Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 937
Filter
1.
Neuron ; 112(18): 3143-3160.e6, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39019043

ABSTRACT

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.


Subject(s)
Enteric Nervous System , Neuroglia , Neurons , Animals , Neuroglia/physiology , Enteric Nervous System/physiology , Enteric Nervous System/cytology , Mice , Neurons/physiology , Intestines/innervation , Intestines/physiology , Nerve Regeneration/physiology , Myenteric Plexus/cytology , Myenteric Plexus/physiology , Mice, Transgenic , Neurites/physiology
2.
Neurogastroenterol Motil ; 36(9): e14858, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38946168

ABSTRACT

BACKGROUND: Serving as a reservoir, the gastric fundus can expand significantly, with an initial receptive and a following adaptive relaxation, controlled by extrinsic and intrinsic reflex circuits, respectively. We hypothesize that mechanosensitive enteric neurons (MEN) are involved in the adaptive relaxation, which is initiated when a particular gastric volume and a certain stretch of the stomach wall is reached. To investigate whether the responsiveness of MEN in the gastric fundus is dependent on tissue stretch, we performed mechanical stimulations in stretched versus ganglia "at rest". METHODS: Responses of myenteric neurons in the guinea pig gastric fundus were recorded with membrane potential imaging using Di-8-ANEPPS. MEN were identified by small-volume intraganglionic injection in ganglia stretched to different degrees using a self-constructed stretching tool. Immunohistochemical staining identified the neurochemical phenotype of MEN. Hexamethonium and capsaicin were added to test their effect on recruited MEN. KEY RESULTS: In stretched compared to "at rest" ganglia, significantly more MEN were activated. The change in the ganglionic area correlated significantly with the number of additional recruited MEN. The additional recruitment of MEN was independent from nicotinic transmission and the ratio of active MEN in stretched ganglia shifted towards a nitrergic phenotype. CONCLUSION AND INFERENCES: The higher number of active MEN with increasing stretch of the ganglia and their greater share of nitrergic phenotype might indicate their contribution to the adaptive relaxation. Further experiments are necessary to address the receptors involved in mechanotransduction.


Subject(s)
Gastric Fundus , Animals , Guinea Pigs , Gastric Fundus/physiology , Male , Enteric Nervous System/physiology , Neurons/physiology , Myenteric Plexus/physiology , Myenteric Plexus/cytology , Mechanoreceptors/physiology
3.
J Neurosci Methods ; 407: 110144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670535

ABSTRACT

BACKGROUND: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics. NEW METHOD: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation. RESULTS: Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells. COMPARISON WITH EXISTING METHODS: This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials. CONCLUSION: Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.


Subject(s)
Myenteric Plexus , Neurons , Animals , Myenteric Plexus/cytology , Myenteric Plexus/physiology , Neurons/physiology , Neurons/cytology , Neurons/drug effects , Cell Culture Techniques/methods , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neural Stem Cells/drug effects , Cell Differentiation/physiology , Cell Differentiation/drug effects , Mice , Mice, Inbred C57BL , Cells, Cultured , Action Potentials/physiology , Action Potentials/drug effects , Laminin/pharmacology , Drug Combinations , Proteoglycans/pharmacology , Male , Neurogenesis/physiology , Neurogenesis/drug effects , Collagen
4.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G567-G582, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38193168

ABSTRACT

The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.


Subject(s)
Enteric Nervous System , Neurons , Neurons/physiology , Enteric Nervous System/physiology , Myenteric Plexus/physiology , Submucous Plexus
5.
Science ; 382(6670): 527-528, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37917691

ABSTRACT

Glial cells in the gut are specialized to fine-tune intestinal function.


Subject(s)
Intestines , Neuroglia , Neuroglia/physiology , Intestines/innervation , Intestines/physiology , Intestines/ultrastructure , Animals , Mice , Myenteric Plexus/physiology , Myenteric Plexus/ultrastructure
6.
Neurogastroenterol Motil ; 35(4): e14538, 2023 04.
Article in English | MEDLINE | ID: mdl-36740821

ABSTRACT

BACKGROUND: Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS: Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS: Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS: Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.


