Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.172
Filter
1.
Phys Chem Chem Phys ; 26(32): 21429-21440, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39101468

ABSTRACT

Tuberculosis (TB) treatment becomes challenging due to the unique cell wall structure of Mycobacterium tuberculosis (M. tb). Among various components of the M.tb cell wall, mycolic acid (MA) is of particular interest because it is speculated to exhibit extremely low permeability for most of the drug molecules, thus helping M.tb to survive against medical treatment. However, no quantitative assessment of the thermodynamic barrier encountered by various well-known TB drugs in the mycolic acid monolayer has been performed so far using computational tools. On this premise, our present work aims to probe the permeability of some first and second line TB drugs, namely ethambutol, ethionamide, and isoniazid, through the modelled mycolic acid monolayer, using molecular dynamics (MD) simulation with two sets of force field (FF) parameters, namely GROMOS 54A7-ATB (GROMOS) and CHARMM36 (CHARMM) FFs. Our findings indicate that both FFs provide consistent results in terms of the mode of drug-monolayer interactions but significantly differ in the drug permeability through the monolayer. The mycolic acid monolayer generally exhibited a higher free energy barrier of crossing with CHARMM FF, while with GROMOS FF, better stability of drug molecules on the monolayer surface was observed, which can be attributed to the greater electrostatic potential at the monolayer-water interface, found for the later. Although both the FF parameters predicted the highest resistance against ethambutol (permeability values of 8.40 × 10-34 cm s-1 and 9.61 × 10-31 cm s-1 for the CHARMM FF and the GROMOS FF, respectively), results obtained using GROMOS were found to be consistent with the water solubility of drugs, suggesting it to be a slightly better FF for modelling drug-mycolic acid interactions. Therefore, this study enhances our understanding of TB drug permeability and highlights the potential of the GROMOS FF in simulating drug-mycolic acid interactions.


Subject(s)
Antitubercular Agents , Molecular Dynamics Simulation , Mycobacterium tuberculosis , Mycolic Acids , Permeability , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thermodynamics , Isoniazid/chemistry , Ethionamide/chemistry , Ethionamide/metabolism , Ethambutol/chemistry
2.
PLoS Genet ; 20(6): e1011127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829907

ABSTRACT

The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.


Subject(s)
Cell Membrane , Cell Wall , Corynebacterium glutamicum , Mycolic Acids , Sigma Factor , Cell Wall/metabolism , Cell Wall/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Mycolic Acids/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics , Cell Membrane/metabolism , Stress, Physiological , Porins/metabolism , Porins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Galactans/metabolism , Gene Expression Regulation, Bacterial , Peptidoglycan/metabolism
3.
FEBS Lett ; 598(13): 1620-1632, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697952

ABSTRACT

Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding ßγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.


Subject(s)
Bacterial Proteins , Calcium , Cell Wall , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Calcium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Wall/metabolism , Cell Wall/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Mutation , Protein Binding , Mycolic Acids/metabolism
4.
Curr Opin Microbiol ; 79: 102478, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653035

ABSTRACT

Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.


Subject(s)
Cell Wall , Galactans , Mycolic Acids , Cell Wall/metabolism , Mycolic Acids/metabolism , Galactans/metabolism , Peptidoglycan/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/growth & development , Corynebacterium glutamicum/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/genetics , Arabinose/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
5.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635392

ABSTRACT

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Subject(s)
Bacterial Proteins , Corynebacterium glutamicum , Proteomics , Proteomics/methods , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/chemistry , Mycolic Acids/metabolism , Mycolic Acids/chemistry , Tandem Mass Spectrometry , Chromatography, Liquid , Acylation , Click Chemistry
6.
Protein Sci ; 33(4): e4964, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501584

ABSTRACT

Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Fatty Acid Synthase, Type II/chemistry , Mycolic Acids/metabolism , Hydro-Lyases/chemistry
7.
Molecules ; 29(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338443

ABSTRACT

The emergence of new drug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied. In this work, we consider the temperature-induced changes in the structure, ordering, and molecular mobility of bilayer MA membranes of various chemical and conformational compositions. Using all-atom long-term molecular dynamics simulations of various MA membranes, we report the kinetic parameters of temperature-dependent changes in the MA self-diffusion coefficients and conformational compositions, including the apparent activation energies of these processes, as well as the characteristic times of ordering changes and the features of phase transitions occurring over a wide range of elevated temperatures. Understanding these effects could be useful for the prevention of drug resistance and the development of membrane-targeting pharmaceuticals, as well as in the design of membrane-based materials.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycolic Acids/chemistry , Molecular Dynamics Simulation , Temperature , Cell Wall
8.
Nat Commun ; 15(1): 695, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267428

ABSTRACT

Cyclic di-GMP (c-di-GMP) is a second messenger that promotes biofilm formation in several bacterial species, but the mechanisms are often unclear. Here, we report that c-di-GMP promotes biofilm formation in mycobacteria in a manner dependent on the nucleoid-associated protein Lsr2. We show that c-di-GMP specifically binds to Lsr2 at a ratio of 1:1. Lsr2 upregulates the expression of HadD, a (3R)-hydroxyacyl-ACP dehydratase, thus promoting the synthesis of keto-mycolic acid and biofilm formation. Thus, Lsr2 acts as a c-di-GMP receptor that links the second messenger's function to lipid synthesis and biofilm formation in mycobacteria.


Subject(s)
Cyclic GMP/analogs & derivatives , Mycobacterium , Mycolic Acids , Adipogenesis , Keto Acids , Biofilms
9.
Eur J Med Chem ; 264: 115983, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38048695

ABSTRACT

Simple alkyl-sulfonylacetamides have potent antitubercular activity and significantly decrease mycolic acid levels in mycobacteria. Although these compounds were originally designed to inhibit the ketoacyl synthase domain of fatty acid synthase, structure-activity relationships and biochemical evidence do not fully support fatty acid synthase as the target. In 2004, an enzyme family involved in the activation and transfer of fatty acids as acyl-adenylates was identified in mycobacteria, separate from the universal acetyl-CoA carrier mechanism. These fatty acyl-AMP ligases (FAAL), encoded by the FadD family play important roles in the biosynthesis of mycolic acids along with fatty acid metabolism and are hypothesised here to be the molecular target of the sulfonylacetamides. Due to structural similarities with the ligase's natural substrate, it is believed these compounds are exerting action via competitive inhibition of these highly potent molecular targets. The primary aim of this investigation was to synthesize an extended library of sulfonylacetamide derivatives, building upon existing structural activity relations to validate the molecular mechanism with the aid of molecular modelling, while also attempting to explore novel structural isosteres for further drug design and development. Sulfonylacetamide derivatives were modified based on the putative molecular target resulting in derivatives with improved activities towards Mycobacteriumtuberculosis (H37Rv). The most active novel derivatives reported were 19, 22b, 22c and 46 displaying MIC90 levels of 1.4, 16.0, 13.0 and 5.9 µg/mL, respectively.


Subject(s)
Mycobacterium tuberculosis , Acetamides/pharmacology , Antitubercular Agents/pharmacology , Mycolic Acids/metabolism , Fatty Acids/metabolism , Fatty Acid Synthases
10.
Tuberculosis (Edinb) ; 143S: 102415, 2023 12.
Article in English | MEDLINE | ID: mdl-38012929

ABSTRACT

This paper is dedicated to the memory of Professor David Ernest Minnikin (1939-2021). David was one of the key scientists who pioneered the field of Mycobacterium tuberculosis cell envelope research for over half a century. From the classification, identification, and extraction of the unusual lipids of the mycobacterial cell wall, to exploiting them as characteristic lipid biomarkers for sensitive detection, his ideas enlightened a whole world of possibilities within the tuberculosis (TB) field. In addition, his definition of the intricate models now forms a key milestone in our understanding of the M. tuberculosis cell envelope and has resolved many unanswered questions on the evolution of M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycolic Acids , Tuberculosis/diagnosis , Cell Wall , Biomarkers
11.
ACS Appl Bio Mater ; 6(12): 5555-5562, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38015441

ABSTRACT

Lipidic adjuvant formulations consisting of immunomodulatory mycobacterial cell wall lipids interact with host cells following administration. The impact of this cross-talk on the host membrane's structure and function is rarely given enough consideration but is imperative to rule out nonspecific perturbation underlying the adjuvant. In this work, we investigated changes in the plasma membranes of live mammalian cells after exposure to mycobacterial mycolic acid (MA) and phenolic glycolipids, two strong candidates for lipidic adjuvant therapy. We found that phenolic glycolipid 1 softened the plasma membrane, lowering membrane tension and stiffness, but MA did not significantly change the membrane characteristics. Further, phenolic glycolipid 1 had a fluidizing impact on the host plasma membrane, increasing the fluidity and the abundance of fluid-ordered-disordered coexisting lipid domains. Notably, lipid diffusion was not impacted. Overall, MA and, to a lesser extent, phenolic glycolipid 1, due to minor disruption of host cell membranes, may serve as appropriate lipids in adjuvant formulations.


Subject(s)
Glycolipids , Mycolic Acids , Animals , Glycolipids/analysis , Glycolipids/chemistry , Glycolipids/metabolism , Mycolic Acids/analysis , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Cell Membrane/chemistry , Cell Wall , Adjuvants, Immunologic , Macrophages/metabolism , Mammals/metabolism
12.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3827-3837, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37805857

ABSTRACT

Mycolic acids (MAs), i.e. 2-alkyl, 3-hydroxy long-chain fatty acids, are the hallmark of the cell envelope of Mycobacterium tuberculosis and are related with antibiotic resistance and host immune escape. Nowadays, they've become hot target of new anti-tuberculosis drugs. There are two main methods to detect MAs, 14C metabolic labeling thin-layer chromatography (TLC) and liquid chromatograph mass spectrometer (LC-MS). However, the user qualification of 14C or the lack of standards for LC-MS hampered the easy use of this method. TLC is a common way to analyze chemical substance and can be used to analyze MAs. In this study, we used tetrabutylammonium hydroxide and methyl iodide to hydrolyze and formylate MAs from mycobacterium cell wall. Subsequently, we used diethyl ether to extract methyl mycolate. By this method, we can easily extract and analyze MA in regular biological labs. The results demonstrated that this method could be used to compare MAs of different mycobacterium in different growth phases, MAs of mycobacteria treated by anti-tuberculosis drugs or MAs of mycobacterium mutants. Therefore, we can use this method as an initial validation for the changes of MAs in researches such as new drug screening without using radioisotope or when the standards are not available.


Subject(s)
Mycobacterium tuberculosis , Mycolic Acids , Mycolic Acids/analysis , Mycolic Acids/metabolism , Chromatography, Thin Layer , Fatty Acids , Antitubercular Agents/pharmacology
13.
Elife ; 122023 10 25.
Article in English | MEDLINE | ID: mdl-37877801

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.


Subject(s)
Mycobacterium tuberculosis , Nanoparticles , Humans , Animals , Mice , Cell Differentiation , Vaccination , Mycolic Acids
14.
Int J Mycobacteriol ; 12(3): 332-344, 2023.
Article in English | MEDLINE | ID: mdl-37721241

