Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.711
Filter
1.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38733316

ABSTRACT

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Subject(s)
Apoptosis , Inflammation Mediators , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , RNA, Long Noncoding , RNA, Long Noncoding/blood , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Male , Middle Aged , Female , Inflammation Mediators/metabolism , Inflammation Mediators/blood , Cell Line , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/diagnosis , Myocardial Reperfusion Injury/genetics , Rats , Cytokines/metabolism , Cytokines/blood , Signal Transduction , Case-Control Studies , Aged , Up-Regulation
2.
BMC Med Genomics ; 17(1): 134, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764052

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) and diabetic nephropathy (DN) are common clinical co-morbidities, but they are challenging to manage and have poor prognoses. There is no research on the bioinformatics mechanisms of comorbidity, and this study aims to investigate such mechanisms. METHODS: We downloaded the AMI data (GSE66360) and DN datasets (GSE30528 and GSE30529) from the Gene Expression Omnibus (GEO) platform. The GSE66360 dataset was divided into two parts: the training set and the validation set, and GSE30529 was used as the training set and GSE30528 as the validation set. After identifying the common differentially expressed genes (DEGs) in AMI and DN in the training set, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and protein-protein interaction (PPI) network construction were performed. A sub-network graph was constructed by MCODE, and 15 hub genes were screened by the Cytohubba plugin. The screened hub genes were validated, and the 15 screened hub genes were subjected to GO, KEGG, Gene MANIA analysis, and transcription factor (TF) prediction. Finally, we performed TF differential analysis, enrichment analysis, and TF and gene regulatory network construction. RESULTS: A total of 46 genes (43 up-regulated and 3 down-regulated) were identified for subsequent analysis. GO functional analysis emphasized the presence of genes mainly in the vesicle membrane and secretory granule membrane involved in antigen processing and presentation, lipopeptide binding, NAD + nucleosidase activity, and Toll-like receptor binding. The KEGG pathways analyzed were mainly in the phagosome, neutrophil extracellular trap formation, natural killer cell-mediated cytotoxicity, apoptosis, Fc gamma R-mediated phagocytosis, and Toll-like receptor signaling pathways. Eight co-expressed hub genes were identified and validated, namely TLR2, FCER1G, CD163, CTSS, CLEC4A, IGSF6, NCF2, and MS4A6A. Three transcription factors were identified and validated in AMI, namely NFKB1, HIF1A, and SPI1. CONCLUSIONS: Our study reveals the common pathogenesis of AMI and DN. These common pathways and hub genes may provide new ideas for further mechanistic studies.


Subject(s)
Diabetic Nephropathies , Myocardial Infarction , Transcription Factors , Myocardial Infarction/genetics , Humans , Diabetic Nephropathies/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Interaction Maps , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Gene Ontology , Gene Expression Regulation , Databases, Genetic
3.
PLoS One ; 19(5): e0304041, 2024.
Article in English | MEDLINE | ID: mdl-38771854

ABSTRACT

Ventricular fibrillation (VF) in acute myocardial infarction (AMI) is the main cause of deaths occurring in the acute phase of an ischemic event. Although it is known that genetics may play an important role in this pathology, the possible role of long non-coding RNAs (lncRNA) has never been studied. Therefore, the aim of this work is to study the expression of 10 lncRNAs in patients with and without VF in AMI. For this purpose, the expression of CDKN2B-AS1, KCNQ1OT1, LIPCAR, MALAT1, MIAT, NEAT1, SLC16A1-AS1, lnc-TK2-4:2, TNFRSF14-AS1, and UCA1 were analyzed. After the analysis and Bonferroni correction, the lncRNA CDKN2B-AS showed a statistical significance lower expression (P values of 2.514 x 10-5). In silico analysis revealed that six proteins could be related to the possible effect of lncRNA CDKN2B-AS1: AGO3, PLD4, POU4F1, ZNF26, ZNF326 and ZNF431. These in silico proteins predicted to have a low cardiac expression, although there is no literature indicating a potential relationship with VF in AMI. Thus, the lncRNA CDKN2B-AS1 shows a significant lower expression in patients with VF in AMI vs patients without VF in AMI. Literature data suggest that the role of CDKN2B1-AS is related to the miR-181a/SIRT1 pathway.


Subject(s)
Down-Regulation , Myocardial Infarction , RNA, Long Noncoding , Ventricular Fibrillation , Humans , RNA, Long Noncoding/genetics , Myocardial Infarction/genetics , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Down-Regulation/genetics , Male , Ventricular Fibrillation/genetics , Female , Middle Aged , Aged
4.
PLoS One ; 19(5): e0301112, 2024.
Article in English | MEDLINE | ID: mdl-38771893

ABSTRACT

BACKGROUND: Previous studies revealed that sleep disorders are potential risk factors for cardiovascular diseases, such as obstructive sleep apnea and rapid eye movement (REM) sleep behavior disorder (RBD). However, the causal associations between RBD and cardiovascular diseases remained unknown. MATERIALS AND METHODS: We used the latest and largest summary-level genome-wide association studies of RBD, stroke and its subtypes, coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF) to select genetic variants as the instrumental variables. Mendelian randomization (MR) analysis was performed to test the causal associations between RBD and the cardiovascular diseases above. Inverse variance weighted method was used as the main analysis. RESULTS: After multiple comparisons, genetically predicted RBD was significantly associated with the risk of HF [odds ratio (OR) = 1.033, 95% CI 1.013-1.052, p = 0.001]. Leave-one-out analysis further supported the robustness of the causal association. Furthermore, we identified a suggestive association between genetically predicted MI and RBD (OR = 0.716, 95% CI 0.546-0.940, p = 0.016). However, in our study no associations were identified of RBD with CAD or stroke and its subtypes. CONCLUSION: Our study highlighted the potential associations between RBD and cardiovascular diseases at genetic level, including HF and MI. More studies were required to clarify the biological mechanisms involved the associations.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Mendelian Randomization Analysis , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/genetics , Cardiovascular Diseases/genetics , Myocardial Infarction/genetics , Risk Factors , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Heart Failure/genetics , Stroke/genetics
5.
Front Endocrinol (Lausanne) ; 15: 1376464, 2024.
Article in English | MEDLINE | ID: mdl-38765955

ABSTRACT

Background: In recent years, several studies have explored the effect of metformin on myocardial infarction (MI), but whether metformin has an improvement effect in patients with MI is controversial. This study was aimed to investigate the causal relationship between metformin and MI using Mendelian randomization (MR) analysis. Methods: The genome-wide significant (P<5×10-8) single-nucleotide polymorphisms (SNPs) in patients with metformin and patients with MI were screened from the Open genome-wide association study (GWAS) project as instrumental variables (IVs). The study outcomes mainly included MI, old MI, acute MI, acute transmural MI of inferior wall, and acute transmural MI of anterior wall. The inverse variance weighted (IVW) method was applied to assess the main causal effect, and weighted median, simple mode, weighted mode methods, and MR-Egger regression were auxiliary applied for supplementary proof. The causal relationship between metformin and MI was assessed using odds ratios (OR) and 95% confidence intervals (95% CI). A leave-one-out method was used to explore the effect of individual SNPs on the results of IVW analyses, and a funnel plot was used to analyze the potential bias of the study results, thus ensuring the robustness of the results. Results: In total, 16, 84, 39, 26, and 34 SNPs were selected as IVs to assess the genetic association between metformin and outcomes of MI, old MI, acute MI, acute transmural MI of inferior wall, and acute transmural MI of anterior wall, respectively. Treatment with metformin does not affect the risk of acute transmural MI of anterior wall at the genetic level (P>0.05; OR for inverse variance weighted was 1.010). In the cases of MI, old MI, acute MI, and acute transmural MI of inferior wall, metformin may even be a risk factor for patients (P<0.05; ORs for inverse variance weighted were 1.078, 1.026, 1.022 and 1.018 respectively). There was no horizontal pleiotropy or heterogeneity among IVs. The results were stable when removing the SNPs one by one. Conclusion: Metformin is not protective against the risk of myocardial infarction in patients and may even be a risk factor for MI, old MI, acute MI, and acute transmural MI of inferior wall.


Subject(s)
Genome-Wide Association Study , Hypoglycemic Agents , Mendelian Randomization Analysis , Metformin , Myocardial Infarction , Polymorphism, Single Nucleotide , Metformin/therapeutic use , Humans , Myocardial Infarction/genetics , Hypoglycemic Agents/therapeutic use , Causality
6.
Aging (Albany NY) ; 16(9): 8361-8377, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713173

ABSTRACT

BACKGROUND: Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing evidence suggests that the role of energy production within the mitochondria strongly links to the development and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet been comprehensively analyzed from the aspect of cardiovascular medicine. MATERIALS AND METHODS: 8 transcriptome profiles curated from the GEO database were integrated, from which a diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, with which we further validated the expression of the key contributor gene to the model. Finally, we explored the immune implications of the key contributor gene. RESULTS: A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further transcriptome analysis revealed that its high expression was correlated with significant potential immunological implications in the infiltration of many immune cell types, especially monocyte. CONCLUSIONS: We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the key contributor gene in animal modeling. We also analyzed the effects on the immune system for its overexpression in AMI.


Subject(s)
Biomarkers , Computational Biology , Myocardial Infarction , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Animals , Biomarkers/metabolism , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Transcriptome , Disease Models, Animal , Machine Learning , Mice , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Male , Gene Expression Profiling
7.
J Am Heart Assoc ; 13(10): e032248, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761068

ABSTRACT

BACKGROUND: Carriers of CYP2C19 loss-of-function alleles have increased adverse events after percutaneous coronary intervention, but limited data are available for older patients. We aimed to evaluate the prognostic impact of CYP2C19 genotypes on clinical outcomes in older patients after percutaneous coronary intervention. METHODS AND RESULTS: The study included 1201 older patients (aged ≥75 years) who underwent percutaneous coronary intervention and received clopidogrel-based dual antiplatelet therapy in South Korea. Patients were grouped on the basis of CYP2C19 genotypes. The primary outcome was 3-year major adverse cardiac events, defined as a composite of cardiac death, myocardial infarction, and stent thrombosis. Older patients were grouped into 3 groups: normal metabolizer (36.6%), intermediate metabolizer (48.1%), and poor metabolizer (15.2%). The occurrence of the primary outcome was significantly different among the groups (3.1, 7.0, and 6.2% in the normal metabolizer, intermediate metabolizer, and poor metabolizer groups, respectively; P=0.02). The incidence rate of all-cause death at 3 years was greater in the intermediate metabolizer and poor metabolizer groups (8.1% and 9.2%, respectively) compared with that in the normal metabolizer group (3.5%, P=0.03) without significant differences in major bleeding. In the multivariable analysis, the intermediate metabolizer and poor metabolizer groups were independent predictors of 3-year clinical outcomes. CONCLUSIONS: In older patients, the presence of any CYP2C19 loss-of-function allele was found to be predictive of a higher incidence of major adverse cardiac events within 3 years following percutaneous coronary intervention. This finding suggests a need for further investigation into an optimal antiplatelet strategy for older patients. REGISTRATION: URL: https://clinicaltrials.gov. Identifier: NCT04734028.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Genotype , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Humans , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Percutaneous Coronary Intervention/adverse effects , Male , Female , Aged , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/adverse effects , Republic of Korea/epidemiology , Clopidogrel/pharmacokinetics , Clopidogrel/therapeutic use , Clopidogrel/adverse effects , Aged, 80 and over , Prognosis , Treatment Outcome , Time Factors , Coronary Artery Disease/genetics , Coronary Artery Disease/surgery , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , Risk Factors , Dual Anti-Platelet Therapy/adverse effects , Risk Assessment , Age Factors , Myocardial Infarction/genetics , Myocardial Infarction/epidemiology , Pharmacogenomic Variants
8.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700644

ABSTRACT

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Subject(s)
Heart , Regeneration , Syndecan-4 , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Syndecan-4/genetics , Syndecan-4/metabolism , Regeneration/genetics , Heart/physiology , Heart/physiopathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Cell Proliferation/genetics , Myocardium/metabolism , Myocardium/pathology , Gene Knockdown Techniques
9.
Sci Rep ; 14(1): 9991, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693202

ABSTRACT

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Subject(s)
Endothelial Cells , Gene Expression Profiling , Myocardial Infarction , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Transcriptome , Male , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Disease Models, Animal , Cell Proliferation , Cell Movement/genetics
10.
BMC Cardiovasc Disord ; 24(1): 236, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705985

ABSTRACT

BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.


Subject(s)
Apoptosis , Cell Hypoxia , MicroRNAs , Myocytes, Cardiac , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt , Signal Transduction , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , MicroRNAs/genetics , MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins c-akt/metabolism , Humans , Cell Line , Animals , Case-Control Studies , Phosphatidylinositol 3-Kinase/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Rats , Male , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/enzymology , Gene Expression Regulation , Middle Aged , Female
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 666-674, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708499

ABSTRACT

OBJECTIVE: To investigate the changes of mitochondrial respiratory function during myocardial fibrosis in mice with myocardial infarction (MI) and its correlation with the increase of glycolytic flux. METHODS: Forty C57BL/6N mice were randomized into two equal groups to receive sham operation or ligation of the left anterior descending coronary artery to induce acute MI. At 28 days after the operation, 5 mice from each group were euthanized and left ventricular tissue samples were collected for transcriptomic sequencing. FPKM method was used to calculate gene expression levels to identify the differentially expressed genes (DEGs) in MI mice, which were analyzed using GO and KEGG databases to determine the pathways affecting the disease process. Heat maps were drawn to show the differential expressions of the pathways and the related genes in the enrichment analysis. In primary cultures of neonatal mouse cardiac fibroblasts (CFs), the changes in mitochondrial respiration and glycolysis levels in response to treatment with the pro-fibrotic agonist TGF-ß1 were analyzed using Seahorse experiment. RESULTS: The mouse models of MI showed significantly increased diastolic and systolic left ventricular diameter (P < 0.05) and decreased left ventricular ejection fraction (P < 0.0001). A total of 124 up-regulated and 106 down-regulated DEGs were identified in the myocardial tissues of MI mice, and GO and KEGG enrichment analysis showed that these DEGs were significantly enriched in fatty acid metabolism, organelles and other metabolic pathways and in the mitochondria. Heat maps revealed fatty acid beta oxidation, mitochondrial dysfunction and increased glycolysis levels in MI mice. In the primary culture of CFs, treatment with TGF-ß1 significantly reduced the basal and maximum respiratory levels and increased the basal and maximum glycolysis levels (P < 0.0001). CONCLUSION: During myocardial fibrosis, energy metabolism remodeling occurs in the CFs, manifested by lowered mitochondrial function and increased energy generation through glycolysis.


Subject(s)
Energy Metabolism , Fibrosis , Mice, Inbred C57BL , Myocardial Infarction , Animals , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Mitochondria/metabolism , Glycolysis , Gene Expression Profiling , Transcriptome , Fibroblasts/metabolism , Male , Transforming Growth Factor beta1/metabolism
12.
Sci Rep ; 14(1): 10175, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702356

ABSTRACT

Acute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.


Subject(s)
Metabolomics , Myocardial Infarction , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/blood , Middle Aged , Male , Female , Metabolomics/methods , Aged , Adult , Transcriptome , Biomarkers/metabolism , Biomarkers/blood , Leukocytes, Mononuclear/metabolism , Gene Expression Profiling
13.
Front Immunol ; 15: 1308978, 2024.
Article in English | MEDLINE | ID: mdl-38571952

ABSTRACT

Objective: Acute myocardial infarction (AMI) is a severe cardiovascular disease that threatens human life and health globally. N6-methyladenosine (m6A) governs the fate of RNAs via m6A regulators. Nevertheless, how m6A regulators affect AMI remains to be deciphered. To solve this issue, an integrative analysis of m6A regulators in AMI was conducted. Methods: We acquired transcriptome profiles (GSE59867, GSE48060) of peripheral blood samples from AMI patients and healthy controls. Key m6A regulators were used for LASSO, and consensus clustering was conducted. Next, the m6A score was also computed. Immune cell infiltration, ferroptosis, and oxidative stress were evaluated. In-vitro and in-vivo experiments were conducted to verify the role of the m6A regulator ALKBH5 in AMI. Results: Most m6A regulators presented notable expression alterations in circulating cells of AMI patients versus those of controls. Based on key m6A regulators, we established a gene signature and a nomogram for AMI diagnosis and risk prediction. AMI patients were classified into three m6A clusters or gene clusters, respectively, and each cluster possessed the unique properties of m6A modification, immune cell infiltration, ferroptosis, and oxidative stress. Finally, the m6A score was utilized to quantify m6A modification patterns. Therapeutic targeting of ALKBH5 greatly alleviated apoptosis and intracellular ROS in H/R-induced H9C2 cells and NRCMs. Conclusion: Altogether, our findings highlight the clinical significance of m6A regulators in the diagnosis and risk prediction of AMI and indicate the critical roles of m6A modification in the regulation of immune cell infiltration, ferroptosis, and oxidative stress.


Subject(s)
Ferroptosis , Myocardial Infarction , Humans , Clinical Relevance , Myocardial Infarction/genetics , Apoptosis/genetics , Cluster Analysis , Ferroptosis/genetics
14.
PLoS One ; 19(4): e0300513, 2024.
Article in English | MEDLINE | ID: mdl-38598469

ABSTRACT

BACKGROUND: Numerous observational studies have investigated on the correlation of whole, semi-skimmed, and skimmed milk with coronary artery disease (CAD) and myocardial infarction (MI) risk; However, no consensus has been reached and evidence on any causal links between these exposures and outcomes remains unclear. This study aimed to conduct univariate and multivariate Mendelian randomization (MR) analyses, using publicly released genome-wide association study summary statistics (GWAS) from the IEU GWAS database, to ascertain the causal association of milk with various fat content with CAD and MI risk. METHODS: For the exposure data, 29, 15, and 30 single-nucleotide polymorphisms for whole milk, semi-skimmed milk, and skimmed milk, respectively, obtained from 360,806 Europeans, were used as instrumental variables. CAD and MI comprised 141,217 and 395,795 samples, respectively. We used inverse variance weighted (IVW), weighted median, MR-Egger regression, and MR Pleiotropy Residual Sum and Outlier analyses to determine whether pleiotropy and heterogeneity could skew the MR results. Sensitivity tests were conducted to verify the robustness of the results. RESULTS: After adjusting for false discovery rates (FDR), we discovered proof that skimmed milk intake is a genetically predicted risk factor for CAD (odds ratio [OR] = 5.302; 95% confidence interval [CI] 2.261-12.432; P < 0.001; FDR-corrected P < 0.001) and MI (OR = 2.287; 95% CI 1.218-4.300; P = 0.010; FDR-corrected P = 0.009). Most sensitivity assessments yielded valid results. Multivariable MR for CAD and MI produced results consistent with those obtained using the IVW method. There was no causal relationship between whole or semi-skimmed milk, and CAD or MI. CONCLUSION: Our findings indicate that the consumption of skimmed milk may increase the risk of CAD and MI. This evidence may help inform dietary recommendations for preventing cardiovascular disease. Further studies are required to elucidate the underlying mechanisms.


Subject(s)
Blood Group Antigens , Coronary Artery Disease , Myocardial Infarction , Humans , Animals , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Milk , Myocardial Infarction/epidemiology , Myocardial Infarction/genetics , Antibodies
15.
Front Immunol ; 15: 1363517, 2024.
Article in English | MEDLINE | ID: mdl-38562923

ABSTRACT

Background: Treatment of heart failure post myocardial infarction (post-MI HF) with mesenchymal stem/stromal cells (MSCs) holds great promise. Nevertheless, 2-dimensional (2D) GMP-grade MSCs from different labs and donor sources have different therapeutic efficacy and still in a low yield. Therefore, it is crucial to increase the production and find novel ways to assess the therapeutic efficacy of MSCs. Materials and methods: hUC-MSCs were cultured in 3-dimensional (3D) expansion system for obtaining enough cells for clinical use, named as 3D MSCs. A post-MI HF mouse model was employed to conduct in vivo and in vitro experiments. Single-cell and bulk RNA-seq analyses were performed on 3D MSCs. A total of 125 combination algorithms were leveraged to screen for core ligand genes. Shinyapp and shinycell workflows were used for deploying web-server. Result: 3D GMP-grade MSCs can significantly and stably reduce the extent of post-MI HF. To understand the stable potential cardioprotective mechanism, scRNA-seq revealed the heterogeneity and division-of-labor mode of 3D MSCs at the cellular level. Specifically, scissor phenotypic analysis identified a reported wound-healing CD142+ MSCs subpopulation that is also associated with cardiac protection ability and CD142- MSCs that is in proliferative state, contributing to the cardioprotective function and self-renewal, respectively. Differential expression analysis was conducted on CD142+ MSCs and CD142- MSCs and the differentially expressed ligand-related model was achieved by employing 125 combination algorithms. The present study developed a machine learning predictive model based on 13 ligands. Further analysis using CellChat demonstrated that CD142+ MSCs have a stronger secretion capacity compared to CD142- MSCs and Flow cytometry sorting of the CD142+ MSCs and qRT-PCR validation confirmed the significant upregulation of these 13 ligand factors in CD142+ MSCs. Conclusion: Clinical GMP-grade 3D MSCs could serve as a stable cardioprotective cell product. Using scissor analysis on scRNA-seq data, we have clarified the potential functional and proliferative subpopulation, which cooperatively contributed to self-renewal and functional maintenance for 3D MSCs, named as "division of labor" mode of MSCs. Moreover, a ligand model was robustly developed for predicting the secretory efficacy of MSCs. A user-friendly web-server and a predictive model were constructed and available (https://wangxc.shinyapps.io/3D_MSCs/).


Subject(s)
Heart Failure , Myocardial Infarction , Mice , Animals , Ligands , Myocardial Infarction/genetics , Heart , Heart Failure/etiology , Heart Failure/therapy , Stromal Cells
16.
Cell Death Dis ; 15(4): 263, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615011

ABSTRACT

Abnormal cardiac fibrosis is the main pathological change of post-myocardial infarction (MI) heart failure. Although the E3 ubiquitin ligase FBXL8 is a key regulator in the cell cycle, cell proliferation, and inflammation, its role in post-MI ventricular fibrosis and heart failure remains unknown. FBXL8 was primarily expressed in cardiac fibroblasts (CFs) and remarkably decreased in CFs treated by TGFß and heart subjected to MI. The echocardiography and histology data suggested that adeno-associated viruses (AAV9)-mediated FBXL8 overexpression had improved cardiac function and ameliorated post-MI cardiac fibrosis. In vitro, FBXL8 overexpression prevented TGFß-induced proliferation, migration, contraction, and collagen secretion in CFs, while knockdown of FBXL8 demonstrated opposite effects. Mechanistically, FBXL8 interacted with Snail1 to promote Snail1 degradation through the ubiquitin-proteasome system and decreased the activation of RhoA. Moreover, the FBXL8ΔC3 binding domain was indispensable for Snail1 interaction and degradation. Ectopic Snail1 expression partly abolished the effects mediated by FBXL8 overexpression in CFs treated by TGFß. These results characterized the role of FBXL8 in regulating the ubiquitin-mediated degradation of Snail1 and revealed the underlying molecular mechanism of how MI up-regulated the myofibroblasts differentiation-inducer Snail1 and suggested that FBXL8 may be a potential curative target for improving post-MI cardiac function.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Proteasome Endopeptidase Complex , Myocardial Infarction/genetics , Transforming Growth Factor beta , Ubiquitins
17.
Sci Rep ; 14(1): 9274, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654053

ABSTRACT

Myocardial infarction (MI) is the leading cause of premature death. The death of cardiomyocytes (CMs) and the dysfunction of the remaining viable CMs are the main pathological factors contributing to heart failure (HF) following MI. This study aims to determine the transcriptional profile of CMs and investigate the heterogeneity among CMs under hypoxic conditions. Single-cell atlases of the heart in both the sham and MI groups were developed using single-cell data (GSE214611) downloaded from Gene Expression Omnibus (GEO) database ( https://www.ncbi.nlm.nih.gov/geo/ ). The heterogeneity among CMs was explored through various analyses including enrichment, pseudo time, and intercellular communication analysis. The marker gene of C5 was identified using differential expression analysis (DEA). Real-time polymerase chain reaction (RT-PCR), bulk RNA-sequencing dataset analysis, western blotting, immunohistochemical and immunofluorescence staining, Mito-Tracker staining, TUNEL staining, and flow cytometry analysis were conducted to validate the impact of the marker gene on mitochondrial function and cell apoptosis of CMs under hypoxic conditions. We identified a cell subcluster named C5 that exhibited a close association with mitochondrial malfunction and cellular apoptosis characteristics, and identified Slc25a4 as a significant biomarker of C5. Furthermore, our findings indicated that the expression of Slc25a4 was increased in failing hearts, and the downregulation of Slc25a4 improved mitochondrial function and reduced cell apoptosis. Our study significantly identified a distinct subcluster of CMs that exhibited strong associations with ventricular remodeling following MI. Slc25a4 served as the hub gene for C5, highlighting its significant potential as a novel therapeutic target for MI.


Subject(s)
Apoptosis , Myocardial Infarction , Myocytes, Cardiac , Single-Cell Analysis , Transcriptome , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Single-Cell Analysis/methods , Animals , Mitochondria/metabolism , Mitochondria/genetics , Male , Gene Expression Profiling/methods , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Mice
18.
Medicine (Baltimore) ; 103(17): e37952, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669402

ABSTRACT

The potential role of serum ferritin as a risk factor for myocardial infarction (MI) is controversial, necessitating a systematic exploration of the causal relationship between ferritin and MI through Mendelian randomization (MR) methods. Genetic data were derived from a genome-wide association study (GWAS), employing the inverse variance-weighted (IVW) method as the primary approach. Comprehensive sensitivity analyses were conducted to validate the robustness of the results. Evaluation of instrumental variables was performed using the F-statistic, and a meta-analysis was employed to assess the average gene-predicted effect between ferritin and MI. The MR study revealed a negative correlation between ferritin and MI. The odds ratios (ORs) in the IVW method were 0.83 [95% confidence interval (CI) = 0.72-0.97; P = .017] and 0.86 (95% CI = 0.72-1.02; P = .080). Additionally, meta-analysis consistently indicated a negative causal relationship between ferritin and MI, with no heterogeneity or horizontal pleiotropy, thereby indicating a negative correlation between ferritin levels and the risk of MI. The genetic evidence sheds light on the causal relationship between ferritin levels and MI risk, providing new perspectives for future interventions in acute myocardial infarction (AMI).