Subject(s)
Myenteric Plexus , Neurons , Humans , Mice , Animals , Guinea Pigs , Electrophysiology , Neurons/physiology , Fluoresceins , Myenteric Plexus/physiology , Colon/physiology
7.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R305-R316, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36622086

ABSTRACT

Vagal preganglionic neurons innervate myenteric ganglia. These autonomic efferents are distributed so densely within the ganglia that it has been impractical to track individual vagal axons through the myenteric plexus with tracer labeling. To evaluate whether vagal efferent axons evidence selectivity, particularly for nitrergic or non-nitrergic myenteric neurons within the plexus, we limited the numbers and volumes of brainstem dextran biotin tracer injections per animal. Reduced labeling and the use of immunohistochemistry generated cases in which some individual axons could be distinguished and traced in three dimensions (Neurolucida) within and among successive (up to 46) myenteric ganglia. In the myenteric plexus of all stomach regions, the majority (∼86%) of vagal efferents were organized into two distinct subtypes. One subtype (∼24% of dextran-labeled efferents, designated "primarily nitrergic") selectively contacted and linked-both within and between ganglia-nitric oxide synthase positive (nNOS+) neurons into presumptive motor modules. A second subtype (∼62% of efferents, designated "primarily non-nitrergic") appeared to selectively contact and link-both within and between ganglia-non-nitrergic enteric neurons into a second type of effector ensemble. A third candidate type (∼14% of labeled preganglionics), appeared to lack "nitrergic selectivity" and to contact both nNOS+ and nNOS- enteric neurons. In addition to the quantitative assessment of the efferent axons in stomach, qualitative observations of the proximal duodenum indicated similar selective vagal efferent projections, in proportions comparable with those evaluated in the stomach. Limited injections of tracer, three-dimensional (3-D) tracing of individual axons, and histochemistry of myenteric neurons might distinguish additional efferent phenotypes.NEW & NOTEWORTHY The present study highlights the following: 1) one type of vagal efferent axon selectively innervates nitrergic upper gastrointestinal myenteric neurons; 2) a second type of vagal efferent selectively innervates non-nitrergic gastrointestinal myenteric neurons; and 3) the two types of vagal efferents might modulate peristalsis reciprocally and cooperatively.


Subject(s)
Dextrans , Myenteric Plexus , Animals , Myenteric Plexus/physiology , Vagus Nerve/physiology , Axons , Neurons
8.
Neurogastroenterol Motil ; 35(3): e14514, 2023 03.
Article in English | MEDLINE | ID: mdl-36480434

ABSTRACT

BACKGROUND: Gastrointestinal (GI) symptoms in heart failure (HF) patients are associated with increased morbidity and mortality. We hypothesized that HF reduces bioelectrical activity underlying peristalsis. In this study, we aimed to establish a method to capture and analyze slow waves (SW) in the small intestine in mice with HF. METHODS: We established a model of HF secondary to coronary artery disease in mice overexpressing tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells. The myoelectric activity was recorded from the small intestine in live animals under anesthesia. The low- and high-frequency components of SW were isolated in MATLAB and compared between the control (n = 12) and eTNAP groups (n = 8). C-kit-positive interstitial cells of Cajal (ICC) and Pgp9.5-positive myenteric neurons were detected by immunofluorescence. Myenteric ganglia were assessed by hematoxylin and eosin (H&E) staining. RESULTS: SW activity was successfully captured in vivo, with both high- and low-frequency components. Low-frequency component of SW was not different between endothelial TNAP (eTNAP) and control mice (mean[95% CI]: 0.032[0.025-0.039] vs. 0.040[0.028-0.052]). High-frequency component of SW showed a reduction eTNAP mice relative to controls (0.221[0.140-0.302] vs. 0.394[0.295-0.489], p < 0.01). Dysrhythmia was also apparent upon visual review of signals. The density of ICC and neuronal networks remained the same between the two groups. No significant reduction in the size of myenteric ganglia of eTNAP mice was observed. CONCLUSIONS: A method to acquire SW activity from small intestines in vivo and isolate low- and high-frequency components was established. The results indicate that HF might be associated with reduced high-frequency SW activity.


Subject(s)
Heart Failure , Interstitial Cells of Cajal , Mice , Animals , Endothelial Cells , Intestine, Small/physiology , Peristalsis , Interstitial Cells of Cajal/physiology , Myenteric Plexus/physiology
9.
Nutr Neurosci ; 25(4): 758-770, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33034260

ABSTRACT

Objective: Possible effects of the vagus inhibition and stimulation on the hypothalamic nuclei, myenteric plexes and the vagus nerve were investigated.Methods: The female rats divided to the inhibition (INH), stimulation (STI) and, sham (SHAM) groups were fed with high fat diet (including 40% of energy from animal fat). After nine weeks, the rats were allowed to recover for 4 weeks in INH group. In STI group, the left vagus nerve stimulated (30 Hz/500 msn/30 sec.) starting 2nd post operative day for 5 minutes during 4 weeks. Healthy female rats used as control (CONT). Then, tissue samples were analyzed by biochemical, histological and stereological methods.Results: The mean number of the neurons in the arcuate nucleus of the INH group was significantly less; but, that is significantly more in the STI group compared to the other groups. The neuronal density of ventromedial nucleus in the STI group was higher; while the density in the INH group was lower than the other groups. In the dorsomedial nucleus, neuron density of the INH group was lower than the other groups. In terms of the myenteric plexus volumes, that of the INH group was lowest. The myelinated axon number in the INH group was significantly highest. The myelin sheath thickness and axon area of the INH group was significantly lower than the other groups.Discussion: The results of the study show that the vagal inhibition is more effective than the vagal stimulation on the weight loss in the obesity.


Subject(s)
Obesity , Vagus Nerve , Animals , Female , Hypothalamus , Myenteric Plexus/physiology , Obesity/therapy , Rats , Stomach
10.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34593632

ABSTRACT

Glia in the central nervous system exert precise spatial and temporal regulation over neural circuitry on a synapse-specific basis, but it is unclear if peripheral glia share this exquisite capacity to sense and modulate circuit activity. In the enteric nervous system (ENS), glia control gastrointestinal motility through bidirectional communication with surrounding neurons. We combined glial chemogenetics with genetically encoded calcium indicators expressed in enteric neurons and glia to study network-level activity in the intact myenteric plexus of the proximal colon. Stimulation of neural fiber tracts projecting in aboral, oral, and circumferential directions activated distinct populations of enteric glia. The majority of glia responded to both oral and aboral stimulation and circumferential pathways, while smaller subpopulations were activated only by ascending and descending pathways. Cholinergic signaling functionally specifies glia to the descending circuitry, and this network plays an important role in repressing the activity of descending neural pathways, with some degree of cross-inhibition imposed upon the ascending pathway. Glial recruitment by purinergic signaling functions to enhance activity within ascending circuit pathways and constrain activity within descending networks. Pharmacological manipulation of glial purinergic and cholinergic signaling differentially altered neuronal responses in these circuits in a sex-dependent manner. Collectively, our findings establish that the balance between purinergic and cholinergic signaling may differentially control specific circuit activity through selective signaling between networks of enteric neurons and glia. Thus, enteric glia regulate the ENS circuitry in a network-specific manner, providing profound insights into the functional breadth and versatility of peripheral glia.


Subject(s)
Enteric Nervous System/physiology , Gastrointestinal Motility/physiology , Myenteric Plexus/physiology , Neuroglia/physiology , Animals , Cell Communication , Enteric Nervous System/cytology , Female , Male , Mice , Myenteric Plexus/cytology , Neuroglia/cytology , Neurons/cytology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL