Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964061

ABSTRACT

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Subject(s)
Fagopyrum , Lead , Microplastics , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mycorrhizae/drug effects , Lead/toxicity , Microplastics/toxicity , Bacteria/drug effects , Bacteria/classification , Bacteria/growth & development , Soil/chemistry
2.
BMC Plant Biol ; 24(1): 667, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997682

ABSTRACT

Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.


Subject(s)
Arsenic , Copper , Elymus , Metabolomics , Mycorrhizae , Soil Pollutants , Arsenic/metabolism , Copper/metabolism , Mycorrhizae/physiology , Mycorrhizae/drug effects , Soil Pollutants/metabolism , Elymus/metabolism , Elymus/drug effects , Metal Nanoparticles , Oxidative Stress/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Stress, Physiological/drug effects
3.
Ecotoxicol Environ Saf ; 281: 116592, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901167

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.


Subject(s)
Charcoal , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil , Soil/chemistry , Mycorrhizae/physiology , Mycorrhizae/drug effects , Alkalies , Microbiota/drug effects , Biomass , Panicum/drug effects , Panicum/growth & development , Plant Development/drug effects
4.
Biol Futur ; 72(2): 211-227, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34554475

ABSTRACT

The research aims were to study salicylic acid (SA) effects on mycorrhiza [hyphal width (HW), vesicle diameter (VD) and mycorrhizal colonization (MC)] and interaction between them on greenness index (GI), drought tolerance index (DTI), antioxidant enzymes activities, and seed yield of linseed under drought. A factorial experiment was conducted in an open-field place with mycorrhiza [non-inoculation, Funneliformis mosseae (FM), and Rhizoglomus intraradices (RI)], SA (250 µM and non-SA), and irrigation levels [100%, 70%, and 40% field capacity (FC)] as treatments. Severe drought increased VD, MC, superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase activities while decreased GI, DTI, and yield. The RI-linseed had higher MC, GI, SOD, and glutathione reductase (GR) activities, but FM-linseed had greater VD and yield under drought. Inoculated linseed with both mycorrhiza showed a reduction in DTI and yield under SA than non-SA. In RI-linseed, SA increased GI, MC, HW, VD, catalase and GR, but decreased in FM-plants. Mycorrhiza (particularly RI) alleviated drought (40% FC)-caused negative effects on linseed via the improvement of SOD, APX, and GI. Regardless of other treatments, SA had negative effects on HW and VD, but SA effects varied depending on mycorrhizal species so that SA increased HW, VD, and MC in RI. Due to the positive correlation between MC and HW, SA reduces FM colonization by reducing the HW of FM. Totally, SA along with RI species can mitigate the harmful effects of drought and improve tolerance via increasing MC, HW, VD, catalase, peroxidase, and GR activities.


Subject(s)
Flax/drug effects , Flax/growth & development , Mycorrhizae/drug effects , Salicylic Acid/metabolism , Agriculture/instrumentation , Agriculture/methods , Analysis of Variance , Antioxidants/metabolism , Antioxidants/pharmacology , Flax/metabolism , Salicylic Acid/pharmacology
5.
PLoS One ; 16(7): e0253878, 2021.
Article in English | MEDLINE | ID: mdl-34283857

ABSTRACT

Chromium toxicity is a major problem in agricultural soils that negatively affects a plant's metabolic activities. It reduces biochemical and antioxidant defence system's activities. In search of the solution to this problem a two-year pot experiment (completely randomized design with three replications), in three genetically different varieties of sorghum (SSG 59-3, HJ 513 and HJ 541) under Cr toxicity (2 and 4 ppm) was conducted to determine the effect of glycine betaine (50 and 100mM) and Arbuscular mycorrhizal fungi (AMF) on the antioxidant system (enzymes viz. superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase, peroxidase and metabolites viz. glutathione, ascorbate, proline, ß-carotene) along with Cr accumulation and indices of oxidative stress parameters (polyphenol oxidase, hydrogen peroxide and malondialdehyde) at two growth stages (vegetative and grain filling). According to results; Cr stress (2 & 4 ppm) increased its accumulation and indices of oxidative stresses significantly (p≤0.05) in all varieties of sorghum at both growth stages. However, soil application of glycine betaine (GB) and AMF decreased Cr accumulation and indices of oxidative stress by increasing antioxidant enzymes and metabolites activities at both growth stages in all varieties. The combination of 100mM GB with AMF was observed most significant (p≤0.05) in decreasing oxidative stress and improved the antioxidant system's activities. The SSG 59-3 cultivar showed the lowest Cr accumulation (1.60 and 8.61 ppm), indices of oxidative stress and highest antioxidant system's activity among these three cultivars at both growth stages. Thus, SSG 59-3 was found most tolerant cultivars followed by HJ 513 and then HJ 541. These findings suggest that both GB and AMF, either individually or combined can play a positive role to reduce oxidative stress and increased antioxidant attributes under Cr toxicity in sorghum.