Subject(s)
Ferritins , Genome-Wide Association Study , Mendelian Randomization Analysis , Myocardial Infarction , Humans , Ferritins/blood , Myocardial Infarction/genetics , Myocardial Infarction/blood , Myocardial Infarction/epidemiology , Odds Ratio , Polymorphism, Single Nucleotide , Risk Factors
19.
Aging (Albany NY) ; 16(9): 7668-7682, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38683129

ABSTRACT

BACKGROUND: The cardiovascular effects of metformin continue to be a subject of debate within the medical community. METHODS: The Mendelian randomization (MR) study used data from genome-wide association studies (GWAS) to explore the causal association with six diseases that are associated with bimatoprost treatment and myocardial infarction, chronic heart failure, atrial fibrillation, hypertrophic and dilated cardiomyopathy, and valvular disease. Genome-wide significant single nucleotide polymorphisms (SNPs), that are associated with metformin use were selected as the instrumental variables. To determine the causal relationship between metformin use and various cardiovascular diseases, MR analysis was conducted, employing methods such as Instrumental Variable Weighting (IVW). RESULTS: The IVW analysis demonstrated a positive association between metformin treatment and the risk of myocardial infarction (OR = 22.67, 95% CI 3.22-34.01; P = 0.002). Conversely, metformin treatment exhibited a negative association with the risk of developing valvular disease (OR = 0.98, 95% CI 0.95-1.00; P = 0.046) and hypertrophic cardiomyopathy (OR = 0.01, 95% CI 0.00-0.22; P = 0.016). Multiple test correction found that metformin treatment was causally associated with the risk of both hypertrophic cardiomyopathy (PFDR = 0.048) and myocardial infarction (PFDR = 0.012). The analysis revealed limited heterogeneity in the individual results, absence of pleiotropy evidence, and indications of stability in the findings. CONCLUSION: The MR study discovered from a genetic standpoint that metformin may lower the risk of hypertrophic cardiomyopathy and valvular heart disease, yet it could elevate the risk of myocardial infarction.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Hypoglycemic Agents , Mendelian Randomization Analysis , Metformin , Polymorphism, Single Nucleotide , Metformin/therapeutic use , Metformin/adverse effects , Humans , Cardiovascular Diseases/genetics , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Myocardial Infarction/genetics
20.
J Cell Mol Med ; 28(8): e18334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661439

ABSTRACT

The genetic information of plasma total-exosomes originating from tissues have already proven useful to assess the severity of coronary artery diseases (CAD). However, plasma total-exosomes include multiple sub-populations secreted by various tissues. Only analysing the genetic information of plasma total-exosomes is perturbed by exosomes derived from other organs except the heart. We aim to detect early-warning biomarkers associated with heart-exosome genetic-signatures for acute myocardial infarction (AMI) by a source-tracking analysis of plasma exosome. The source-tracking of AMI plasma total-exosomes was implemented by deconvolution algorithm. The final early-warning biomarkers associated with heart-exosome genetic-signatures for AMI was identified by integration with single-cell sequencing, weighted gene correction network and machine learning analyses. The correlation between biomarkers and clinical indicators was validated in impatient cohort. A nomogram was generated using early-warning biomarkers for predicting the CAD progression. The molecular subtypes landscape of AMI was detected by consensus clustering. A higher fraction of exosomes derived from spleen and blood cells was revealed in plasma exosomes, while a lower fraction of heart-exosomes was detected. The gene ontology revealed that heart-exosomes genetic-signatures was associated with the heart development, cardiac function and cardiac response to stress. We ultimately identified three genes associated with heart-exosomes defining early-warning biomarkers for AMI. The early-warning biomarkers mediated molecular clusters presented heterogeneous metabolism preference in AMI. Our study introduced three early-warning biomarkers associated with heart-exosome genetic-signatures, which reflected the genetic information of heart-exosomes carrying AMI signals and provided new insights for exosomes research in CAD progression and prevention.


Subject(s)
Biomarkers , Exosomes , Myocardial Infarction , Exosomes/genetics , Exosomes/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Humans , Female , Male , Myocardium/metabolism , Myocardium/pathology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...