Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 991
Filter
1.
J Immunol Res ; 2024: 2765001, 2024.
Article in English | MEDLINE | ID: mdl-38774603

ABSTRACT

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Subject(s)
Animals, Newborn , Arginase , Myeloid-Derived Suppressor Cells , Reactive Oxygen Species , beta-Glucans , beta-Glucans/pharmacology , Animals , Mice , Reactive Oxygen Species/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Arginase/metabolism , Myeloid Cells/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Spleen/immunology , Spleen/metabolism , Spleen/cytology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL
2.
PLoS One ; 19(5): e0303428, 2024.
Article in English | MEDLINE | ID: mdl-38743735

ABSTRACT

Differentiation therapy using all-trans retinoic acid (ATRA) for acute promyelocytic leukemia (APL) is well established. However, because the narrow application and tolerance development of ATRA need to be improved, we searched for another efficient myeloid differentiation inducer. Kinase activation is involved in leukemia biology and differentiation block. To identify novel myeloid differentiation inducers, we used a Kinase Inhibitor Screening Library. Using a nitroblue tetrazolium dye reduction assay and real-time quantitative PCR using NB4 APL cells, we revealed that, PD169316, SB203580, SB202190 (p38 MAPK inhibitor), and triciribine (TCN) (Akt inhibitor) potently increased the expression of CD11b. We focused on TCN because it was reported to be well tolerated by patients with advanced hematological malignancies. Nuclear/cytoplasmic (N/C) ratio was significantly decreased, and myelomonocytic markers (CD11b and CD11c) were potently induced by TCN in both NB4 and acute myeloid leukemia (AML) M2 derived HL-60 cells. Western blot analysis using NB4 cells demonstrated that TCN promoted ERK1/2 phosphorylation, whereas p38 MAPK phosphorylation was not affected, suggesting that activation of the ERK pathway is involved in TCN-induced differentiation. We further examined that whether ATRA may affect phosphorylation of ERK and p38, and found that there was no obvious effect, suggesting that ATRA induced differentiation is different from TCN effect. To reveal the molecular mechanisms involved in TCN-induced differentiation, we performed microarray analysis. Pathway analysis using DAVID software indicated that "hematopoietic cell lineage" and "cytokine-cytokine receptor interaction" pathways were enriched with high significance. Real-time PCR analysis demonstrated that components of these pathways including IL1ß, CD3D, IL5RA, ITGA6, CD44, ITGA2B, CD37, CD9, CSF2RA, and IL3RA, were upregulated by TCN-induced differentiation. Collectively, we identified TCN as a novel myeloid cell differentiation inducer, and trials of TCN for APL and non-APL leukemia are worthy of exploration in the future.


Subject(s)
Cell Differentiation , Leukemia, Promyelocytic, Acute , Myeloid Cells , Humans , Cell Differentiation/drug effects , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Myeloid Cells/drug effects , Myeloid Cells/metabolism , CD11b Antigen/metabolism , CD11b Antigen/genetics , Cell Line, Tumor , HL-60 Cells , p38 Mitogen-Activated Protein Kinases/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Imidazoles/pharmacology , Tretinoin/pharmacology , Pyridines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism
3.
Ecotoxicol Environ Saf ; 276: 116302, 2024 May.
Article in English | MEDLINE | ID: mdl-38608381

ABSTRACT

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.


Subject(s)
Adenosine/analogs & derivatives , Benzene , Methyltransferases , Benzene/toxicity , Animals , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Myeloid Cells/drug effects , Myeloid Cells/pathology , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Male
4.
Joint Bone Spine ; 91(3): 105698, 2024 May.
Article in English | MEDLINE | ID: mdl-38309518

ABSTRACT

OBJECTIVE: Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS: PBMCs pre-treated with urate produced more interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION: In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.


Subject(s)
Cytokines , Gout , STAT3 Transcription Factor , Suppressor of Cytokine Signaling 3 Protein , Uric Acid , Humans , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Uric Acid/pharmacology , STAT3 Transcription Factor/metabolism , Cytokines/metabolism , Gout/genetics , Gout/metabolism , Cells, Cultured , Male , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Hyperuricemia/metabolism , Female , Middle Aged , DNA Methylation , Janus Kinase 2/metabolism
5.
Nature ; 623(7989): 1053-1061, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844613

ABSTRACT

Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Agents , Chemotaxis , Drug Resistance, Neoplasm , Myeloid Cells , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Chemotaxis/drug effects , Disease Progression , Inflammation/drug therapy , Inflammation/pathology , Lewis X Antigen/metabolism , Myeloid Cells/drug effects , Myeloid Cells/pathology , Neoplasm Metastasis , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Benef Microbes ; 14(4): 401-419, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-38661366

ABSTRACT

The intestinal microbiota contributes to gut immune homeostasis, where short-chain fatty acids (SCFAs) function as the major mediators. We aimed to elucidate the immunomodulatory effects of acetate, propionate, and butyrate. With that in mind, we sought to characterise the expression of SCFA receptors and transporters as well as SCFAs' impact on the activation of different immune cells. Whereas all three SCFAs decreased tumour necrosis factor (TNF)-α production in activated T cells, only butyrate and propionate inhibited interferon (IFN)-γ, interleukin (IL)-17, IL-13, and IL-10 production. Butyrate and propionate inhibited the expression of the chemokine receptors CCR9 and CCR10 in activated T- and B-cells, respectively. Similarly, butyrate and propionate were effective inhibitors of IL-1ß, IL-6, TNF-α, and IL-10 production in myeloid cells upon lipopolysaccharide and R848 stimulation. Acetate was less efficient at inhibiting cytokine production except for IFN-α. Moreover, SCFAs inhibited the production of IL-6 and TNF-α in monocytes, myeloid dendritic cells (mDC), and plasmacytoid dendritic cells (pDC), whereas acetate effects were relatively more prominent in pDCs. In monocytes and mDCs, acetate was a less efficient inhibitor, but it was equally effective in inhibiting pDCs activation. We also studied the ability of SCFAs to induce trained immunity or tolerance. Butyrate and propionate - but not acetate - prevented Toll-like receptor-mediated activation in SCFA-trained cells, as demonstrated by a reduced production of IL-6 and TNF-α. Our findings indicate that butyrate and propionate are equally efficient in inhibiting the adaptive and innate immune response and did not induce trained immunity. The findings may be explained by differential SCFA receptor and transporter expression profiles of the immune cells.


Subject(s)
Cytokines , Fatty Acids, Volatile , Immune Tolerance , Immunity, Innate , T-Lymphocytes , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Humans , Immunity, Innate/drug effects , Cytokines/metabolism , Cytokines/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immune Tolerance/drug effects , Lymphocyte Activation/drug effects , Butyrates/pharmacology , Myeloid Cells/immunology , Myeloid Cells/drug effects , Propionates/pharmacology , Dendritic Cells/immunology , Dendritic Cells/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Monocytes/immunology , Monocytes/drug effects
7.
Am J Manag Care ; 28(16 Suppl): S323-S328, 2022 12.
Article in English | MEDLINE | ID: mdl-36548523

ABSTRACT

Multiple sclerosis (MS) is a chronic, immune-mediated, neurodegenerative condition that results in progressive accumulation of disability over the course of the disease. MS presents heterogeneously, and, as the disease progresses, patients develop a range of physical and neurologic problems that include reduced mobility, cognitive impairment, weakness, fatigue, pain, and defects in speech or vision. Economically, MS is costly, including both direct costs stemming from clinical care and medications and the indirect costs of productivity losses. These costs pose a substantial burden to patients, families, caregivers, employers, and society. There are 21 approved disease-modifying therapies for MS across several drug classes. The importance of early MS treatment has been confirmed, and progress has been made in the treatment of relapsing-remitting MS, although this progress has not been replicated for progressive presentations of the disease. Ongoing research continues to elucidate the exact mechanisms of disease in MS as well as potential new treatment strategies that may better address current gaps, such as disability progression in secondary progressive MS without activity. One of the novel pathways under investigation is the inhibition of Bruton tyrosine kinase, a cytoplasmic tyrosine kinase, which is expressed in B cells and other potentially targetable hematopoietic lineage cells. This review examines emerging hypotheses that targeting both B cells and myeloid cells within the periphery and central nervous system could yield clinical effects in key areas of MS pathophysiology that are currently unaddressed.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Multiple Sclerosis , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/enzymology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/enzymology , Metabolic Networks and Pathways , B-Lymphocytes/drug effects , B-Lymphocytes/enzymology , Myeloid Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
8.
Proc Natl Acad Sci U S A ; 119(14): e2111804119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35353625

ABSTRACT

The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti­CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti­CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti­CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow­derived immune cells were the major mediators of CSF-1R­dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R­dependent cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Macrophage Colony-Stimulating Factor , Multiple Sclerosis , Animals , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Picolinic Acids/pharmacology , Picolinic Acids/therapeutic use , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors
9.
Inflamm Res ; 71(2): 169-182, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999919

ABSTRACT

Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.


Subject(s)
Autoimmune Diseases/drug therapy , Inflammation/drug therapy , Pyruvates/therapeutic use , Animals , Disease Models, Animal , Humans , Myeloid Cells/drug effects , Pyruvates/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , T-Lymphocytes/drug effects
10.
J Neurooncol ; 156(3): 625-634, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35037156

ABSTRACT

PURPOSE: Nearly 10% of patients with adult diffuse glioma develop clinically significant myelotoxicity while on temozolomide (TMZ) leading to treatment interruptions. This study aimed to assess single nucleotide polymorphisms (SNPs) in the O6-methylguanine-DNA methyltransferase (MGMT) gene in adults with biopsy-proven diffuse glioma who develop TMZ-induced myelotoxicity and correlate their presence with severity and duration of such toxicity. METHODS: This study assessed 33 adults treated with TMZ for diffuse glioma who developed ≥ grade 2 thrombocytopenia and/or ≥ grade 3 neutropenia. Genomic DNA was extracted from peripheral blood cells for MGMT SNP analysis after written informed consent. TMZ-induced severe myelotoxicity (≥ grade 3) was correlated with three specified SNPs commonly seen in the MGMT gene (L84F, I143V/K178R) using chi-square test or Fischer's exact test as appropriate. RESULTS: Of the 33 adults, 24 (72.7%) experienced ≥ grade 3 thrombocytopenia and/or neutropenia, while 9 (27.3%) developed grade 2 thrombocytopenia only. The variant T allele of L84F was expressed in 28.7% (19/66) of analyzed alleles, which was substantially higher than previously reported for South Asian ancestry. The variant G allele of I143V/K178R was expressed in 9.3% (6/64) of analyzed alleles. Of which 3 patients showed statistically significant association with prolonged myelosuppression for > 2 months (p = 0.03). No significant correlation was established between the mentioned SNPs and severe myelotoxicity. CONCLUSIONS: There is substantially higher frequency of variant T allele (L84F) in Indian patients than previously reported for South Asians. The presence of specific SNPs in the MGMT gene correlates with prolonged duration but not severity of TMZ-induced myelotoxicity.


Subject(s)
Brain Neoplasms , DNA Modification Methylases , DNA Repair Enzymes , Glioma , Temozolomide , Tumor Suppressor Proteins , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/drug therapy , Glioma/genetics , Humans , Myeloid Cells/drug effects , Myeloid Cells/pathology , Pharmacogenomic Testing , Polymorphism, Single Nucleotide , Temozolomide/adverse effects , Tumor Suppressor Proteins/genetics
11.
Anticancer Drugs ; 33(2): 117-123, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34561996

ABSTRACT

Platinum is reported to have adjuvant immune properties, whether oxaliplatin (OXA) could be utilized to synergize with anti-programmed cell death-1 (PD-1) antibody or anti-NKG2D (natural-killer group 2, member D) antibody is investigated. Subcutaneous A549 lung cancer and murine Lewis lung carcinoma (LLC) models were constructed, which were further intravenously injected with platinum-based drugs or concomitant administrated with anti-PD-1 antibody and or anti-NKG2D antibody. The tumor volume and the proportion of myeloid cells (CD45+CD11b+), CD3+T cells and NK (NK1.1+) cells were detected. The relative expression of chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10 and CXCL11 and C-X-C motif chemokine receptor 3 (CXCR3) was detected with the ELISA, western blot and flow cytometry. The three platinum drugs (cisplatin, DDP; carboplatin, CBP; OXA) showed similar effects to inhibit A549 tumor growth in immune-deficient mice. While OXA exhibited better antitumor efficacy in wild-type mice bearing LLC with downregulated myeloid cells proportion, upregulated concentration of CXCL9, CXCL10 and CXCL11, and upregulated proportion and CXCR3 expression on T cells and NK cells. OXA combined with anti-PD1 or anti-NKG2D synergistically improved tumor growth inhibition and survival. The combination of OXA to anti-PD1 and anti-NKG2D antibodies will provide the most appropriate treatment benefit. Oxaliplatin promotes T cells and NK cells infiltration through the CXCL9/10/11-CXCR3 axis to enhance anti-PD1 or anti-NKG2D immunotherapy in lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Chemokines, CXC/drug effects , Immune Checkpoint Inhibitors/pharmacology , Killer Cells, Natural/drug effects , Lung Neoplasms/drug therapy , Organoplatinum Compounds/pharmacology , A549 Cells , Animals , Antigens, Surface , Antineoplastic Agents/administration & dosage , Carboplatin/administration & dosage , Carboplatin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/administration & dosage , Cisplatin/pharmacology , Drug Combinations , Humans , Immune Checkpoint Inhibitors/administration & dosage , Ligands , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Organoplatinum Compounds/administration & dosage , Oxaliplatin/pharmacology , T-Lymphocytes , Tumor Burden/drug effects
12.
Mol Pharm ; 19(1): 246-257, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34816721

ABSTRACT

Gastric cancer (GC) is a common cancer worldwide, with high incidence and mortality rates. Therefore, early and precise diagnosis is critical to improving GC prognosis. Tumor-associated myeloid cells infiltrate the tumor microenvironment (TME) and can produce immunosuppressive effects in the early stage of the tumor. The surface integrin receptor CD11b is widely expressed in the specific subsets of myeloid cells, and it has the characteristics of high abundance, high specificity, and high potential for targeted immunotherapy. In this study, two strategies for labeling anti-CD11b, including 89Zr-DFO-anti-CD11b and pretargeted imaging (68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO), were used to evaluate the value of early diagnosis of GC and confirm the advantages of the pretargeted strategy for the diagnosis of GC. Pretargeted molecular probe 68Ga-NOTA-polypeptide-PEG11-Tz was synthesized. The binding affinity of the Tz-radioligand to CD11b was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Moreover, the anti-CD11b antibody was conjugated with a p-isothiocyanatobenzyl-desferrioxamine (SCN-DFO) chelator and radiolabeled with zirconium-89. Biodistribution and positron-emission computed tomography imaging experiments were performed in MGC-803 tumor-bearing model mice to evaluate the value of the early diagnosis of GC. Histological evaluation of MGC-803 tumors was conducted to confirm the infiltration of the GC TME with CD11b+ myeloid cells. 68Ga-NOTA-polypeptide-PEG11-Tz was successfully radiosynthesized, with the radiochemical purity above 95%, as confirmed by reversed-phase high-performance liquid chromatography. The radioligand showed favorable stability in normal saline and phosphate-buffered saline, good affinity to RAW264.7 cells, and rapid blood clearance in mice. The results of biodistribution and imaging experiments using the pretargeted method showed that the tumor/muscle ratios were 5.17 ± 2.98, 5.94 ± 1.46, and 4.46 ± 2.73 at the pretargeting intervals of 24, 48, and 72 h, respectively. The experimental results using the method of the directly labeling antibody (89Zr-DFO-anti-CD11b) showed that, despite radioactive accumulation in the tumor, there was a higher level of radioactive accumulation in normal tissues. The tumor/muscle ratios were 1.09 ± 0.67, 1.66 ± 0.95, 2.94 ± 1.24, 3.64 ± 1.21, and 3.55 ± 1.64 at 1, 24, 48, 72, and 120 h. The current research proved the value of 68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO in the diagnosis of GC using the pretargeted strategy. Compared to 89Zr-DFO-anti-CD11b, the image contrast achieved by the pretargeted strategy was relatively improved, and the background accumulation of the probe was relatively low. These advantages can improve the diagnostic efficiency for GC and provide supporting evidence for radioimmunotherapy targeting CD11b receptors.


Subject(s)
CD11b Antigen/metabolism , Click Chemistry/methods , Myeloid Cells/metabolism , Radioisotopes , Stomach Neoplasms/metabolism , Zirconium , Animals , Cell Line, Tumor , Female , Flow Cytometry , Humans , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Mice, Nude , Myeloid Cells/drug effects , Neoplasm Transplantation , Organometallic Compounds , Positron-Emission Tomography/methods , Stomach Neoplasms/diagnosis , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/therapy , Tumor Microenvironment
13.
Bioengineered ; 12(2): 12332-12344, 2021 12.
Article in English | MEDLINE | ID: mdl-34895041

ABSTRACT

Isoflurane-induced neurotoxicity has attracted much interest. Recent studies suggest that isoflurane causes microglial activation, resulting in an inflammatory response and microglial insult. Maprotiline is a novel drug that has been licensed as an antidepressant with considerable anti-inflammatory activity. However, it is still unknown whether maprotiline possesses a protective effect against isoflurane-induced microglial insult. Here, we found that maprotiline ameliorated isoflurane-caused reduction in BV2 microglial cell viability and lactate dehydrogenase (LDH) release. Maprotiline mitigated isoflurane-induced oxidative stress by inhibiting reactive oxygen species (ROS) production and increasing superoxide dismutase (SOD) activity. Isoflurane-induced expression and production of inflammatory markers including tumor necrosis factor (TNF-α), interleukin (IL)-1ß, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) were decreased in maprotiline-treated cells. Maprotiline inhibited the mRNA and protein levels of Iba1, a marker of microglial activation, in isoflurane-induced BV2 cells. Maprotiline treatment restored isoflurane-induced reduction of TREM2 in BV2 microglial cells. In addition, the knockdown of TREM2 abolished the beneficial effects of maprotiline against isoflurane. Collectively, maprotiline exerted protective effects against isoflurane-caused oxidative stress, inflammatory response, and cell injury via regulating TREM2. These findings show that maprotiline prevented the isoflurane-induced microglial activation, indicating that maprotiline might be used as an optimal therapeutic agent for preventing the isoflurane-caused neurotoxicity.


Subject(s)
Isoflurane/pharmacology , Maprotiline/pharmacology , Membrane Glycoproteins/metabolism , Microglia/drug effects , Myeloid Cells/drug effects , Receptors, Immunologic/metabolism , Animals , Biomarkers/metabolism , Cell Survival/drug effects , Cells, Cultured , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Inflammation/metabolism , L-Lactate Dehydrogenase/metabolism , Mice , Microglia/metabolism , Myeloid Cells/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
15.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830245

ABSTRACT

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Histamine/immunology , Immunologic Factors/therapeutic use , Pruritus/immunology , Receptors, Histamine H1/immunology , Sensory Receptor Cells/immunology , Antibodies, Monoclonal/therapeutic use , Cytokines/antagonists & inhibitors , Cytokines/immunology , Cytokines/metabolism , Gene Expression , Histamine/metabolism , Histamine Antagonists/therapeutic use , Humans , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/pathology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Neuropeptides/antagonists & inhibitors , Neuropeptides/immunology , Neuropeptides/metabolism , Peptide Hydrolases/immunology , Peptide Hydrolases/metabolism , Protease Inhibitors/therapeutic use , Pruritus/drug therapy , Pruritus/genetics , Pruritus/pathology , Receptors, Histamine H1/genetics , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/pathology , Skin/drug effects , Skin/immunology , Skin/innervation , Skin/pathology
16.
Cells ; 10(11)2021 11 02.
Article in English | MEDLINE | ID: mdl-34831209

ABSTRACT

Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.


Subject(s)
Cell Differentiation , DNA Methylation/genetics , NAD/pharmacology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Line , DNA Demethylation/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Myeloid Cells/cytology , Myeloid Cells/drug effects , Neoplasms/genetics , Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
17.
Nat Commun ; 12(1): 5981, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645812

ABSTRACT

The acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.


Subject(s)
Adenylyl Cyclase Inhibitors/pharmacology , Adenylyl Cyclases/genetics , Antineoplastic Agents/pharmacology , Cyclic AMP/antagonists & inhibitors , Melanoma, Experimental/drug therapy , Skin Neoplasms/drug therapy , Adenylyl Cyclase Inhibitors/chemical synthesis , Adenylyl Cyclases/immunology , Animals , Antineoplastic Agents/chemical synthesis , Benzyl Compounds/chemistry , Cyclic AMP/immunology , Cyclic AMP/metabolism , Esters , Female , Gene Expression , Humans , Immunity, Innate/drug effects , Injections, Intralesional , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Micelles , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Peptides/chemistry , Polyglutamic Acid/chemistry , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Sarcosine/analogs & derivatives , Sarcosine/chemistry , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tumor Burden/drug effects , Tumor Escape/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
18.
Front Immunol ; 12: 738586, 2021.
Article in English | MEDLINE | ID: mdl-34691045

