Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.216
Filter
1.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717801

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Subject(s)
Adaptation, Physiological , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/physiology , Hydrogen-Ion Concentration , Animals , Humans , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/microbiology , Virulence , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antitubercular Agents/pharmacology
2.
Nat Commun ; 15(1): 4065, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744895

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteolysis , Proteolysis/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Humans , Microbial Sensitivity Tests , Machine Learning
3.
Biomolecules ; 14(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672491

ABSTRACT

Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.


Subject(s)
Antimicrobial Cationic Peptides , Blood Proteins , Macrophages , Mycobacterium tuberculosis , Tumor Necrosis Factor-alpha , Humans , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/drug effects , Blood Proteins/metabolism , Blood Proteins/pharmacology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/microbiology , Antimicrobial Cationic Peptides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/drug therapy
4.
PLoS Pathog ; 20(4): e1012124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635841

ABSTRACT

Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments.


Subject(s)
Biofilms , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Transcriptome , Biofilms/growth & development , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Adaptation, Physiological/genetics , Humans , Tuberculosis/microbiology , Tuberculosis/genetics
5.
Int J Biol Macromol ; 268(Pt 2): 131763, 2024 May.
Article in English | MEDLINE | ID: mdl-38657928

ABSTRACT

Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (Hsp16.3-K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.


Subject(s)
Bacterial Proteins , Lysine , Molecular Chaperones , Mycobacterium tuberculosis , Lysine/metabolism , Lysine/chemistry , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/genetics , Acetylation , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Hydrophobic and Hydrophilic Interactions , Mutation , Structure-Activity Relationship , Chaperonins
6.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103641

ABSTRACT

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Subject(s)
Bacterial Proteins , G-Quadruplexes , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Protein Biosynthesis , RNA, Bacterial , RNA, Messenger , Humans , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Inflammation/microbiology , Ligands , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , RNA Stability , RNA, Bacterial/genetics , RNA, Messenger/genetics , THP-1 Cells , Transcription, Genetic/drug effects
7.
Microbiol Spectr ; 10(1): e0126221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35171048

ABSTRACT

The emergence of antimicrobial resistance warrants for the development of improved treatment approaches. In this regard, peptide nucleic acids (PNAs) have shown great promise, exhibiting antibiotic properties through the targeting of cellular nucleic acids. We aimed to study the efficacy of PNA as an anti-tuberculosis agent. Since the efficacy of PNA is limited by its low penetration into the cell, we also investigated combinatorial treatments using permeabilizing drugs to improve PNA efficacy. Various concentrations of anti-inhA PNA, permeabilizing drugs, and their combinations were screened against extracellular and intracellular mycobacteria.0.625 to 5 µM anti-inhA PNA was observed to merely inhibit the growth of extracellular M. smegmatis, while low intracellular bacterial load was reduced by 2 or 2.5 log-fold when treated with 2.5 or 5 µM PNA, respectively. Anti-inhA PNA against M. tuberculosis H37Ra exhibited bactericidal properties at 2.5 and 5 µM and enabled a slight reduction in intracellular M. tuberculosis at concentrations from 2.5 to 20 µM. Of the permeabilizing drugs tested, ethambutol showed the most permeabilizing potential and ultimately potentiated anti-inhA PNA to the greatest extent, reducing its efficacious concentration to 1.25 µM against both M. smegmatis and M. tuberculosis. Furthermore, an enhanced clearance of 1.3 log-fold was observed for ethambutol-anti-inhA PNA combinations against intracellular M. tuberculosis. Thus, permeabilizing drug-PNA combinations indeed exhibit improved efficacies. We therefore propose that anti-inhA PNA could improve therapy even when applied in minute doses as an addition to the current anti-tuberculosis drug regimen. IMPORTANCE Peptide nucleic acids have great potential in therapeutics as anti-gene/anti-sense agents. However, their limited uptake in cells has curtailed their widespread application. Through this study, we explore a PNA-drug combinatorial strategy to improve the efficacy of PNAs and reduce their effective concentrations. This work also focuses on improving tuberculosis treatment, which is hindered by the emergence of antimicrobial-resistant strains of Mycobacterium tuberculosis. It is observed that the antibacterial efficacy of anti-inhA PNA is enhanced when it is combined with permeabilizing drugs, particularly ethambutol. This indicates that the addition of even small concentrations of anti-inhA PNA to the current TB regimen could potentiate their therapeutic efficiency. We hypothesize that this system would also overcome isoniazid resistance, since the resistance mutations lie outside the designed anti-inhA PNA target site.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Ceftazidime/pharmacology , Colistin/pharmacology , Ethambutol/pharmacology , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/drug effects , Oxidoreductases/genetics , Peptide Nucleic Acids/pharmacology , Bacterial Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane Permeability , Drug Synergism , Humans , Microbial Sensitivity Tests , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oxidoreductases/metabolism , Peptide Nucleic Acids/genetics , Tuberculosis/drug therapy , Tuberculosis/microbiology
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193957

ABSTRACT

Mycobacterium tuberculosis (Mtb) endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and Mtb iron-chelating siderophores, mycobactin, have been known since 1965. Currently, it is not known whether Mtb produces zinc scavenging molecules. Here, we characterize low-molecular-weight zinc-binding compounds secreted and imported by Mtb for zinc acquisition. These molecules, termed kupyaphores, are produced by a 10.8 kbp biosynthetic cluster and consists of a dipeptide core of ornithine and phenylalaninol, where amino groups are acylated with isonitrile-containing fatty acyl chains. Kupyaphores are stringently regulated and support Mtb survival under both nutritional deprivation and intoxication conditions. A kupyaphore-deficient Mtb strain is unable to mobilize sufficient zinc and shows reduced fitness upon infection. We observed early induction of kupyaphores in Mtb-infected mice lungs after infection, and these metabolites disappeared after 2 wk. Furthermore, we identify an Mtb-encoded isonitrile hydratase, which can possibly mediate intracellular zinc release through covalent modification of the isonitrile group of kupyaphores. Mtb clinical strains also produce kupyaphores during early passages. Our study thus uncovers a previously unknown zinc acquisition strategy of Mtb that could modulate host-pathogen interactions and disease outcome.


Subject(s)
Lipopeptides/metabolism , Mycobacterium tuberculosis/metabolism , Zinc/metabolism , Animals , Bacterial Proteins/metabolism , Biological Transport , Chelating Agents/metabolism , Disease Models, Animal , Homeostasis , Host-Pathogen Interactions , Metals/metabolism , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/growth & development , Siderophores/metabolism , Tuberculosis/microbiology
9.
Nat Commun ; 13(1): 78, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013257

ABSTRACT

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.


Subject(s)
Antigens, CD1/immunology , Glycolipids/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Antigens, CD1/genetics , CD3 Complex/genetics , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cytotoxicity, Immunologic , Gene Expression , Glycolipids/metabolism , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Lymphocyte Activation , Mycobacterium tuberculosis/growth & development , Primary Cell Culture , Protein Binding , Protein Multimerization , Transduction, Genetic , Tuberculosis/genetics , Tuberculosis/microbiology
10.
J Inorg Biochem ; 227: 111683, 2022 02.
Article in English | MEDLINE | ID: mdl-34896768

ABSTRACT

Despite being a preventable and curable disease, Tuberculosis (TB) is the world's top infectious killer. Development of new drugs is urgently needed. In this work, the synthesis and characterization of new silver(I) complexes, that include N'-[(E)-(pyridine-2-ylmethylene)pyrazine-2-carbohydrazide, HPCPH, as main ligand and substituted aryl-phosphines as auxiliary ligands, is reported. HPCPH was synthesized from pyrazinoic acid, the active metabolite of the first-line antimycobacterial drug pyrazinamide. Complexes [Ag(HPCPH)(PPh3)2]OTf (1), [Ag(HPCPH)((P(p-tolyl)3)2]OTf (2) and [Ag(HPCPH)(P(p-anisyl)3)2]OTf (3) were characterized in solid state and in solution by elemental analysis and FTIR and NMR spectroscopies (OTftriflate). Crystal structures of (1,2) were determined by XRD. The Ag atom is coordinated to azomethine and pyridine nitrogen atoms of HPCPH ligand and to the phosphorous atom of each aryl-phosphine co-ligand. Although HPCPH did not show activity, the Ag(I) compounds demonstrated activity against Mycobacterium tuberculosis (MTB), H37Rv strain, and multi-drug resistant clinical isolates (MDR-TB). Globally, results showed that the compounds are not only effective against the sensitive strain, but are more potent against MDR-TB than antimycobacterial drugs used in therapy. The compounds showed low to moderate selectivity index values (SI) towards the bacteria, using MRC-5 cells (ATCC CCL-171) as mammalian cell model. Interaction with DNA was explored to get insight into the potential mechanism of action against the pathogen. No significant interaction was detected, allowing to discard this biomolecule as a potential molecular target. Compound 1 was identified as a hit compound (MIC90 2.23 µM; SI 4.4) to develop further chemical modifications in the search for new drugs.


Subject(s)
Antitubercular Agents , Coordination Complexes , Hydrazines , Mycobacterium tuberculosis/growth & development , Silver , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Cell Line , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Evaluation, Preclinical , Humans , Hydrazines/chemistry , Hydrazines/pharmacology , Silver/chemistry , Silver/pharmacology
11.
Front Immunol ; 12: 779235, 2021.
Article in English | MEDLINE | ID: mdl-34925356

ABSTRACT

The host immune system plays a pivotal role in the containment of Mycobacterium tuberculosis (Mtb) infection, and host-directed therapy (HDT) is emerging as an effective strategy to treat tuberculosis (TB), especially drug-resistant TB. Previous studies revealed that expression of sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, was downregulated in macrophages after Mycobacterial infection. Inhibition of SIRT7 with the pan-sirtuin family inhibitor nicotinamide (NAM), or by silencing SIRT7 expression, promoted intracellular growth of Mtb and restricted the generation of nitric oxide (NO). Addition of the exogenous NO donor SNAP abrogated the increased bacterial burden in NAM-treated or SIRT7-silenced macrophages. Furthermore, SIRT7-silenced macrophages displayed a lower frequency of early apoptotic cells after Mycobacterial infection, and this could be reversed by providing exogenous NO. Overall, this study clarified a SIRT7-mediated protective mechanism against Mycobacterial infection through regulation of NO production and apoptosis. SIRT7 therefore has potential to be exploited as a novel effective target for HDT of TB.


Subject(s)
Apoptosis , Macrophages/enzymology , Mycobacterium tuberculosis/immunology , Nitric Oxide/metabolism , Phagocytosis , Sirtuins/metabolism , Tuberculosis/enzymology , Animals , Antitubercular Agents/pharmacology , Apoptosis/drug effects , Bacterial Load , Host-Pathogen Interactions , Macrophages/drug effects , Macrophages/immunology , Macrophages/microbiology , Mice , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Nitric Oxide Donors/pharmacology , RAW 264.7 Cells , S-Nitroso-N-Acetylpenicillamine/pharmacology , Signal Transduction , Sirtuins/genetics , Tuberculosis/drug therapy , Tuberculosis/immunology , Tuberculosis/microbiology
12.
Microbiol Spectr ; 9(3): e0071621, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937194

ABSTRACT

Studies involving the pathogenic organism Mycobacterium tuberculosis routinely require advanced biosafety laboratory facilities, which might not be readily available in rural areas where tuberculosis burdens are high. Attempts to adapt heat inactivation techniques have led to inconsistent conclusions, and the risk of protein denaturation due to extensive heating is impractical for subsequent mass spectrometry (MS)-based protein analyses. In this study, 240 specimens with one or two loops of M. tuberculosis strain H37Rv biomass and specific inactivated solutions were proportionally assigned to six heat inactivation methods in a thermal block at 80°C and 95°C for 20, 30, and 90 min. Twenty untreated specimens served as a positive control, and bacterial growth was followed up for 12 weeks. Our results showed that 90 min of heat inactivation was necessary for samples with two loops of biomass. Further protein extraction and a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS assay demonstrated adequate scores for bacterial identification (≥1.7), with the highest score achieved in the 80°C/90 min and 95°C/30 min treatment groups. A proteomics study also confidently identified 648 proteins with ∼93% to 96% consistent protein abundances following heating at 95°C for 20, 30, and 90 min. Heat inactivation at 95°C for 90 min yielded the most quantifiable proteins, and a functional analysis revealed proteins located in the ribosomal subunit. In summary, we proposed a heat inactivation method for the M. tuberculosis strain H37Rv and studied the preservation of protein components for subsequent bacterial identification and protein-related assays. IMPORTANCE Inactivation of Mycobacterium tuberculosis is an important step to guarantee biosafety for subsequent M. tuberculosis identification and related research, notably in areas of endemicity with minimal resources. However, certain biomolecules might be denatured or hydrolyzed because of the harsh inactivation process, and a standardized protocol is yet to be determined. We evaluated distinct heating conditions to report the inactivation efficiency and performed downstream mass spectrometry-based M. tuberculosis identification and proteomics study. The results are important and useful for both basic and clinical M. tuberculosis studies.


Subject(s)
Containment of Biohazards/methods , Mycobacterium tuberculosis/growth & development , Proteome/analysis , Drug Resistance, Bacterial , Hot Temperature , Humans , Mass Spectrometry , Microbial Viability , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/physiology , Proteomics/methods , Tuberculosis/microbiology
13.
Front Immunol ; 12: 750496, 2021.
Article in English | MEDLINE | ID: mdl-34867981

ABSTRACT

One of the main hallmarks of tuberculosis (TB) is the ability of the causative agent to transform into a stage of dormancy and the capability of long persistence in the host phagocytes. It is believed that approximately one-third of the population of the world is latently infected with Mycobacterium tuberculosis (Mtb), and 5%-10% of these individuals can develop clinical manifestations of active TB even decades after the initial infection. In this latent, intracellular form, the bacillus is shielded by an extremely robust cell wall and becomes phenotypically resistant to most antituberculars. Therefore, there is a clear rationale to develop novel compounds or carrier-conjugated constructs of existing drugs that are effective against the intracellular form of the bacilli. In this paper, we describe an experimental road map to define optimal candidates against intracellular Mtb and potential compounds effective in the therapy of latent TB. To validate our approach, isoniazid, a first-line antitubercular drug was employed, which is active against extracellular Mtb in the submicromolar range, but ineffective against the intracellular form of the bacteria. Cationic peptide conjugates of isoniazid were synthesized and employed to study the host-directed drug delivery. To measure the intracellular killing activity of the compounds, Mtb-infected MonoMac-6 human monocytic cells were utilized. We have assessed the antitubercular activity, cytotoxicity, membrane interactions in combination with internalization efficacy, localization, and penetration ability on interface and tissue-mimicking 3D models. Based on these in vitro data, most active compounds were further evaluated in vivo in a murine model of TB. Intraperitoneal infectious route was employed to induce a course of slowly progressive and systemic disease. The well-being of the animals, monitored by the body weight, allows a prolonged experimental setup and provides a great opportunity to test the long-term activity of the drug candidates. Having shown the great potency of this simple and suitable experimental design for antimicrobial research, the proposed novel assay platform could be used in the future to develop further innovative and highly effective antituberculars.


Subject(s)
Antimicrobial Peptides/administration & dosage , Antitubercular Agents/administration & dosage , Biological Assay/methods , Cell-Penetrating Peptides/administration & dosage , Isoniazid/administration & dosage , Mycobacterium tuberculosis/drug effects , Animals , Antimicrobial Peptides/chemistry , Antitubercular Agents/chemistry , Bronchi , Cell Line , Cell-Penetrating Peptides/chemistry , Endocytosis , Female , Humans , Isoniazid/chemistry , Mice, Inbred BALB C , Monocytes/microbiology , Mycobacterium tuberculosis/growth & development , Reproducibility of Results , Spheroids, Cellular , Tuberculosis/drug therapy
14.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834115

ABSTRACT

What if a new technology based on therapeutic deep eutectic systems would disrupt the current treatment of major economic and socially burden diseases? The classical definition of eutectic systems is that they are the combination of two or more compounds that interact via hydrogen bonds, from which results a melting temperature depression in comparison with that of its individual components. Therapeutic deep eutectic systems are defined as eutectic systems in which at least one of the individual components is an active pharmaceutical ingredient, or a eutectic system in which the active pharmaceutical ingredient is dissolved. Current literature reports on tuberculosis have been mostly based on the most common anti-tuberculosis drugs prescribed. Using eutectic systems based on naturally occurring molecules known for their anti-microbial activity may also present a promising therapeutic strategy able to cope with the prevalence of Mycobacterium tuberculosis and prevent the appearance of multidrug resistance strains. With regards to colorectal cancer, literature has been unravelling combinations of terpenes with anti-inflammatory drugs that are selectively cytotoxic towards colorectal cancer cells and do not compromise the viability of normal intestinal cells. This technology could contribute to preventing tumor growth and metastasis while providing a patient compliance therapeutics, which will be crucial to the success of overcoming the challenges presented by cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Antitubercular Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Delivery Systems , Mycobacterium tuberculosis/growth & development , Tuberculosis/drug therapy , Colorectal Neoplasms/metabolism , Humans
15.
Afr Health Sci ; 21(2): 628-632, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34795716

ABSTRACT

BACKGROUND: Tuberculosis (TB) sputum culture contaminants make it difficult to obtain pure TB isolates.We aimed to study and identify persistent TB sputum culture contaminants post the standard laboratory pre-culture sample decontamination techniques. METHODS: This was a longitudinal study of TB sputum culture contamination for a cohort of TB patients on standard treatment at: baseline, during TB treatment and post TB treatment. Sputum samples were decontaminated with 1.5%NaOH and neutralized using 6.8 Phosphate buffer solution.Sputum was then inoculated into MGIT (mycobactrial growth indicator tube) supplemented with 0.8ml PANTA. A drop of each positive MGIT culture was sub cultured onto blood agar and incubated for 48 hours at 35 -37OC.Any growth was identified using growth characteristics and colony morphology. RESULTS: From October 2017 through May 2019;we collected 8645 sputum samples of which 8624(99.8%) were eligible and inoculated into MGIT where 2444(28.3%)samples were TB culture positive and 255(10.4%)were positive for contaminants: 237 none-tuberculosis bacteria, 12 fungi and 6 mixed(none-tuberculous bacteria+fungi). There was no statistically significant difference between none tuberculosis bacteria and fungi in the treatment (OR=1.4,95%CI:0.26-7.47,p=0.690) and the post treatment TB phases(OR=2.02,95%CI:0.38-10.79,p=0.411)Vs baseline. CONCLUSION: None-tuberculous bacteria and fungi dominate the plethora of TB sputum culture contamination and persist beyond the standard laboratory pre-culture decontamination algorithm.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriological Techniques/methods , Sputum/microbiology , Tuberculosis/diagnosis , Amphotericin B/pharmacology , Azlocillin/pharmacology , Bacteria/isolation & purification , Bacteriological Techniques/standards , Fungi/isolation & purification , Humans , Longitudinal Studies , Mycobacterium tuberculosis/growth & development , Nalidixic Acid/pharmacology , Polymyxin B/pharmacology , Trimethoprim/pharmacology
16.
J Med Chem ; 64(23): 17326-17345, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34845906

ABSTRACT

Herein, we report the design and synthesis of inhibitors of Mycobacterium tuberculosis (Mtb) phospho-MurNAc-pentapeptide translocase I (MurX), the first membrane-associated step of peptidoglycan synthesis, leveraging the privileged structure of the sansanmycin family of uridylpeptide natural products. A number of analogues bearing hydrophobic amide modifications to the pseudo-peptidic end of the natural product scaffold were generated that exhibited nanomolar inhibitory activity against Mtb MurX and potent activity against Mtb in vitro. We show that a lead analogue bearing an appended neopentylamide moiety possesses rapid antimycobacterial effects with a profile similar to the frontline tuberculosis drug isoniazid. This molecule was also capable of inhibiting Mtb growth in macrophages where mycobacteria reside in vivo and reduced mycobacterial burden in an in vivo zebrafish model of tuberculosis.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Oligopeptides/pharmacology , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Uridine/analogs & derivatives , Animals , Antitubercular Agents/pharmacology , Bacterial Proteins/chemistry , Enzyme Inhibitors/chemistry , Hydrophobic and Hydrophilic Interactions , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Oligopeptides/chemistry , Transferases (Other Substituted Phosphate Groups)/chemistry , Uridine/chemistry , Uridine/pharmacology , Zebrafish
17.
PLoS One ; 16(11): e0259181, 2021.
Article in English | MEDLINE | ID: mdl-34784363

ABSTRACT

Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.


Subject(s)
Bacterial Proteins/metabolism , Endopeptidases/metabolism , Mycobacterium tuberculosis/metabolism , Amino Acid Motifs , Antitubercular Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Cell Wall/metabolism , Endopeptidases/chemistry , Endopeptidases/classification , Endopeptidases/genetics , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Phylogeny , Protein Structure, Secondary
18.
Front Immunol ; 12: 656419, 2021.
Article in English | MEDLINE | ID: mdl-34745081

ABSTRACT

Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.


Subject(s)
Antitubercular Agents/therapeutic use , Berberine/therapeutic use , Immunologic Factors/therapeutic use , Isoniazid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Animals , Antitubercular Agents/pharmacology , Berberine/pharmacology , Cytokines/immunology , Dendritic Cells/drug effects , Drug Therapy, Combination , Female , Humans , Immunologic Factors/pharmacology , Isoniazid/pharmacology , Lung/drug effects , Lung/immunology , Lung/microbiology , Lung/pathology , Macrophages/drug effects , Macrophages/immunology , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Neutrophils/drug effects , Neutrophils/immunology , Rifampin/pharmacology , Spleen/drug effects , Spleen/immunology , Spleen/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
19.
PLoS One ; 16(10): e0258809, 2021.
Article in English | MEDLINE | ID: mdl-34653233

ABSTRACT

BACKGROUND: Tuberculosis (TB) has contributed to a significant disease burden and economic loss worldwide. Given no gold standard for diagnosis, early identification of TB infection has been challenging. This study aimed to comparatively investigate the prevalence of TB across diagnostic approaches (sputum AFB, sputum culture, sputum genetic test, and chest x-ray) and geographical areas of Indonesia. METHODS: Participant demographic variables and TB screening test results were obtained from the Tuberculosis Unit, Health Research and Development Agency, Ministry of Health (HRDA-MoH). The prevalence of pulmonary TB in populations aged 15 years and over was calculated using TB cases as a numerator and populations aged 15 years and over as a denominator. Variations across geographical areas and diagnostic approaches were expressed as prevalence and 95% confidence interval (CI). RESULTS: A total of 67,944 records were reviewed. Based on bacteriological evidence, the prevalence of TB per 100,000 in Indonesia was 759 (95% CI: 589.7-960.8) with variations across areas: 913 (95% CI 696.7-1,176.7; Sumatra), 593 (95% CI 447.2-770.6; Java-Bali), and 842 (95% CI 634.7-1,091.8; other islands). Also, the prevalence of TB varied across diagnostic approaches: 256.5 (sputum AFB), 545 (sputum culture), 752.2 (chest x-ray), and 894.9 (sputum genetic test). Based on sputum AFB, the TB prevalence varied from 216.6 (95% CI 146.5-286.8; Java-Bali), 259.9 (95% CI 184.2-335.6; other islands) to 307.4 (95% CI 208.3-406.5; Sumatra). Based on sputum culture, the TB prevalence ranged from 487.9 (95% CI 433.6-548.6; Java-Bali), 635.9 (95% CI 564.9-715.1; Sumatra), to 2,129.8 (95% CI 1,664.0-2,735.6; other islands). Based on chest x-ray, the TB prevalence varied from 152.1 (95% CI 147.9-156.3; Java-Bali), 159.2 (95% CI 154.1-164.3; Sumatra), to 864 (95% CI 809-921.4; other islands). Based on sputum genetic test, the TB prevalence ranged from 838.7 (95% CI 748.4-900.8; Java-Bali), 875 (95% CI 775.4-934.2; Sumatra), to 941.2 (95% CI 663.6-992.3; other islands). CONCLUSIONS: The variation of TB prevalence across geographical regions could be confounded by the diagnostic approaches. TRIAL REGISTRATION: This study was approved by the Institutional Review Board of Chulalongkorn University (IRB No. 684/63).


Subject(s)
Diagnostic Tests, Routine/methods , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Adolescent , Adult , Aged , Confounding Factors, Epidemiologic , DNA, Bacterial/genetics , Female , Humans , Indonesia/epidemiology , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Prevalence , Radiography , Sputum/microbiology , Tuberculosis/diagnostic imaging , Young Adult
20.
Biomed Pharmacother ; 144: 112362, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34710838

ABSTRACT

Isoniazid (INH) is one of the two most effective first-line antitubercular drugs and is still used at the present time as a scaffold for developing new compounds to fight TB. In a previous study, we have observed that an INH derivative, an hydrazide N'-substituted with a C10acyl chain, was able to counterbalance its smaller reactivity with a higher membrane permeability. This resulted in an improved performance against the most prevalent Mycobacterium tuberculosis (Mtb) resistant strain (S315T), compared to INH. In this work, we have designed two new series of INH derivatives (alkyl hydrazides and hydrazones) with promising in silico properties, namely membrane permeabilities and spontaneous IN* radical formation. The kinetics, cytotoxicity, and biological activity evaluations confirmed the in silico predictions regarding the very high reactivity of the alkyl hydrazides. The hydrazones, on the other hand, showed very similar behavior compared to INH, particularly in biological tests that take longer to complete, indicating that these compounds are being hydrolyzed back to INH. Despite their improved membrane permeabilities, the reactivities of these two series are too high, impairing their overall performance. Nevertheless, the systematic data gathered about these compounds have showed us the need to find a balance between lipophilicity and reactivity, which is paramount to devise better INH-based derivatives aimed at circumventing Mtb resistance.


Subject(s)
Antitubercular Agents/pharmacology , Cell Membrane/metabolism , Drug Design , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Catalase/genetics , Catalase/metabolism , Hydrolysis , Isoniazid/analogs & derivatives , Isoniazid/chemical synthesis , Isoniazid/metabolism , Kinetics , Molecular Structure , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Permeability , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...