test (TBST) has become available for clinical use. The mechanism of TBST is similar to the interferon-gamma release assay (IGRA), making it a potential alternative for identifying latent tuberculous infection (LTBI), especially in subjects with history of bacille Calmette-Guérin vaccination. Three different commercial brands have been developed in Denmark, Russia, and China. Clinical studies in the respective countries have shown promising sensitivity, specificity, and safety profile. Some studies attempted to address the applicability of TBST in specific subject groups but the discrepancy in defining LTBI and problematic methodologies undermine the generalisation of the results to other communities across the world. Limited cost-effectiveness studies for TBST have been conducted without exploring the health economics for preventing development of LTBI into active TB. Unlike IGRA, no clinical studies have addressed the correlation of TBST results (magnitude of induration) with the likelihood of development of active TB. Moreover, the different TBSTs are not widely available for clinical use. While TBST is a promising test to overcome the shortcomings of tuberculin skin tests, more clinical data are needed to support its general application globally for the diagnosis of LTBI.


Subject(s)
Latent Tuberculosis , Mycobacterium , Tuberculosis , Humans , Interferon-gamma Release Tests/methods , Latent Tuberculosis/diagnosis , Tuberculin Test/methods
9.
Sci Total Environ ; 927: 172112, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38556005

ABSTRACT

The number of nontuberculous mycobacteria (NTM) lung disease cases is increasing in the United States (US). This respiratory disease is primarily caused by three NTM species: Mycobacterium avium, M. intracellulare, and M. abscessus. Since disease transmission could occur through water aerosolization, this study investigated these three species' occurrence (sporadic and persistent) in hot water samples collected from residences (n = 70) and office buildings (n = 30) across the US. A longitudinal survey design was used. Three quantitative Polymerase Chain Reaction (qPCR) assays were used to measure the mycobacterial species in the water samples. Additionally, the water's disinfectant residual was measured. A structure's age and square footage were evaluated to predict mycobacterial contamination. Also, the seasonal occurrence of each species was assessed by structure type. Residences had a 43 % (30/70), and office buildings had a 77 % (23/30) detection frequency of one or more Mycobacterium spp. in their hot water. The age of the structure influenced M. intracellulare detection frequency but not M. avium and M. abscessus. The structure's square footage affected M. avium and M. intracellulare detection frequency but not M. abscessus. In chlorinated water, M. intracellulare was detected 1.4× more often in office buildings' hot water than in chloraminated water. In chloraminated water, the Mycobacterium spp. were detected 2-2.5× more often in residences, while M. avium and M. abscessus were detected 1.5-2.3× more often in office buildings, compared to chlorinated water. Each Mycobacterium spp. had a different trend associated with the type of structure and disinfectant. Further research is needed to better understand NTM occurrence in the built environment to improve public health.


Subject(s)
Disinfectants , Water Microbiology , Disinfectants/analysis , Nontuberculous Mycobacteria , Mycobacterium , Environmental Monitoring/methods , United States
10.
Dalton Trans ; 53(15): 6676-6689, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38526845

ABSTRACT

Recently, we have studied the coordination chemistry of the Cu(II)-histidine-rich C-terminal tail (HRCT) complex of the mycobacterial GroEL1 protein. The structure of this domain differs significantly compared to the well-known methionine-glycine-rich GroEL chaperonin - it was predicted that mycobacterial GroEL1 could play a significant role in the metal homeostasis of Mycobacteria, especially copper. However, we found that this particular domain's pattern also repeats in a number of Ni(II)-binding proteins. Here, we present the studies concerning the properties of GroEL1 HRCT as a ligand for Ni(II) ions. For this purpose, we chose eight model peptides: L1 - Ac-DHDHHHGHAH, L2 - Ac-DKPAKAEDHDHHHGHAH, and 6 mutants of the latter in the pH range of 2-11. We examined the stoichiometry, stability, and spectroscopic features of copper complexes. We noticed that similar to the Cu(II)-complex, the presence of a Lys5 residue significantly increases the stability of the system. The impact of His mutations was also examined and carefully studied using NMR spectroscopy. His9 and His13 are the crucial residues for Ni(II) binding, whereas His12 has minimal relevance in complex formation.


Subject(s)
Histidine , Mycobacterium , Histidine/chemistry , Copper/chemistry , Binding Sites , Magnetic Resonance Spectroscopy , Mutation , Mycobacterium/metabolism
11.
Microbiol Res ; 282: 127664, 2024 May.
Article in English | MEDLINE | ID: mdl-38422860

ABSTRACT

Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 µM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.


Subject(s)
Mycobacterium , Tumor Suppressor Protein p53 , Humans , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Macrophages , Phenol , THP-1 Cells , Phagosomes/metabolism , Phagosomes/microbiology , Lysosomes/metabolism , Mycobacterium/metabolism , Phenols/pharmacology , Phenols/metabolism
13.
J Biol Chem ; 300(3): 105768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367664

ABSTRACT

Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.


Subject(s)
Galactans , Mycobacterium , Galactans/biosynthesis , Polymers/metabolism , Proteomics , Transferases/metabolism , Mycobacterium/metabolism
14.
Diagn Microbiol Infect Dis ; 108(4): 116191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335880

ABSTRACT

Mycobacterium farcinogenes (M. farcinogenes) is rapidly growing mycobacterium, belonging to non-tuberculous mycobacterial (NTM). M. farcinogenes is an exceedingly rare causative agent of human infection. Only seven cases with M. farcinogenes infections in humans were reported. This is a case of soft tissue infection and osteomyelitis caused by M. farcinogenes after heart surgery. Microbial identification was achieved by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The clinical outcome was favorable after surgical debridement and 4-month antibiotics treatment. We also provide a comprehensive literature review on this disease.


Subject(s)
Cardiac Surgical Procedures , Mycobacteriaceae , Mycobacterium , Osteomyelitis , Soft Tissue Infections , Humans , Nontuberculous Mycobacteria , Osteomyelitis/diagnosis , Osteomyelitis/drug therapy , Cardiac Surgical Procedures/adverse effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
15.
MMWR Morb Mortal Wkly Rep ; 73(7): 145-148, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386802

ABSTRACT

Nonhuman primates (NHP) can become infected with the same species of Mycobacteria that cause human tuberculosis. All NHP imported into the United States are quarantined and screened for tuberculosis; no confirmed cases of tuberculosis were diagnosed among NHP during CDC-mandated quarantine during 2013-2020. In February 2023, an outbreak of tuberculosis caused by Mycobacterium orygis was detected in a group of 540 cynomolgus macaques (Macaca fascicularis) imported to the United States from Southeast Asia for research purposes. Although the initial exposure to M. orygis is believed to have occurred before the macaques arrived in the United States, infected macaques were first detected during CDC-mandated quarantine. CDC collaborated with the importer and U.S. Department of Agriculture's National Veterinary Services Laboratories in the investigation and public health response. A total of 26 macaques received positive test results for M. orygis by culture, but rigorous occupational safety protocols implemented during transport and at the quarantine facility prevented cases among caretakers in the United States. Although the zoonotic disease risk to the general population remains low, this outbreak underscores the importance of CDC's regulatory oversight of NHP importation and adherence to established biosafety protocols to protect the health of the United States research animal population and the persons who interact with them.


Subject(s)
Mycobacterium , Tuberculosis , United States/epidemiology , Animals , Humans , Macaca fascicularis , Disease Outbreaks , Asia, Southeastern
16.
Med Sci (Paris) ; 40(2): 154-160, 2024 Feb.
Article in French | MEDLINE | ID: mdl-38411423

ABSTRACT

Lsr2, a small protein mainly found in actinobacteria, plays a crucial role in the virulence and adaptation of mycobacteria to environmental conditions. As a member of the nucleoid-associated protein (NAPs) superfamily, Lsr2 influences DNA organization by facilitating the formation of chromosomal loops in vitro and, therefore, may be a major player in the three-dimensional folding of the genome. Additionally, Lsr2 also acts as a transcription factor, regulating the expression of numerous genes responsible for coordinating a myriad of cellular and molecular processes essential for the actinobacteria. Similar to the H-NS protein, its ortholog in enterobacteria, its role in transcriptional repression likely relies on oligomerization, rigidifying, and bridging of DNA, thereby disrupting RNA polymerase recruitment as well as the elongation of RNA transcripts.


Title: Lsr2 : protéine associée au nucléoïde (NAP) et facteur transcriptionnel chez les mycobactéries. Abstract: Lsr2, une petite protéine conservée chez les actinobactéries, joue un rôle crucial dans la virulence et l'adaptation des mycobactéries aux conditions environnementales. Membre de la superfamille des protéines associées au nucléoïde (NAP), Lsr2 influence l'organisation de l'ADN en facilitant la formation de boucle chromosomique in vitro, ce qui suggère qu'elle pourrait être un acteur majeur du repliement tridimensionnel du génome. Lsr2 agit également comme un facteur de transcription, régulant l'expression de nombreux gènes responsables de la coordination d'une multitude de processus cellulaires et moléculaires essentiels chez les actinobactéries. Tout comme la protéine H-NS, son orthologue chez les entérobactéries, son rôle de répresseur transcriptionnel repose probablement sur son oligomérisation conduisant à la rigidification de l'ADN et, dans certaines situations, sur le pontage de fragments génomiques distants. Ces mécanismes pourraient perturber le recrutement de l'ARN polymérase sur les promoteurs ainsi que l'élongation des transcrits.


Subject(s)
Mycobacterium , Transcription Factors , Humans , Transcription Factors/genetics , Gene Expression Regulation , Mycobacterium/genetics , Nucleotidyltransferases , DNA
17.
Chembiochem ; 25(7): e202300812, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38351400

ABSTRACT

Biocatalysis has emerged as a powerful alternative to traditional chemical methods, especially for asymmetric synthesis. As biocatalysts usually exhibit excellent chemical, regio- and enantioselectivity, they facilitate and simplify many chemical processes for the production of a broad range of products. Here, a new biocatalyst called, R-selective amine transaminases (R-ATAs), was obtained from Mycobacterium sp. ACS1612 (M16AT) using in-silico prediction combined with a genome and protein database. A two-step simple purification process could yield a high concentration of pure enzyme, suggesting that industrial application would be inexpensive. Additionally, the newly identified and characterized R-ATAs displayed a broad substrate spectrum and strong tolerance to organic solvents. Moreover, the synthetic applicability of M16AT has been demonstrated by the asymmetric synthesis of (R)-fendiline from of (R)-1-phenylethan-1-amine.


Subject(s)
Amines , Mycobacterium , Amines/chemistry , Transaminases/metabolism , Substrate Specificity , Biocatalysis
18.
Microbiol Spectr ; 12(3): e0352823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38353553

ABSTRACT

Mycobacterium abscessus is a non-tuberculous mycobacterium, causing lung infections in cystic fibrosis patients. During pulmonary infection, M. abscessus switches from smooth (Mabs-S) to rough (Mabs-R) morphotypes, the latter being hyper-virulent. Previously, we isolated the lsr2 gene as differentially expressed during S-to-R transition. lsr2 encodes a pleiotropic transcription factor that falls under the superfamily of nucleoid-associated proteins. Here, we used two functional genomic methods, RNA-seq and chromatin immunoprecipitation-sequencing (ChIP-seq), to elucidate the molecular role of Lsr2 in the pathobiology of M. abscessus. Transcriptomic analysis shows that Lsr2 differentially regulates gene expression across both morphotypes, most of which are involved in several key cellular processes of M. abscessus, including host adaptation and antibiotic resistance. These results were confirmed through quantitative real-time PCR, as well as by minimum inhibitory concentration tests and infection tests on macrophages in the presence of antibiotics. ChIP-seq analysis revealed that Lsr2 extensively binds the M. abscessus genome at AT-rich sequences and appears to form long domains that participate in the repression of its target genes. Unexpectedly, the genomic distribution of Lsr2 revealed no distinctions between Mabs-S and Mabs-R, implying more intricate mechanisms at play for achieving target selectivity.IMPORTANCELsr2 is a crucial transcription factor and chromosome organizer involved in intracellular growth and virulence in the smooth and rough morphotypes of Mycobacterium abscessus. Using RNA-seq and chromatin immunoprecipitation-sequencing (ChIP-seq), we investigated the molecular role of Lsr2 in gene expression regulation along with its distribution on M. abscessus genome. Our study demonstrates the pleiotropic regulatory role of Lsr2, regulating the expression of many genes coordinating essential cellular and molecular processes in both morphotypes. In addition, we have elucidated the role of Lsr2 in antibiotic resistance both in vitro and in vivo, where lsr2 mutant strains display heightened sensitivity to antibiotics. Through ChIP-seq, we reported the widespread distribution of Lsr2 on M. abscessus genome, revealing a direct repressive effect due to its extensive binding on promoters or coding sequences of its targets. This study unveils the significant regulatory role of Lsr2, intricately intertwined with its function in shaping the organization of the M. abscessus genome.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium , Humans , Mycobacterium abscessus/genetics , Mycobacterium/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Anti-Bacterial Agents/pharmacology , Transcription Factors/genetics
19.
Emerg Infect Dis ; 30(3): 560-563, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38407162

ABSTRACT

Analysis of genome sequencing data from >100,000 genomes of Mycobacterium tuberculosis complex using TB-Annotator software revealed a previously unknown lineage, proposed name L10, in central Africa. Phylogenetic reconstruction suggests L10 could represent a missing link in the evolutionary and geographic migration histories of M. africanum.


Subject(s)
Biological Evolution , Mycobacterium , Phylogeny , Mycobacterium/genetics , Software , Africa, Central/epidemiology
20.
J Clin Microbiol ; 62(3): e0106923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38299829

ABSTRACT

This study aimed to validate Metasystems' automated acid-fast bacilli (AFB) smear microscopy scanning and deep-learning-based image analysis module (Neon Metafer) with assistance on respiratory and pleural samples, compared to conventional manual fluorescence microscopy (MM). Analytical parameters were assessed first, followed by a retrospective validation study. In all, 320 archived auramine-O-stained slides selected non-consecutively [85 originally reported as AFB-smear-positive, 235 AFB-smear-negative slides; with an overall mycobacterial culture positivity rate of 24.1% (77/320)] underwent whole-slide imaging and were analyzed by the Metafer Neon AFB Module (version 4.3.130) using a predetermined probability threshold (PT) for AFB detection of 96%. Digital slides were then examined by a trained reviewer blinded to previous AFB smear and culture results, for the final interpretation of assisted digital microscopy (a-DM). Paired results from both microscopic methods were compared to mycobacterial culture. A scanning failure rate of 10.6% (34/320) was observed, leaving 286 slides for analysis. After discrepant analysis, concordance, positive and negative agreements were 95.5% (95%CI, 92.4%-97.6%), 96.2% (95%CI, 89.2%-99.2%), and 95.2% (95%CI, 91.3%-97.7%), respectively. Using mycobacterial culture as reference standard, a-DM and MM had comparable sensitivities: 90.7% (95%CI, 81.7%-96.2%) versus 92.0% (95%CI, 83.4%-97.0%) (P-value = 1.00); while their specificities differed 91.9% (95%CI, 87.4%-95.2%) versus 95.7% (95%CI, 92.1%-98.0%), respectively (P-value = 0.03). Using a PT of 96%, MetaSystems' platform shows acceptable performance. With a national laboratory staff shortage and a local low mycobacterial infection rate, this instrument when combined with culture, can reliably triage-negative AFB-smear respiratory slides and identify positive slides requiring manual confirmation and semi-quantification. IMPORTANCE: This manuscript presents a full validation of MetaSystems' automated acid-fast bacilli (AFB) smear microscopy scanning and deep-learning-based image analysis module using a probability threshold of 96% including accuracy, precision studies, and evaluation of limit of AFB detection on respiratory samples when the technology is used with assistance. This study is complementary to the conversation started by Tomasello et al. on the use of image analysis artificial intelligence software in routine mycobacterial diagnostic activities within the context of high-throughput laboratories with low incidence of tuberculosis.


Subject(s)
Deep Learning , Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Humans , Retrospective Studies , Artificial Intelligence , Neon , Tuberculosis/microbiology , Microscopy, Fluorescence , Sputum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...