ABSTRACT

Background: Mycobacterium tuberculosis is a bacterium that has historically had a substantial impact on human health. Despite advances in understanding and management of tuberculosis (TB), the disease remains a crucial problem that necessitates ongoing work to discover effective drugs, minimize transmission, and improve global health outcomes. Methods: The purpose of this study is to use molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses to explore the molecular interactions of different proteins that are involved in mycolic acid biosynthesis (HadAB, InhA, KasA, FabD, and beta-ketoacyl-acyl carrier protein synthase III) of M. tuberculosis with Demospongiae metabolites. The docking findings were evaluated using the glide gscore, and the top 10 compounds docked against each protein receptor were chosen. Furthermore, the selected compounds underwent ADMET analysis, indicating that they have the potential for therapeutic development. Results: Among the selected compounds, makaluvamine G showed the highest binding affinity against HadAB, psammaplysin E showed highest binding affinity against InhA, pseudotheonamide D showed the highest binding affinity against KasA protein, dinordehydrobatzelladine B showed the highest binding affinity against FabD, and nagelamide X showed the highest binding affinity against beta-ketoacyl-acyl carrier protein synthase III. Additionally, molecular mechanics generalized born surface area (MM-GBSA) binding free energy and molecular dynamics simulations were used to support the docking investigations. Conclusion: The results of the study suggest that these compounds may eventually be used to treat TB. However, computer validations were included in this study, and more in vitro research is required to turn these prospective inhibitors into clinical drugs.


Subject(s)
Mycobacterium tuberculosis , Porifera , Tuberculosis , Humans , Animals , Mycolic Acids/metabolism , Molecular Docking Simulation , Tuberculosis/drug therapy , Porifera/metabolism , Bacterial Proteins/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism
15.
Elife ; 122023 07 21.
Article in English | MEDLINE | ID: mdl-37477291

ABSTRACT

The simultaneous delivery of protein and lipid antigens via nanoparticles may help efforts to develop a new vaccine for tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Vaccines , Humans , Mycobacterium tuberculosis/metabolism , Mycolic Acids/metabolism , Tuberculosis/prevention & control , Antigens/metabolism , Antigens, Bacterial
16.
Eur J Med Chem ; 259: 115646, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37482022

ABSTRACT

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Ether , Ethers/pharmacology , Ethyl Ethers/pharmacology , Isoniazid/pharmacology , Mutation , Mycolic Acids
17.
Sci Rep ; 13(1): 10390, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369807

ABSTRACT

Lipids are highly structurally diverse molecules involved in a wide variety of biological processes. The involvement of lipids is even more pronounced in mycobacteria, including the human pathogen Mycobacterium tuberculosis, which produces a highly complex and diverse set of lipids in the cell envelope. These lipids include mycolic acids, which are among the longest fatty acids in nature and can contain up to 90 carbon atoms. Mycolic acids are ubiquitously found in mycobacteria and are alpha branched and beta hydroxylated lipids. Discrete modifications, such as alpha, alpha', epoxy, methoxy, keto, and carboxy, characterize mycolic acids at the species level. Here, we used high precision ion mobility-mass spectrometry to build a database including 206 mass-resolved collision cross sections (CCSs) of mycolic acids originating from the strict human pathogen M. tuberculosis, the opportunistic strains M. abscessus, M. marinum and M. avium, and the nonpathogenic strain M. smegmatis. Primary differences between the mycolic acid profiles could be observed between mycobacterial species. Acyl tail length and modifications were the primary structural descriptors determining CCS magnitude. As a resource for researchers, this work provides a detailed catalogue of the mass-resolved collision cross sections for mycolic acids along with a workflow to generate and analyse the dataset generated.


Subject(s)
Mycobacterium tuberculosis , Mycolic Acids , Humans , Mycobacterium tuberculosis/chemistry , Fatty Acids , Mass Spectrometry/methods
18.
Expert Rev Anti Infect Ther ; 21(8): 813-829, 2023.
Article in English | MEDLINE | ID: mdl-37314394

ABSTRACT

INTRODUCTION: Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED: Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION: There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Animals , Humans , Mycobacterium abscessus/metabolism , Mycolic Acids/metabolism , Mycolic Acids/therapeutic use , Zebrafish/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lung Diseases/drug therapy , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Microbial Sensitivity Tests
19.
Microbiol Spectr ; 11(3): e0092823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37212713

ABSTRACT

Lipids are prominent components of the mycobacterial cell wall, and they play critical roles not only in maintaining biofilm formation but also in resisting environmental stress, including drug resistance. However, information regarding the mechanism mediating mycobacterial lipid synthesis remains limited. PatA is a membrane-associated acyltransferase and synthesizes phosphatidyl-myo-inositol mannosides (PIMs) in mycobacteria. Here, we found that PatA could regulate the synthesis of lipids (except mycolic acids) to maintain biofilm formation and environmental stress resistance in Mycolicibacterium smegmatis. Interestingly, the deletion of patA significantly enhanced isoniazid (INH) resistance in M. smegmatis, although it reduced bacterial biofilm formation. This might be due to the fact that the patA deletion promoted the synthesis of mycolic acids through an unknown synthesis pathway other than the reported fatty acid synthase (FAS) pathway, which could effectively counteract the inhibition by INH of mycolic acid synthesis in mycobacteria. Furthermore, the amino acid sequences and physiological functions of PatA were highly conserved in mycobacteria. Therefore, we found a mycolic acid synthesis pathway regulated by PatA in mycobacteria. In addition, PatA also affected biofilm formation and environmental stress resistance by regulating the synthesis of lipids (except mycolic acids) in mycobacteria. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, leads to a large number of human deaths every year. This is so serious, which is due mainly to the drug resistance of mycobacteria. INH kills M. tuberculosis by inhibiting the synthesis of mycolic acids, which are synthesized by the FAS pathway. However, whether there is another mycolic acid synthesis pathway is unknown. In this study, we found a PatA-mediated mycolic acid synthesis pathway that led to INH resistance of in patA-deleted mutant. In addition, we first report the regulatory effect of PatA on mycobacterial biofilm formation, which could affect the bacterial response to environmental stress. Our findings represent a new model for regulating biofilm formation by mycobacteria. More importantly, the discovery of the PatA-mediated mycolic acid synthesis pathway indicates that the study of mycobacterial lipids has entered a new stage, and the enzymes might be new targets of antituberculosis drugs.


Subject(s)
Mycobacterium tuberculosis , Mycolic Acids , Humans , Mycolic Acids/metabolism , Mycolic Acids/pharmacology , Isoniazid/pharmacology , Mycobacterium smegmatis/metabolism , Biofilms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
20.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: mdl-37171244

ABSTRACT

Lineage 7 (L7) emerged in the phylogeny of the Mycobacterium tuberculosis complex (MTBC) subsequent to the branching of 'ancient' lineage 1 and prior to the Eurasian dispersal of 'modern' lineages 2, 3 and 4. In contrast to the major MTBC lineages, the current epidemiology suggests that prevalence of L7 is highly confined to the Ethiopian population, or when identified outside of Ethiopia, it has mainly been in patients of Ethiopian origin. To search for microbiological factors that may contribute to its restricted distribution, we compared the genome of L7 to the genomes of globally dispersed MTBC lineages. The frequency of predicted functional mutations in L7 was similar to that documented in other lineages. These include mutations characteristic of modern lineages - such as constitutive expression of nitrate reductase - as well as mutations in the VirS locus that are commonly found in ancient lineages. We also identified and characterized multiple lineage-specific mutations in L7 in biosynthesis pathways of cell wall lipids, including confirmed deficiency of methoxy-mycolic acids due to a stop-gain mutation in the mmaA3 gene that encodes a methoxy-mycolic acid synthase. We show that the abolished biosynthesis of methoxy-mycolates of L7 alters the cell structure and colony morphology on selected growth media and impacts biofilm formation. The loss of these mycolic acid moieties may change the host-pathogen dynamic for L7 isolates, explaining the limited geographical distribution of L7 and contributing to further understanding the spread of MTBC lineages across the globe.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycolic Acids/metabolism , Mutation , Phylogeny , Ethiopia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL