Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.051
Filter
3.
J Med Chem ; 67(10): 7825-7835, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38729623

ABSTRACT

Cardiac myosin activation has been shown to be a viable approach for the treatment of heart failure with reduced ejection fraction. Here, we report the discovery of nelutroctiv (CK-136), a selective cardiac troponin activator intended for patients with cardiovascular conditions where cardiac contractility is reduced. Discovery of nelutroctiv began with a high-throughput screen that identified compound 1R, a muscle selective cardiac sarcomere activator devoid of phosphodiesterase-3 activity. Optimization of druglike properties for 1R led to the replacement of the sulfonamide and aniline substituents which resulted in improved pharmacokinetic (PK) profiles and a reduced potential for human drug-drug interactions. In vivo echocardiography assessment of the optimized leads showed concentration dependent increases in fractional shortening and an improved pharmacodynamic window compared to myosin activator CK-138. Overall, nelutroctiv was found to possess the desired selectivity, a favorable pharmacodynamic window relative to myosin activators, and a preclinical PK profile to support clinical development.


Subject(s)
Myocardial Contraction , Humans , Animals , Myocardial Contraction/drug effects , Cardiovascular Diseases/drug therapy , Rats , Structure-Activity Relationship , Male , Drug Discovery , Troponin/metabolism , Mice , Rats, Sprague-Dawley , Sulfonamides/pharmacology , Sulfonamides/pharmacokinetics , Sulfonamides/chemistry , Sulfonamides/therapeutic use , Sulfonamides/chemical synthesis
4.
Bull Exp Biol Med ; 176(5): 539-542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38717565

ABSTRACT

Coronary occlusion (45 min) and reperfusion (120 min) in male Wistar rats in vivo, as well as total ischemia (45 min) of an isolated rat heart followed by reperfusion (30 min) were reproduced. The selective δ2-opioid receptor agonist deltorphin II (0.12 mg/kg and 152 nmol/liter) was administered intravenously 5 min before reperfusion in vivo or added to the perfusion solution at the beginning of reperfusion of the isolated heart. The peripheral opioid receptor antagonist naloxone methiodide and δ2-opioid receptor antagonist naltriben were used in doses of 5 and 0.3 mg/kg, respectively. It was found that the infarct-limiting effect of deltorphin II is associated with the activation of δ2-opioid receptors. We have demonstrated that deltorphin II can improve the recovery of the contractility of the isolated heart after total ischemia.


Subject(s)
Myocardial Reperfusion Injury , Rats, Wistar , Receptors, Opioid, delta , Animals , Male , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/metabolism , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Oligopeptides/pharmacology , Myocardial Contraction/drug effects , Heart/drug effects , Narcotic Antagonists/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Infarction/drug therapy , Myocardium/metabolism
6.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686853

ABSTRACT

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Subject(s)
Butyrates , Cardiotonic Agents , Myocardial Contraction , Vasodilation , Vasodilator Agents , Ventricular Function, Left , Animals , Male , Myocardial Contraction/drug effects , Ventricular Function, Left/drug effects , Vasodilation/drug effects , Cardiotonic Agents/pharmacology , Butyrates/pharmacology , Vasodilator Agents/pharmacology , Isolated Heart Preparation , Rats , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Cardiac Output/drug effects , Stroke Volume/drug effects , Rats, Wistar , Coronary Vessels/drug effects , Coronary Vessels/physiopathology , Dose-Response Relationship, Drug , Disease Models, Animal , Rats, Sprague-Dawley
7.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38555048

ABSTRACT

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Subject(s)
Calcium , Myocytes, Cardiac , Pyruvaldehyde , Rats, Wistar , Animals , Pyruvaldehyde/toxicity , Rats , Calcium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Guanidines/pharmacology , Calcium Channels, L-Type/metabolism , Heart/drug effects , Myocardium/metabolism , Verapamil/pharmacology , Myocardial Contraction/drug effects
8.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38516812

ABSTRACT

Interconnected mechanisms of ischemia and reperfusion (IR) has increased the interest in IR in vitro experiments using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We developed a whole-cell computational model of hiPSC-CMs including the electromechanics, a metabolite-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and an oxygen dynamics formulation to investigate IR mechanisms. Moreover, we simulated the effect and action mechanism of levosimendan, which recently showed promising anti-arrhythmic effects in hiPSC-CMs in hypoxia. The model was validated using hiPSC-CM and in vitro animal data. The role of SERCA in causing relaxation dysfunction in IR was anticipated to be comparable to its function in sepsis-induced heart failure. Drug simulations showed that levosimendan counteracts the relaxation dysfunction by utilizing a particular Ca2+-sensitizing mechanism involving Ca2+-bound troponin C and Ca2+ flux to the myofilament, rather than inhibiting SERCA phosphorylation. The model demonstrates extensive characterization and promise for drug development, making it suitable for evaluating IR therapy strategies based on the changing levels of cardiac metabolites, oxygen and molecular pathways.


Subject(s)
Calcium , Computer Simulation , Induced Pluripotent Stem Cells , Myocardial Contraction , Myocytes, Cardiac , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Simendan , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Induced Pluripotent Stem Cells/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Simendan/pharmacology , Simendan/therapeutic use , Myocardial Contraction/drug effects , Calcium/metabolism , Cell Hypoxia/drug effects , Oxygen/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Animals , Models, Biological
9.
J Med Chem ; 67(10): 7859-7869, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38451215

ABSTRACT

Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 µM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.


Subject(s)
Myocardial Contraction , Troponin , Animals , Myocardial Contraction/drug effects , Rats , Troponin/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Rats, Sprague-Dawley , Humans , Structure-Activity Relationship
10.
Hypertens Res ; 47(5): 1350-1361, 2024 May.
Article in English | MEDLINE | ID: mdl-38418900

ABSTRACT

The treatment of hypertensive patients with losartan is very common. Despite the reduction in blood pressure, its effects on cardiac contractility and sympathetic autonomic drive are still controversial. In turn, aerobic physical training (APT) also presents an important therapeutic option, providing significant improvements in cardiovascular autonomic control, however little is known about its effects on cardiac contractility, especially when associated with losartan. Therefore, we investigated in spontaneously hypertensive rats (SHR) the effects of losartan and APT on cardiac hemodynamics and functionality, with emphasis on autonomic tonic balance and cardiac contractility. Sixty-four SHR (18 weeks old) were divided into four groups (N = 16): vehicle; vehicle submitted to APT through swimming for 12 weeks; treated with losartan (5 mg·kg-1·d-1) for 12 weeks; and treated with losartan associated with APT. The groups were submitted to cardiac morphological and functional analysis by echocardiography; double blockade of cardiac autonomic receptors with atropine and propranolol; and coronary bed reactivity and left ventricular contractility analyses by the Langendorff technique. APT improved functional parameters and autonomic balance by reducing sympathetic drive and/or increasing vagal drive. In contrast, it promoted a concentric remodeling of the left ventricle (LV). Treatment with losartan reduced sympathetic autonomic drive and cardiac morphological parameters, but there were no significant gains in cardiac functionality and contractility. When combined, the concentric remodeling of the LV to APT was abolished and gains in cardiac functionality and contractility were observed. Our findings suggest that the effects of losartan and APT are complementary and should be applied together in the treatment of hypertension. In spontaneously hypertensive rats, the combination of aerobic physical training with losartan treatment was crucial to greater blood pressure reductions and an increase in left ventricular contractility. Furthermore, losartan treatment prevented the concentric left ventricular remodeling caused by aerobic physical training.


Subject(s)
Antihypertensive Agents , Hypertension , Losartan , Myocardial Contraction , Physical Conditioning, Animal , Rats, Inbred SHR , Animals , Losartan/pharmacology , Losartan/therapeutic use , Myocardial Contraction/drug effects , Hypertension/drug therapy , Hypertension/physiopathology , Male , Physical Conditioning, Animal/physiology , Rats , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects
12.
Anesthesiology ; 139(2): 122-141, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37094103