Subject(s)
Antioxidants/pharmacology , Chromium/toxicity , Oxidative Stress/drug effects , Sorghum/drug effects , Betaine/pharmacology , Mycorrhizae/drug effects , Mycorrhizae/metabolism , Plant Roots/drug effects , Plant Roots/microbiology , Soil/chemistry , Soil Microbiology , Sorghum/growth & development , Sorghum/microbiology
6.
Sci Rep ; 11(1): 15054, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301993

ABSTRACT

The increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.


Subject(s)
Biodiversity , Ecosystem , Food Chain , Moths/drug effects , Animals , Betula/drug effects , Defoliants, Chemical/adverse effects , Environmental Pollution/adverse effects , Mycorrhizae/drug effects , Poaceae/drug effects
7.
Methods Mol Biol ; 2326: 251-266, 2021.
Article in English | MEDLINE | ID: mdl-34097274

ABSTRACT

In order for nanotechnology to be sustainably applied in agriculture, emphasis should be on comprehensive assessment of multiple endpoints, including biouptake and localization of engineered nanomaterials (ENMs), potential effects on food nutrient quality, oxidative stress responses, and crop yield, before ENMs are routinely applied in consumer and agronomic products. This chapter succinctly outlines a protocol for conducting nanophytotoxicity studies focusing on nanoparticle purification and characterization, arbuscular mycorrhizal fungi (AMF)/symbiont inoculation, biouptake and translocation/localization, varied endpoints of oxidative stress responses, and crop yield.


Subject(s)
Crops, Agricultural/drug effects , Nanostructures/toxicity , Crop Production , Crops, Agricultural/physiology , Mycorrhizae/drug effects , Mycorrhizae/physiology , Oxidative Stress/drug effects , Toxicity Tests/methods
8.
Nat Commun ; 12(1): 3484, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108462

ABSTRACT

Ecosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities. Nutrient addition also reduces co-occurrences within and among fungal guilds, which could have important consequences for belowground interactions. Focusing only on plots that received no nutrient addition, soil properties influence pathogen abundance globally, whereas plant community characteristics influence mutualists, and climate influence saprotrophs. We show consistent, guild-level responses that enhance our ability to predict shifts in soil function related to anthropogenic eutrophication, which can have longer-term consequences for plant communities.


Subject(s)
Fertilizers , Fungi/isolation & purification , Nitrogen/pharmacology , Phosphorus/pharmacology , Soil Microbiology , Fertilizers/analysis , Fungi/drug effects , Grassland , Mycorrhizae/drug effects , Mycorrhizae/isolation & purification , Mycorrhizae/physiology , Nitrogen/analysis , Nutrients/analysis , Nutrients/pharmacology , Phosphorus/analysis , Plant Roots/microbiology , Soil/chemistry
9.
Methods Mol Biol ; 2309: 75-89, 2021.
Article in English | MEDLINE | ID: mdl-34028680

ABSTRACT

Strigolactones (SLs) are components of root exudates as a consequence of active release from the roots into the soil. Notably, they have been described as stimulants of seed germination in parasitic plants and of the presymbiotic growth in arbuscular mycorrhizal (AM) fungi, which are a crucial component of the plant root beneficial microbiota. SLs have therefore the potential to influence other microbes that proliferate in the soil around the roots and may interact with plants. A direct effect of SL analogs on the in vitro growth of a number of saprotrophic or plant pathogenic fungi was indeed reported.Here we describe a standardized method to evaluate the effect of SLs or their synthetic analogs on AM and filamentous fungi. For AM fungi, we propose a spore germination assay since it is more straightforward than the hyphal branching assay and it does not require deep expertise and skills. For filamentous fungi that can grow in axenic cultures, we describe the assay based on SLs embedded in the solid medium or dissolved in liquid cultures where the fungus is inoculated to evaluate the effect on growth, hyphal branching or conidia germination. These assays are of help to test the activity of natural SLs as well as of newly designed SL analogs for basic and applied research.


Subject(s)
Biological Assay , Fungi/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Mycorrhizae/drug effects , Plant Growth Regulators/pharmacology , Seeds/microbiology , Spores, Fungal/drug effects , Trifolium/microbiology , Fungi/growth & development , Heterocyclic Compounds, 3-Ring/chemical synthesis , Lactones/chemical synthesis , Mycorrhizae/growth & development , Plant Growth Regulators/chemical synthesis , Spores, Fungal/growth & development
10.
Methods Mol Biol ; 2309: 157-177, 2021.
Article in English | MEDLINE | ID: mdl-34028686

ABSTRACT

Arbuscular mycorrhiza is an ancient symbiosis between most land plants and fungi of the Glomeromycotina, in which the fungi provide mineral nutrients to the plant in exchange for photosynthetically fixed organic carbon. Strigolactones are important signals promoting this symbiosis, as they are exuded by plant roots into the rhizosphere to stimulate activity of the fungi. In addition, the plant karrikin signaling pathway is required for root colonization. Understanding the molecular mechanisms underpinning root colonization by AM fungi, requires the use of plant mutants as well as treatments with different environmental conditions or signaling compounds in standardized cocultivation systems to allow for reproducible root colonization phenotypes. Here we describe how we set up and quantify arbuscular mycorrhiza in the model plants Lotus japonicus and Brachypodium distachyon under controlled conditions. We illustrate a setup for open pot culture as well as for closed plant tissue culture (PTC) containers, for plant-fungal cocultivation in sterile conditions. Furthermore, we explain how to harvest, store, stain, and image AM roots for phenotyping and quantification of different AM structures.


Subject(s)
Biological Assay , Brachypodium/microbiology , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Lotus/microbiology , Mycorrhizae/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/microbiology , Brachypodium/growth & development , Lotus/growth & development , Mycorrhizae/growth & development , Phenotype , Plant Roots/growth & development
11.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919023

ABSTRACT

The commonly observed increased heavy metal tolerance of ectomycorrhized plants is usually linked with the protective role of the fungal hyphae covering colonized plant root tips. However, the molecular tolerance mechanisms in heavy metal stressed low-colonized ectormyocrrhizal plants characterized by an ectomycorrhiza-triggered increases in growth are unknown. Here, we examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips. The analyzed plants, lacking a mantle-a protective fungal biofilter-were grown for 6 weeks in agar medium enriched with 0.75 mM Pb(NO3)2. In minimally colonized 'bare' roots, the proteome response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type H+ ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino acid and Pb chelate (phenolics and citrate) biosynthesis coexisted with lower Pb uptake compared to that in controls. The molecular Pb response of inoculated roots was more intense and effective than that of noninoculated roots in poplars.


Subject(s)
Basidiomycota/physiology , Lead/pharmacology , Plant Diseases/immunology , Plant Roots/metabolism , Populus/metabolism , Proteome/metabolism , Stress, Physiological , Mycorrhizae/drug effects , Mycorrhizae/metabolism , Plant Diseases/microbiology , Plant Proteins/analysis , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/microbiology , Populus/drug effects , Populus/microbiology , Proteome/analysis
12.
Molecules ; 25(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218179

ABSTRACT

This work aimed to establish the synergic role of arbuscular mycorrhizal fungi (AMF) symbiosis, phosphorus (P) fertilization and harvest time on the contents of stevia secondary metabolites. Consequently, steviol glycosides (SVglys) concentration and profile, total phenols and flavonoids as well as antioxidant assays, have been assessed in inoculated and no-inoculated plants, grown with or without P supply and collected at different growth stages(69, 89 and 123 days after transplanting).The obtained results suggest that the synthesis of stevia secondary metabolites is induced and/or modulated by all the investigated variability factors. In particular, AMF symbiosis promoted total SVglys content and positively influenced the concentration of some minor compounds (steviolbioside, dulcoside A and rebaudioside B), indicating a clear effect of mycorrhizal inoculation on SVglys biosynthetic pathway. Interestingly, only the mycorrhizal plants were able to synthesize rebaudioside B. In addition, P supply provided the highest levels of total phenols and flavonoids at leaf level, together with the maximum in vitro antioxidant activities (FRAP and ORAC). Finally, the harvest time carried out during the full vegetative phase enhanced the entire composition of the phytocomplex (steviolbioside, dulcoside A, stevioside, rebaudioside A, B, C. total phenols and flavonoids). Moreover, polyphenols and SVglys appeared to be the main contributors to the in vitro antioxidant capacity, while only total phenols mostly contributed to the cellular antioxidant activity (CAA). These findings provide original information about the role played by AMF in association with P supply, in modulating the accumulation of bioactive compounds during stevia growth. At the cultivation level, the control of these preharvest factors, together with the most appropriate harvest time, can be used as tools for improving the nutraceutical value of raw material, with particular attention to its exploitation as functional ingredient for food and dietary supplements and cosmetics.


Subject(s)
Health , Mycorrhizae/physiology , Phosphorus/pharmacology , Stevia/chemistry , Stevia/microbiology , Symbiosis/drug effects , Analysis of Variance , Antioxidants/pharmacology , Factor Analysis, Statistical , Glycosides/analysis , Linear Models , Mycorrhizae/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Secondary Metabolism/drug effects , Stevia/drug effects
13.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854186

ABSTRACT

Seeds of almost all orchids depend on mycorrhizal fungi to induce their germination in the wild. The regulation of this symbiotic germination of orchid seeds involves complex crosstalk interactions between mycorrhizal establishment and the germination process. The aim of this study was to investigate the effect of gibberellins (GAs) on the symbiotic germination of Dendrobium officinale seeds and its functioning in the mutualistic interaction between orchid species and their mycobionts. To do this, we used liquid chromatograph-mass spectrometer to quantify endogenous hormones across different development stages between symbiotic and asymbiotic germination of D. officinale, as well as real-time quantitative PCR to investigate gene expression levels during seed germination under the different treatment concentrations of exogenous gibberellic acids (GA3). Our results showed that the level of endogenous GA3 was not significantly different between the asymbiotic and symbiotic germination groups, but the ratio of GA3 and abscisic acids (ABA) was significantly higher during symbiotic germination than asymbiotic germination. Exogenous GA3 treatment showed that a high concentration of GA3 could inhibit fungal colonization in the embryo cell and decrease the seed germination rate, but did not significantly affect asymbiotic germination or the growth of the free-living fungal mycelium. The expression of genes involved in the common symbiotic pathway (e.g., calcium-binding protein and calcium-dependent protein kinase) responded to the changed concentrations of exogenous GA3. Taken together, our results demonstrate that GA3 is probably a key signal molecule for crosstalk between the seed germination pathway and mycorrhiza symbiosis during the orchid seed symbiotic germination.


Subject(s)
Basidiomycota/growth & development , Gene Expression Profiling/methods , Gibberellins/pharmacology , Orchidaceae/physiology , Plant Proteins/genetics , Abscisic Acid/metabolism , Basidiomycota/drug effects , Chromatography, Liquid , Gene Expression Regulation, Plant/drug effects , Germination , Gibberellins/metabolism , Mass Spectrometry , Mycorrhizae/drug effects , Mycorrhizae/growth & development , Orchidaceae/microbiology , Seeds/microbiology , Seeds/physiology , Sequence Analysis, RNA , Symbiosis
14.
Ecotoxicol Environ Saf ; 197: 110563, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32278824

ABSTRACT

Sodium sulfide (Na2S) is usually used as an amendment in industrial sewage treatment. To evaluate the effects of Na2S on the growth of Robinia pseudoacacia (black locust), heavy metal immobilization, and soil microbial activity, the R. pseudoacacia biomass and nutrient content and the soil heavy metal bioavailability, enzyme activity, and arbuscular mycorrhizal (AM) fungal community were measured by a single-factor pot experiment. The Pb-Zn-contaminated soil was collected from a Pb-Zn mine that had been remediated by R. pseudoacacia for five years. Three pollution levels (unpolluted, mildly polluted, and severely polluted) were evaluated by the pollution load index. Na2S application increased the shoot biomass under severe and mild contamination. In soil, Na2S application decreased the bioavailable Pb and Zn contents under severe and mild contamination, which resulted in a decrease in the Pb and Zn content in R. pseudoacacia. However, Na2S application did not affect the total Pb content per plant and enhanced the total Zn content per plant because of the higher biomass of the plants under Na2S application. Increased phosphatase activity and increased available phosphorous content may promote the uptake of phosphorus in R. pseudoacacia. Moreover, Na2S application is beneficial to the diversity of AM fungi under mild and severe pollution. Overall, Na2S application has great potential for enhancing soil heavy metal immobilization, enhancing soil microbial activity, and improving the growth of R. pseudoacacia in polluted soils. Therefore, Na2S is suitable for use in Pb-Zn remediation to ameliorate environmental heavy metal pollution.


Subject(s)
Metals, Heavy/pharmacokinetics , Robinia/growth & development , Soil Microbiology , Soil Pollutants/pharmacokinetics , Sulfides/pharmacology , Biodegradation, Environmental , Biological Availability , Biomass , Lead/pharmacokinetics , Mycorrhizae/classification , Mycorrhizae/drug effects , Phosphorus/metabolism , Robinia/drug effects , Robinia/metabolism , Robinia/microbiology , Zinc/pharmacokinetics
15.
Plant Physiol Biochem ; 151: 255-263, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32244095

ABSTRACT

Symbiotic plant-microorganisms interaction is a promising approach to avoid the environmental hazards of synthetic fertilizers and pesticides. Among these, arbuscular mycorrhizal fungi (AMF) are known to improve the growth and quality of many plant species; however the detailed metabolic mechanisms behind such beneficial effects are far from complete. Further, elevated levels of atmospheric CO2 (eCO2) could affect such AMF-plant association. Herein, we have investigated the individual and synchronous impact of AMF and eCO2 (620 ppm) on nutrient uptake, growth, photosynthesis, respiration, and levels of primary and secondary metabolites in oregano (Oreganum vulgare), an economically important herbal plant. Enhanced AMF colonization rate and a better mycelial growth were observed in roots of oregano grown under eCO2. Both AMF and eCO2 treatments significantly enhanced the growth and photosynthesis of oregano plants, however much improvements were observed by their synchronous application. eCO2 further increased the AMF-induced dark respiration and accumulation of macro and microelements. Hierarchical clustering analysis of individual primary and secondary metabolites revealed a metabolite-dependent response toward AMF and eCO2. The synchronous application of AMF and eCO2 resulted in promoted accumulation of the majority of the detected sugars, organic acids, amino acids, unsaturated fatty acids, phenolic acids and flavonoids, as compared with the sole treatments. Moreover, AMF and eCO2 acted synergistically in improving the antioxidant capacity and anti-lipid peroxidation activity of oregano. Therefore, this study suggests that AMF treatment induces a global metabolic change in oregano, the effect that is strengthened under eCO2.


Subject(s)
Mycorrhizae , Origanum , Carbon Dioxide/pharmacology , Mycorrhizae/drug effects , Mycorrhizae/physiology , Origanum/drug effects , Origanum/microbiology , Plant Roots/microbiology , Symbiosis/drug effects
16.
Chemosphere ; 238: 124710, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31545216

ABSTRACT

The purpose of study was to examine the residual effects of two types of biochar amendments, two phosphorus (P) fertilizer levels, phosphorus solubilizing bacteria (PSB) and arbuscular mycorrhizal fungs (AMF) on plant growth, nutrients absorption and root architecture of Zea mays L. in texturally different soils. Biochar signficantly increased nutrients absorption and plant biomass production with P-fertilization and microbial inoculantion. Texturally different soils enhanced the plant biomass and nutrients absorption in their independent capacity on addition of biochar, microbial inoculants and P-fertilization. It was shown that mycorrhizal inoculation had positive influence on plant root and shoot biomass in both soils irrespective to the biochar type used. Root colonization was notably increased in biochar + mycorrhizae (B + M) inocultaed plants. It was shown that mycorrhizal inoculation had positive influence on nutrients absorption by plant roots and it had high content of P, potassium, calcium and magnesium in plants at all biochar and P levels. Without P fertilization, biochar amendments significantly promoted shoot P content and root colonization. The P application significantly influenced soil microbial activity in terms of nutrient concentration and plant growth. Root attributes were significantly inclined by microbial inoculation. Residual effects of biochar and P significantly enhanced the nutreints absorption and maize plant growth. Thus, we concluded that residual biochar and P fertilizer showed positive effects on nutrients absorption and maize plant growth promotion in differently textured soils. Microbial inoculants further stimulated the plant biomass production and nutrients absorption due to effective root colonization.


Subject(s)
Bacteria/metabolism , Charcoal/pharmacology , Fungi/metabolism , Phosphorus/pharmacology , Zea mays/growth & development , Agricultural Inoculants , Biomass , Fertilizers/analysis , Mycorrhizae/drug effects , Nutrients , Plant Development/drug effects , Plant Roots/chemistry , Plant Roots/microbiology , Soil/classification , Soil Pollutants/analysis , Zea mays/metabolism
17.
Chemosphere ; 240: 124914, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31557642

ABSTRACT

Arsenic (As) contamination is one of the most daunting environmental problem bothering the whole world. Exploring a suitable bioremediation technique is an urgent need of the hour. The present study focusses on scrutinizing the ectomycorrhizal (ECM) fungus for its potential role in As detoxification and understanding the molecular mechanisms responsible for its tolerance. When exposed to increasing concentrations of external As, the ECM fungus H. cylindrosporum accumulated the metalloid intracellularly, inducing the glutathione biosynthesis pathway. The genes coding for GSH biosynthesis enzymes, γ-glutamylcysteine synthetase (Hcγ-GCS) and glutathione synthetase (HcGS) were highly regulated by As stress. Arsenic coordinately upregulated the expression of both Hcγ-GCS and HcGS genes, thus resulting in increased Hcγ-GCS and HcGS protein expressions and enzyme activities, with substantial increase in intracellular GSH. Functional complementation of the two genes (Hcγ-GCS and HcGS) in their respective yeast mutants (gsh1Δ and gsh2Δ) further validated the role of both enzymes in mitigating As toxicity. These findings clearly highlight the potential importance of GSH antioxidant defense system in regulating the As induced responses and its detoxification in ECM fungus H. cylindrosporum.


Subject(s)
Arsenic/toxicity , Glutathione/biosynthesis , Hebeloma/drug effects , Mycorrhizae/drug effects , Soil Pollutants/toxicity , Antioxidants/metabolism , Arsenic/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Genetic Complementation Test , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Glutathione Synthase/genetics , Glutathione Synthase/metabolism , Hebeloma/genetics , Hebeloma/metabolism , Inactivation, Metabolic , Mutation , Mycorrhizae/genetics , Mycorrhizae/metabolism , Saccharomyces cerevisiae/metabolism , Soil Pollutants/metabolism
18.
Plant Cell Physiol ; 61(3): 565-575, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31790118

ABSTRACT

Arbuscular mycorrhizas (AMs) are divided into two types according to morphology: Arum- and Paris-type AMs. Gibberellins (GAs) mainly inhibit the establishment of Arum-type AM symbiosis in most model plants, whereas the effects of GAs on Paris-type AM symbiosis are unclear. To provide insight into the mechanism underlying this type of symbiosis, the roles of GAs were investigated in Eustoma grandiflorum when used as the host plant for Paris-type AM establishment. Eustoma grandiflorum seedlings were inoculated with the model AM fungus, Rhizophagus irregularis, and the effects of GA and the GA biosynthesis inhibitor uniconazole-P on the symbiosis were quantitatively evaluated. Exogenous GA significantly increased hyphopodium formation at the epidermis, thus leading to the promotion of fungal colonization and arbuscule formation in the root cortex. By contrast, the suppression of GA biosynthesis and signaling attenuated fungal entry to E. grandiflorum roots. Moreover, the exudates from GA-treated roots strongly induced the hyphal branching of R. irregularis. Our results show that GA has an contrasting effect on Paris-type AM symbiosis in E. grandiflorum compared with Arum-type AM symbiosis. This finding could be explained by the differential regulation of the early colonization stage, where fungal hyphae make contact with and penetrate the epidermis.


Subject(s)
Gibberellins/pharmacology , Glomeromycota/drug effects , Glomeromycota/physiology , Liliaceae/physiology , Mycorrhizae/drug effects , Plant Roots/physiology , Symbiosis/drug effects , Symbiosis/physiology , Epidermis/drug effects , Epidermis/metabolism , Epidermis/microbiology , Glomeromycota/growth & development , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Hyphae , Liliaceae/microbiology , Mycorrhizae/physiology , Plant Roots/drug effects , Plant Roots/microbiology , Seedlings , Signal Transduction , Triazoles/metabolism
19.
J Basic Microbiol ; 59(12): 1217-1228, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31613012

ABSTRACT

Arbuscular mycorrhizal fungi (AMF), particularly the Glomerales group, play a paramount role in plant nutrient uptake, and abiotic and biotic stress management in rice, but recent evidence revealed that elevated CO2 concentration considerably reduces the Glomerales group in soil. In view of this, the present study was initiated to understand the interaction effect of native Glomerales species application in rice plants (cv. Naveen) under elevated CO2 concentrations (400 ± 10, 550 ± 20, and 700 ± 20 ppm) in open-top chambers. Three different modes of application of the AMF inoculum were evaluated, of which, combined application of AMF at the seedling production and transplanting stages showed increased AMF colonization, which significantly improved grain yield by 25.08% and also increased uptake of phosphorus by 18.2% and nitrogen by 49.5%, as observed at 700-ppm CO2 concentration. Organic acids secretion in rice root increased in AMF-inoculated plants exposed to 700-ppm CO2 concentration. To understand the overall effect of CO2 elevation on AMF interaction with the rice plant, principal component and partial least square regression analysis were performed, which found both positive and negative responses under elevated CO2 concentration.


Subject(s)
Carbon Dioxide/pharmacology , Glomeromycota/drug effects , Glomeromycota/physiology , Mycorrhizae/drug effects , Mycorrhizae/physiology , Oryza/microbiology , Symbiosis/drug effects , Edible Grain/growth & development , Edible Grain/metabolism , Glomeromycota/growth & development , Mycorrhizae/growth & development , Nitrogen/analysis , Nitrogen/metabolism , Oryza/growth & development , Oryza/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/growth & development , Seedlings/metabolism , Soil/chemistry , Spores, Fungal/physiology
20.
Plant Signal Behav ; 14(10): e1651608, 2019.
Article in English | MEDLINE | ID: mdl-31392918

ABSTRACT

Auxin is a major phytohormone that controls root development. A role for auxin is also emerging in the control of plant-microbe interactions, including for the establishment of root endosymbiosis between plants and arbuscular mycorrhizal fungi (AMF). Auxin perception is important both for root colonization by AMF and for arbuscule formation. AMF produce symbiotic signals called lipo-chitooligosaccharides (LCOs) that can modify auxin homeostasis and promote lateral root formation (LRF). Since Brachypodium distachyon (Brachypodium) has a different auxin sensitivity compared to other plant species, we wondered whether this would interfere with the effect of auxin in arbuscular mycorrhizal (AM) symbiosis. Here we tested whether tar2lhypo a Brachypodium mutant with an increase in endogenous auxin content is affected in LRF stimulation by LCOs and in AM symbiosis. We found that, in contrast to control plants, LCO treatment inhibited LRF of the tar2lhypo mutant. However, the level of AMF colonization and the abundance of arbuscules were increased in tar2lhypo compared to control plants, suggesting that auxin also plays a positive role in both AMF colonization and arbuscule formation in Brachypodium.


Subject(s)
Brachypodium/genetics , Brachypodium/microbiology , Mutation/genetics , Mycorrhizae/physiology , Plant Proteins/genetics , Plant Roots/growth & development , Symbiosis/physiology , Brachypodium/drug effects , Chitin/analogs & derivatives , Chitin/pharmacology , Chitosan , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Indoles/pharmacology , Mycorrhizae/drug effects , Mycorrhizae/growth & development , Oligosaccharides , Plant Roots/drug effects , Symbiosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...