ABSTRACT

V-domain Ig suppressor of T cell activation (VISTA) is a novel coinhibitory immune checkpoint molecule that maintains immune homeostasis. The present study explored the role of VISTA in human and murine inflammatory tissues of apical periodontitis (AP). VISTA was upregulated in inflammatory tissues of human AP. In mice, the expression of VISTA gradually increased with the development of mouse experimental apical periodontitis (MAP), the CD3+ T cells, CD11b+ myeloid cells, and FOXP3+ regulatory T cells also gradually accumulated. Moreover, a blockade of VISTA using a mouse in vivo anti-VISTA antibody aggravated periapical bone loss and enhanced the infiltration of immune cells in an experimental mouse periapical periodontitis model. The collective results suggest that VISTA serves as a negative regulator of the development and bone loss of apical periodontitis.


Subject(s)
Alveolar Bone Loss/metabolism , Alveolar Process/drug effects , Antibodies/toxicity , Membrane Proteins/antagonists & inhibitors , Myeloid Cells/drug effects , Periapical Periodontitis/metabolism , T-Lymphocyte Subsets/drug effects , Adult , Alveolar Bone Loss/immunology , Alveolar Bone Loss/pathology , Alveolar Process/immunology , Alveolar Process/metabolism , Animals , B7 Antigens/metabolism , Case-Control Studies , Disease Models, Animal , Humans , Male , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice, Inbred C57BL , Middle Aged , Myeloid Cells/immunology , Myeloid Cells/metabolism , Periapical Periodontitis/immunology , Periapical Periodontitis/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Young Adult
19.
Biomed Pharmacother ; 143: 112211, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649344

ABSTRACT

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria and is usually administrated to establish models of inflammation. Artesunate (ART), a water-soluble artemisinin derivative, displays multiple pharmacological actions against tumors, viral infections, and inflammation, and has been used as a therapeutic weapon against malaria. In this study, our aim was to evaluate whether ART pretreatment is capable of preventing inflammation induced by LPS. BALB/c mice were treated with 100 mg/kg of ART i.p. for 7 days followed by a single dose of LPS. ART pretreatment led to an improvement in clinical score, prevented alterations in biochemical markers, and reestablished the platelet counts. Flow cytometry analysis showed that ART protected the inflammation mainly by reducing the percentage of M1 macrophages while increasing M2 macrophages and a reestablishment of classical monocytes in the BM. In the spleen, ART pretreatment increased N2 neutrophils, myeloid-derived suppressor cells (MDSC), and regulatory T cells, the latter was also increased in peripheral blood. In addition, a marked decrease in inflammatory cytokines and chemokines was observed in the ART treated group. Our data suggest that ART prevents inflammation, reducing tissue damage and restoring homeostasis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Artesunate/pharmacology , Inflammation/prevention & control , Myeloid Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , Animals , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred BALB C , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Phenotype , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
20.
Int Immunopharmacol ; 101(Pt B): 108233, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653730

ABSTRACT

The diversity of immune responses in allergic diseases is critically mediated by dendritic cells (DCs), including myeloid and plasmacytoid DCs. Allergen inhalation increased the release of IL-33 from patients with allergic rhinitis (AR), which affecting the downstream cells by binding to its receptor (ST2). However, the effects of inhaled allergens on the expression of ST2 by DCs and IL-33 on the function of mDCs are unknown. The levels of ST2+mDCs and ST2+pDCs in the blood from patients with AR and healthy subjects were examined using flow cytometry. Moreover, the patients were challenged using the allergens and the levels of ST2+mDCs and ST2+pDCs were investigated at different time points. We found that there were higher levels of ST2+ mDCs and ST2+ pDCs in patients with AR, and these levels were further increased 0.5 h after allergen inhalation. Additionally, the type 2 immune response was upregulated after challenge. IL-33 treatment increased the expression of ST2 on mDCs. Our study demonstrated that ST2 was upregulated on DCs after allergen inhalation and that mDCs responded directly to IL-33 through ST2, suggesting that the IL-33/ST2 axis might play an important role in the pathogenesis of allergic rhinitis by DCs.


Subject(s)
Allergens/toxicity , Dendritic Cells/drug effects , Gene Expression Regulation/drug effects , Interleukin-1 Receptor-Like 1 Protein/metabolism , Myeloid Cells/drug effects , Rhinitis, Allergic/metabolism , Administration, Inhalation , Adult , Dendritic Cells/metabolism , Female , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33 , Male , Myeloid Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...