ABSTRACT

BACKGROUND: Conflicting evidence exists regarding the risks and benefits of inotropic therapies during cardiac surgery, and the extent of variation in clinical practice remains understudied. Therefore, the authors sought to quantify patient-, anesthesiologist-, and hospital-related contributions to variation in inotrope use. METHODS: In this observational study, nonemergent adult cardiac surgeries using cardiopulmonary bypass were reviewed across a multicenter cohort of academic and community hospitals from 2014 to 2019. Patients who were moribund, receiving mechanical circulatory support, or receiving preoperative or home inotropes were excluded. The primary outcome was an inotrope infusion (epinephrine, dobutamine, milrinone, dopamine) administered for greater than 60 consecutive min intraoperatively or ongoing upon transport from the operating room. Institution-, clinician-, and patient-level variance components were studied. RESULTS: Among 51,085 cases across 611 attending anesthesiologists and 29 hospitals, 27,033 (52.9%) cases received at least one intraoperative inotrope, including 21,796 (42.7%) epinephrine, 6,360 (12.4%) milrinone, 2,000 (3.9%) dobutamine, and 602 (1.2%) dopamine (non-mutually exclusive). Variation in inotrope use was 22.6% attributable to the institution, 6.8% attributable to the primary attending anesthesiologist, and 70.6% attributable to the patient. The adjusted median odds ratio for the same patient receiving inotropes was 1.73 between 2 randomly selected clinicians and 3.55 between 2 randomly selected institutions. Factors most strongly associated with increased likelihood of inotrope use were institutional medical school affiliation (adjusted odds ratio, 6.2; 95% CI, 1.39 to 27.8), heart failure (adjusted odds ratio, 2.60; 95% CI, 2.46 to 2.76), pulmonary circulation disorder (adjusted odds ratio, 1.72; 95% CI, 1.58 to 1.87), loop diuretic home medication (adjusted odds ratio, 1.55; 95% CI, 1.42 to 1.69), Black race (adjusted odds ratio, 1.49; 95% CI, 1.32 to 1.68), and digoxin home medication (adjusted odds ratio, 1.48; 95% CI, 1.18 to 1.86). CONCLUSIONS: Variation in inotrope use during cardiac surgery is attributable to the institution and to the clinician, in addition to the patient. Variation across institutions and clinicians suggests a need for future quantitative and qualitative research to understand variation in inotrope use affecting outcomes and develop evidence-based, patient-centered inotrope therapies.


Subject(s)
Cardiac Surgical Procedures , Cardiotonic Agents , Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Myocardial Contraction/drug effects , Cardiotonic Agents/therapeutic use , Epinephrine/therapeutic use , Dopamine/therapeutic use , Dobutamine/therapeutic use , Milrinone/therapeutic use , Intraoperative Care
13.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902177

ABSTRACT

Ergotamine (2'-methyl-5'α-benzyl-12'-hydroxy-3',6',18-trioxoergotaman) is a tryptamine-related alkaloid from the fungus Claviceps purpurea. Ergotamine is used to treat migraine. Ergotamine can bind to and activate several types of 5-HT1-serotonin receptors. Based on the structural formula of ergotamine, we hypothesized that ergotamine might stimulate 5-HT4-serotonin receptors or H2-histamine receptors in the human heart. We observed that ergotamine exerted concentration- and time-dependent positive inotropic effects in isolated left atrial preparations in H2-TG (mouse which exhibits cardiac-specific overexpression of the human H2-histamine receptor). Similarly, ergotamine increased force of contraction in left atrial preparations from 5-HT4-TG (mouse which exhibits cardiac-specific overexpression of the human 5-HT4-serotonin receptor). An amount of 10 µM ergotamine increased the left ventricular force of contraction in isolated retrogradely perfused spontaneously beating heart preparations of both 5-HT4-TG and H2-TG. In the presence of the phosphodiesterase inhibitor cilostamide (1 µM), ergotamine 10 µM exerted positive inotropic effects in isolated electrically stimulated human right atrial preparations, obtained during cardiac surgery, that were attenuated by 10 µM of the H2-histamine receptor antagonist cimetidine, but not by 10 µM of the 5-HT4-serotonin receptor antagonist tropisetron. These data suggest that ergotamine is in principle an agonist at human 5-HT4-serotonin receptors as well at human H2-histamine receptors. Ergotamine acts as an agonist on H2-histamine receptors in the human atrium.


Subject(s)
Ergotamine , Heart Atria , Receptors, Histamine H4 , Receptors, Serotonin, 5-HT4 , Serotonin 5-HT4 Receptor Agonists , Animals , Humans , Mice , Ergotamine/pharmacology , Heart Atria/drug effects , Heart Atria/metabolism , Myocardial Contraction/drug effects , Receptors, Histamine/metabolism , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/pharmacology , Receptors, Histamine H4/agonists
14.
Circulation ; 146(20): 1518-1536, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36102189

ABSTRACT

BACKGROUND: Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as a promising strategy to remuscularize injured myocardium. However, it is insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails, and the underlying molecular mechanisms are not well studied. METHODS: To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes. RESULTS: We identified TBX20 (T-box transcription factor 20) as the top cardiac gene that is unable to be activated by the MGT133 reprogramming cocktail (MEF2C, GATA4, TBX5, and miR-133). TBX20 is required for normal heart development and cardiac function in adult cardiomyocytes, yet its role in cardiac reprogramming remains undefined. We show that the addition of TBX20 to the MGT133 cocktail (MGT+TBX20) promotes cardiac reprogramming and activates genes associated with cardiac contractility, maturation, and ventricular heart. Human induced cardiomyocytes produced with MGT+TBX20 demonstrated more frequent beating, calcium oscillation, and higher energy metabolism as evidenced by increased mitochondria numbers and mitochondrial respiration. Mechanistically, comprehensive transcriptomic, chromatin occupancy, and epigenomic studies revealed that TBX20 colocalizes with MGT reprogramming factors at cardiac gene enhancers associated with heart contraction, promotes chromatin binding and co-occupancy of MGT factors at these loci, and synergizes with MGT for more robust activation of target gene transcription. CONCLUSIONS: TBX20 consolidates MGT cardiac reprogramming factors to activate cardiac enhancers to promote cardiac cell fate conversion. Human induced cardiomyocytes generated with TBX20 showed enhanced cardiac function in contractility and mitochondrial respiration.


Subject(s)
Cardiovascular Agents , Cellular Reprogramming , Mitochondria , Myocardial Contraction , Myocytes, Cardiac , T-Box Domain Proteins , Humans , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Chromatin/genetics , Chromatin/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/physiology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/physiology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Myocardial Contraction/drug effects , Myocardial Contraction/genetics , Myocardial Contraction/physiology , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use
15.
Eur J Pharmacol ; 925: 175014, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35537490

ABSTRACT

The purpose of this study was to investigate the effects of oxymatrine and matrine on integrated cardiac function in rats using pressure-volume loop analysis. A pressure-volume loop catheter was advanced into the left ventricle in anesthetized rats. Steady-state hemodynamic and load-independent parameters were recorded before and after oxymatrine or matrine injection. Oxymatrine (200 mg/kg) and matrine (50, 100 mg/kg) significantly increased the preload recruitable stroke work, slope of maximal systolic pressure increase (dP/dtmax) - end-diastolic volume relationship, end-systolic elastance and volume axis intercept (V0), which are load-independent parameters. Furthermore, the observed increased cardiac efficiency, along with the decreased ventricular arterial coupling, pressure volume area and potential energy, reflect improved mechanoenergetics in oxymatrine (200 mg/kg) and matrine (25, 50 or 100 mg/kg) treated rats respectively. In addition, matrine (25, 50 mg/kg) decreased end-systolic volume and end-diastolic volume, and increased ejection fraction; matrine at 100 mg/kg further decreased end-systolic volume, end-diastolic volume, stroke volume and stroke work, shortened the time constant of left ventricular pressure decay, and increased dP/dtmax, and heart rate. These results suggest that both oxymatrine and matrine enhance left ventricular contractility and improve cardiac mechanical function. As the dose of matrine was much lower than that of oxymatrine, the effect of matrine on myocardial contractility was stronger than that of oxymatrine.


Subject(s)
Alkaloids , Heart Ventricles , Myocardial Contraction , Quinolizines , Ventricular Function, Left , Alkaloids/pharmacology , Animals , Heart Ventricles/drug effects , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Quinolizines/pharmacology , Rats , Stroke Volume , Ventricular Function, Left/drug effects , Matrines
16.
PLoS One ; 17(2): e0264165, 2022.
Article in English | MEDLINE | ID: mdl-35176110

ABSTRACT

BACKGROUND: Myocardial dysfunction is a major cause of poor outcomes in the post-cardiac arrest period. Omecamtiv mecarbil (OM) is a selective small molecule activator of cardiac myosin that prolongs myocardial systole and increases stroke volume without apparent effects on myocardial oxygen demand. OM administration is safe and improves cardiac function in patients with acute heart failure. Whether OM improves post-resuscitation myocardial dysfunction remains unclear. This study investigated the effect of OM treatment on post-resuscitation myocardial dysfunction and outcomes. METHODS AND RESULTS: Adult male rats were resuscitated after 9.5 min of asphyxia-induced cardiac arrest. OM and normal saline was continuously intravenously infused after return of spontaneous circulation (ROSC) at 0.25 mg/kg/h for 4 h in the experimental group and control group, respectively (n = 20 in each group). Hemodynamic parameters were measured hourly and monitored for 4 h after cardiac arrest. Recovery of neurological function was evaluated by neurological functioning scores (0-12; favorable: 11-12) for rats 72 h after cardiac arrest. OM treatment prolonged left ventricular ejection time and improved post-resuscitation cardiac output. Post-resuscitation heart rate and left ventricular systolic function (dp/dt40) were not different between groups. Kaplan-Meier analysis showed non-statistically higher 72-h survival in the OM group (72.2% [13/18] and 58.8% [10/17], p = 0.386). The OM group had a higher chance of having favorable neurological outcomes in surviving rats 72 h after cardiac arrest (84.6% [11/13] vs. 40% [4/10], p = 0.026). The percentage of damaged neurons was lower in the OM group in a histology study at 72 h after cardiac arrest (55.5±2.3% vs. 76.2±10.2%, p = 0.004). CONCLUSIONS: OM treatment improved post-resuscitation myocardial dysfunction and neurological outcome in an animal model. These findings support further pre-clinical studies to improve outcomes in post-cardiac arrest care.


Subject(s)
Cardiopulmonary Resuscitation/adverse effects , Heart Arrest/complications , Myocardial Contraction/drug effects , Nervous System Diseases/prevention & control , Urea/analogs & derivatives , Ventricular Dysfunction/prevention & control , Ventricular Function, Left/drug effects , Animals , Male , Nervous System Diseases/etiology , Rats , Rats, Wistar , Stroke Volume , Urea/pharmacology , Ventricular Dysfunction/etiology
17.
Cardiovasc Res ; 118(2): 517-530, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33705529

ABSTRACT

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM. Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM. METHODS AND RESULTS: Human cardiomyocytes derived from control-induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes. The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation. Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects. Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy. CONCLUSION: This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation. These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing.


Subject(s)
Cardiomyopathy, Hypertrophic/drug therapy , Enzyme Inhibitors/pharmacology , Hypertrophy, Left Ventricular/drug therapy , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Peroxidase/antagonists & inhibitors , Ventricular Function, Left/drug effects , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/enzymology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Disease Models, Animal , Humans , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/physiopathology , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/pathology , Male , Mice, Inbred C57BL , Mutation, Missense , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Peroxidase/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
18.
Can J Physiol Pharmacol ; 100(1): 53-60, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34428378

ABSTRACT

The Frank-Starling response of the heart is known to be mediated by nitric oxide (NO) signaling, which is regulated by reduced glutathione (GSH) and hydrogen sulfide (H2S). We hypothesized that stimulation of endogenous H2S or GSH synthesis would improve the Frank-Starling response. Wistar male rats were injected with propargylglycine (PAG; 11.3 mg/kg, 40 min, n = 12), an inhibitor of H2S-producing enzyme (cystationine-γ-lyase), and l-cysteine (121 mg/kg, 30 min, n = 20), a precursor of H2S and GSH. Pretreatment with PAG or l-cysteine separately slightly improved the pressure-volume (P-V) dependence of the isolated rat heart, but the combination of PAG and l-cysteine (n = 12) improved heart contractile activity. H2S content, Ca2+-dependent NOS activity (cNOS) activity, nitrate reductase activity, and nitrite content increased by 2, 3.83, 2.5, and 1.3 times in cardiac mitochondria, and GSH and oxidized glutathione (GSSG) levels increased by 2.24 and 1.86 times in the heart homogenates of the PAG + l-cysteine group compared with the control (all P < 0.05). Inhibition of glutathione with DL-buthionine-sulfoximine (BSO; 22.2 mg/kg, 40 min, n = 6) drastically decreased Frank-Starling response of the heart and prevented PAG + l-cysteine-induced increase of GSH and GSSG levels (BSO + PAG + l-cysteine, n = 9). Inhibition of NOS, N-nitro-l-arginine-methylester hydrochloride (l-NAME; 40 min, 27 mg/kg) abolished positive inotropy induced by PAG+l-cysteine pretreatment (l-NAME + PAG + l-cysteine, n = 7). Thus, PAG + l-cysteine administration improves the Frank-Starling response by upregulating mitochondrial H2S, glutathione, and NO synthesis, which may be a promising approach in the treatment of myocardial dysfunction.


Subject(s)
Glutathione/metabolism , Hydrogen Sulfide/metabolism , Mitochondria/metabolism , Myocardial Contraction/drug effects , Myocardium/metabolism , Nitric Oxide/metabolism , Signal Transduction/physiology , Alkynes/pharmacology , Animals , Cysteine/pharmacology , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , In Vitro Techniques , Male , Rats, Wistar , Stimulation, Chemical , Up-Regulation/drug effects
19.
J Trauma Acute Care Surg ; 92(1): 57-64, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34670961

ABSTRACT

BACKGROUND: Although 17α-ethinyl estradiol-3-sulfate (EES) reduces mortality in animal models of controlled hemorrhage, its role in a clinically relevant injury model is unknown. We assessed the impact of EES in a swine model of multiple injuries and hemorrhage. METHODS: The study was performed under Good Laboratory Practice, with 30 male uncastrated swine (25-50 kg) subjected to tibial fracture, pulmonary contusion, and 30% controlled hemorrhage for an hour. Animals were randomized to one of five EES doses: 0 (control), 0.3, 1, 3, and 5 mg/kg, administered postinjury. Subjects received no resuscitation and were observed for 6 hours or until death. Survival data were analyzed using Cox-proportional hazard regression. Left ventricular pressure-volume loops were used to derive preload recruitable stroke work as a measure of cardiac inotropy. Immediate postinjury preload recruitable stroke work values were compared with values at 1 hour post-drug administration. RESULTS: Six-hour survival for the 0, 0.3, 1, 3, and 5 mg/kg groups was 0%, 50%, 33.3%, 16.7%, and 0%, respectively. Following Cox regression, the hazard (95% confidence interval) of death was significantly reduced in the 0.3 (0.22 [0.05-0.93]) and 1 (0.24 [0.06-0.89]) mg/kg groups but not the 3 (0.49 [0.15-1.64]) and 5 (0.46 [0.14-1.47]) mg/kg groups. Mean survival time was significantly extended in the 1 mg/kg group (246 minutes) versus the 0 mg/kg group (96 minutes) (p = 0.04, t test). At 1 hour post-drug administration, inotropy was significantly higher than postinjury values in the 0.3 and 1 mg/kg groups (p = 0.003 and p < 0.001, respectively). Inotropy was unchanged in the 3 and 5 mg/kg groups but significantly depressed in the control (p = 0.022). CONCLUSION: Administration of EES even in the absence of fluid resuscitation reduces mortality and improves cardiac inotropy in a clinically relevant swine model of multiple injuries and hemorrhage. These findings support the need for a clinical trial in human trauma patients.


Subject(s)
Ethinyl Estradiol/analogs & derivatives , Multiple Trauma/complications , Shock, Hemorrhagic , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Monitoring/methods , Estrogens/analogs & derivatives , Estrogens/pharmacology , Ethinyl Estradiol/pharmacology , Male , Myocardial Contraction/drug effects , Shock, Hemorrhagic/drug therapy , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/physiopathology , Survival Analysis , Swine , Treatment Outcome
20.
Clin Exp Pharmacol Physiol ; 49(1): 84-93, 2022 01.
Article in English | MEDLINE | ID: mdl-34459025

ABSTRACT

The cardiac-specific myosin activator, omecamtiv mecarbil (OM), is an effective inotrope for treating heart failure but its effects on active force and Ca2+ kinetics in healthy and diseased myocardium remain poorly studied. We tested the effect of two concentrations of OM (0.2 and 1 µmol/L in saline) on isometric contraction and Ca-transient (CaT) in right ventricular trabeculae of healthy rats (CONT, n = 8) and rats with monocrotaline-induced pulmonary heart failure (MCT, n = 8). The contractions were obtained under preload of 75%-100% of optimal length (tension-length relationship). The 0.2 µmol/L OM did not affect the diastolic level, amplitude, or kinetics of isometric contraction and CaT, irrespective of the group of rats or preload. The 1 µmol/L OM significantly suppressed active tension-length relationships in CONT but not in MCT, while leading in both groups to a significantly prolonged relaxation. CaT time-to-peak was unaffected in CONT and MCT, but CaT decay was slightly accelerated in its early phase and considerably prolonged in its late phase to a similar extent in both groups. We conclude that the substantial prolongation of CaT decay is due to enhanced Ca2+ utilisation by troponin C mediated by the direct effect of OM on the cooperative activation of myofilaments. The lack of beneficial effect of OM in the healthy rat myocardium may be due to a relatively high level of activating Ca2+ in cells with normal Ca2+ handling, whereas the preservation of the tension-length relationship in the failing heart may relate to the diminished Ca2+ levels of sarcoplasmic reticulum.


Subject(s)
Cardiotonic Agents/therapeutic use , Heart Failure/drug therapy , Monocrotaline/pharmacology , Urea/analogs & derivatives , Animals , Dose-Response Relationship, Drug , Heart/drug effects , Heart/physiopathology , Heart Failure/chemically induced , Male , Myocardial Contraction/drug effects , Rats , Rats, Wistar , Urea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...