Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.570
Filter
1.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731496

ABSTRACT

Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.


Subject(s)
Biological Products , Myocardial Ischemia , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , Humans , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/chemistry , Signal Transduction/drug effects , Myocardial Ischemia/metabolism , Myocardial Ischemia/drug therapy , Myocardial Ischemia/pathology , Animals , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/therapeutic use
2.
Article in English | MEDLINE | ID: mdl-38642410

ABSTRACT

DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.


Subject(s)
Drugs, Chinese Herbal , Metabolome , Metabolomics , Myocardial Ischemia , Network Pharmacology , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Metabolomics/methods , Rats , Male , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Metabolome/drug effects , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Metabolic Networks and Pathways/drug effects
3.
Sci Rep ; 14(1): 9589, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670979

ABSTRACT

Lysophosphoglycerides (LPLs) have been reported to accumulate in myocardium and serve as a cause of arrhythmias in acute myocardial ischemia. However, in this study we found that LPLs level in the ventricular myocardium was decreased by the onset of acute myocardial ischemia in vivo in rats. Decreasing of LPLs level in left ventricular myocardium, but not right, was observed within 26 min of left myocardial ischemia, regardless of whether arrhythmias were triggered. Lower LPLs level in the ventricular myocardium was also observed in aconitine-simulated ventricular fibrillation (P < 0.0001) and ouabain-simulated III° atrioventricular block (P < 0.0001). Shot-lasting electric shock, e.g., ≤ 40 s, decreased LPLs level, while long-lasting, e.g., 5 min, increased it (fold change = 2.27, P = 0.0008). LPLs accumulation was observed in long-lasting myocardial ischemia, e.g., 4 h (fold change = 1.20, P = 0.0012), when caspase3 activity was elevated (P = 0.0012), indicating increased cell death, but not coincided with higher frequent arrhythmias. In postmortem human ventricular myocardium, differences of LPLs level in left ventricular myocardium was not observed among coronary artery disease- and other heart diseases-caused sudden death and non-heart disease caused death. LPLs level manifested a remarkable increasing from postmortem 12 h on in rats, thus abolishing the potential for serving as biomarkers of sudden cardiac death. Token together, in this study we found that LPLs in ventricular myocardium were initially decreased by the onset of ischemia, LPLs accumulation do not confer arrhythmogenesis during acute myocardial ischemia. It is necessary to reassess the roles of LPLs in myocardial infarction.


Subject(s)
Arrhythmias, Cardiac , Heart Ventricles , Myocardial Ischemia , Myocardium , Animals , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Rats , Male , Heart Ventricles/metabolism , Heart Ventricles/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/etiology , Humans , Myocardium/metabolism , Myocardium/pathology , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/etiology , Ventricular Fibrillation/pathology , Aconitine/analogs & derivatives , Disease Models, Animal , Ouabain/pharmacology , Ouabain/metabolism
4.
Int Heart J ; 65(2): 279-291, 2024.
Article in English | MEDLINE | ID: mdl-38556336

ABSTRACT

Myocardial ischemia/reperfusion (I/R) decreases cardiac function and efficiency. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) have been linked to the cellular processes of myocardial I/R injury. The present investigation elucidated the function of lncRNA colon cancer-associated transcript 2 (CCAT2) in myocardial I/R injury and the related mechanisms.AC16 cardiomyocytes were exposed to hypoxia (16 hours) /reoxygenation (6 hours) (H/R) to mimic myocardial I/R models in vitro. CCAT2 and microRNA (miR) -539-3p expressions in AC16 cardiomyocytes were measured using real-time quantitative polymerase chain reaction. B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) protein levels in AC16 cardiomyocytes were determined by western blotting. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and apoptosis were detected using Counting Kit-8, LDH Assay Kit, dihydroethidium assay, 5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide staining, flow cytometry, and western blotting, respectively. The interactions between the molecules were confirmed using the dual-luciferase gene reporter. The wingless/integrated/beta-catenin (Wnt/ß-catenin) pathway under the H/R condition was detected by western blotting.CCAT2 and BMI1 mRNA expressions were reduced in H/R-exposed AC16 cardiomyocytes. CCAT2 overexpression exerted protective effects against H/R-induced cardiomyocyte injury, as demonstrated by increased cell viability and mitochondrial membrane potential and decreased LDH leakage, ROS levels, and apoptosis. In addition, CCAT2 positively regulated BMI1 expression by binding to miR-539-3p. CCAT2 knockdown or miR-539-3p overexpression restrained the protective effects of BMI1 against H/R-induced cardiomyocyte injury. In addition, miR-539-3p overexpression reversed the protective effects of CCAT2. Furthermore, CCAT2 activated the Wnt/ß-catenin pathway under the H/R condition via the miR-539-3p/BMI1 axis.Overall, this investigation showed the protective effects of the CCAT2/miR-539-3p/BMI1/Wnt/ß-catenin regulatory axis against cardiomyocyte injury induced by H/R.


Subject(s)
Colonic Neoplasms , Coronary Artery Disease , MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Humans , Mice , Apoptosis/physiology , beta Catenin/metabolism , Colonic Neoplasms/metabolism , Coronary Artery Disease/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Polycomb Repressive Complex 1/genetics , Reactive Oxygen Species/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Adv Sci (Weinh) ; 11(18): e2307233, 2024 May.
Article in English | MEDLINE | ID: mdl-38487926

ABSTRACT

The gut microbiome has emerged as a potential target for the treatment of cardiovascular disease. Ischemia/reperfusion (I/R) after myocardial infarction is a serious complication and whether certain gut bacteria can serve as a treatment option remains unclear. Lactobacillus reuteri (L. reuteri) is a well-studied probiotic that can colonize mammals including humans with known cholesterol-lowering properties and anti-inflammatory effects. Here, the prophylactic cardioprotective effects of L. reuteri or its metabolite γ-aminobutyric acid (GABA) against acute ischemic cardiac injury caused by I/R surgery are demonstrated. The prophylactic gavage of L. reuteri or GABA confers cardioprotection mainly by suppressing cardiac inflammation upon I/R. Mechanistically, GABA gavage results in a decreased number of proinflammatory macrophages in I/R hearts and GABA gavage no longer confers any cardioprotection in I/R hearts upon the clearance of macrophages. In vitro studies with LPS-stimulated bone marrow-derived macrophages (BMDM) further reveal that GABA inhibits the polarization of macrophages toward the proinflammatory M1 phenotype by inhibiting lysosomal leakage and NLRP3 inflammasome activation. Together, this study demonstrates that the prophylactic oral administration of L. reuteri or its metabolite GABA attenuates macrophage-mediated cardiac inflammation and therefore alleviates cardiac dysfunction after I/R, thus providing a new prophylactic strategy to mitigate acute ischemic cardiac injury.


Subject(s)
Disease Models, Animal , Limosilactobacillus reuteri , Mice, Inbred C57BL , Probiotics , gamma-Aminobutyric Acid , Animals , Limosilactobacillus reuteri/metabolism , Mice , gamma-Aminobutyric Acid/metabolism , Probiotics/administration & dosage , Probiotics/therapeutic use , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Macrophages/metabolism , Gastrointestinal Microbiome , Myocardial Ischemia/metabolism , Myocardial Ischemia/prevention & control
6.
J Appl Physiol (1985) ; 136(5): 1157-1169, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511210

ABSTRACT

The coronary sinus reducer (CSR) is an emerging medical device for treating patients with refractory angina, often associated with myocardial ischemia. Patients implanted with CSR have shown positive outcomes, but the underlying mechanisms are unclear. This study sought to understand the mechanisms of CSR by investigating its effects on coronary microcirculation hemodynamics that may help explain the therapy's efficacy. We applied a validated computer model of the coronary microcirculation to investigate how CSR affects hemodynamics under different degrees of coronary artery stenosis. With moderate coronary stenosis, an increase in capillary transit time (CTT) [up to 69% with near-complete coronary sinus (CS) occlusion] is the key change associated with CSR. Because capillaries in the microcirculation can still receive oxygenated blood from the upstream artery with moderate stenosis, the increase in CTT allows more time for the exchange of gases and nutrients, aiding tissue oxygenation. With severe coronary stenosis; however, the redistribution of blood draining from the nonischemic region to the ischemic region (up to 96% with near-complete CS occlusion) and the reduction in capillary flow heterogeneity are the key changes associated with CSR. Because blood draining from the nonischemic region is not completely devoid of O2, the redistribution of blood to the capillaries in the ischemic region by CSR is beneficial especially when little or no oxygenated blood reaches these capillaries. This simulation study provides insights into the mechanisms of CSR in improving clinical symptoms. The mechanisms differ with the severity of the upstream stenosis.NEW & NOTEWORTHY Emerging coronary venous retroperfusion treatments, particularly coronary sinus reducer (CSR) for refractory angina linked to myocardial ischemia, show promise; however, their mechanisms of action are not well understood. We find that CSR's effectiveness varies with the severity of coronary stenosis. In moderate stenosis, CSR improves tissue oxygenation by increasing capillary transit time, whereas in severe stenosis, it redistributes blood from nonischemic to ischemic regions and reduces capillary flow heterogeneity.


Subject(s)
Computer Simulation , Coronary Circulation , Coronary Sinus , Hemodynamics , Microcirculation , Myocardial Ischemia , Humans , Coronary Sinus/physiopathology , Myocardial Ischemia/physiopathology , Myocardial Ischemia/metabolism , Coronary Circulation/physiology , Hemodynamics/physiology , Microcirculation/physiology , Coronary Stenosis/physiopathology , Models, Cardiovascular
7.
J Forensic Leg Med ; 103: 102663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447343

ABSTRACT

Although amyloid material in the heart is not infrequently encountered at autopsy it may on occasion be difficult to determine the significance in terms of possible contributions to the terminal mechanisms of death. A review was undertaken of the literature and of autopsy cases at Forensic Science SA over a 20-year-period (2003-2022) for all cases where significant amyloid material had been encountered on microscopy of the heart. Sixteen cases were found consisting of 11 cases where cardiac amyloid was involved in the lethal episode, and five where it was considered an incidental feature. Of the 11 lethal cases, there were three where cardiac amyloidosis was the cause of death, and eight where it was a contributing factor, along with ischaemic heart disease (N = 7) and bronchopneumonia (N = 1). The age range was 47-92 years, average 78.6 years, with a male to female ratio of 10:1. The weights of the hearts ranged from 496 to 1059 g - average 648 g. Of the five cases where it was considered an incidental finding, the causes of death were blunt head trauma (N = 2), small intestinal ischaemia (N = 2) and small intestinal obstruction (N = 1). The weights of the hearts ranged from 299 to 487 g, average 369 g. The most relevant types of amyloidosis in forensic cases tend to be light chain amyloidosis, senile cardiac amyloidosis and familial amyloid cardiomyopathy. Other forms of amyloidosis that affect the heart, which include reactive amyloidosis, haemodialysis-related amyloidosis and isolated atrial amyloidosis, either have minimal or no clinical significance, or are of uncertain significance. While it may be difficult to determine the prognostic significance of amyloid material at autopsy clinicopathological correlation may provide useful supportive information.


Subject(s)
Amyloidosis , Forensic Pathology , Myocardium , Humans , Amyloidosis/pathology , Amyloidosis/metabolism , Myocardium/pathology , Myocardium/metabolism , Amyloid/metabolism , Organ Size , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Myocardial Ischemia/pathology , Myocardial Ischemia/metabolism , Bronchopneumonia/pathology , Incidental Findings , Male , Female , Aged , Middle Aged , Aged, 80 and over
8.
Biomed Pharmacother ; 174: 116476, 2024 May.
Article in English | MEDLINE | ID: mdl-38520872

ABSTRACT

BACKGROUND: Increasing global overweight and obesity rates not only increase the prevalence of myocardial infarction (MI), but also exacerbate ischemic injury and result in worsened prognosis. Currently, there are no drugs that can reverse myocardial damage once MI has occurred, therefore discovering drugs that can potentially limit the extent of ischemic damage to the myocardium is critical. Resveratrol is a polyphenol known for its antioxidant properties, however whether prolonged daily intake of resveratrol during obesity can protect against MI-induced damage remains unexplored. METHODS: We established murine models of obesity via high-fat/high-fructose diet, along with daily administrations of resveratrol or vehicle, then performed surgical MI to examine the effects and mechanisms of resveratrol in protecting against myocardial ischemic injury. RESULTS: Daily administration of resveratrol in obese mice robustly protected against myocardial ischemic injury and improved post-MI cardiac function. Resveratrol strongly inhibited oxidative and DNA damage via activating SIRT3/FOXO3a-dependent antioxidant enzymes following MI, which were completely prevented upon administration of 3-TYP, a selective SIRT3 inhibitor. Hence, the cardioprotective effects of prolonged resveratrol intake in protecting obese mice against myocardial ischemic injury was due to reestablishment of intracellular redox homeostasis through activation of SIRT3/FOXO3a signaling pathway. CONCLUSION: Our findings provide important new evidence that supports the daily intake of resveratrol, especially in those overweight or obese, which can robustly decrease the extent of ischemic damage following MI. Our study therefore provides new mechanistic insight and suggests the therapeutic potential of resveratrol as an invaluable drug in the treatment of ischemic heart diseases.


Subject(s)
Forkhead Box Protein O3 , Homeostasis , Mice, Inbred C57BL , Mice, Obese , Obesity , Oxidation-Reduction , Resveratrol , Signal Transduction , Sirtuin 3 , Animals , Resveratrol/pharmacology , Signal Transduction/drug effects , Sirtuin 3/metabolism , Male , Oxidation-Reduction/drug effects , Obesity/drug therapy , Obesity/metabolism , Obesity/complications , Forkhead Box Protein O3/metabolism , Homeostasis/drug effects , Mice , Antioxidants/pharmacology , Myocardial Ischemia/metabolism , Myocardial Ischemia/drug therapy , Oxidative Stress/drug effects , Diet, High-Fat/adverse effects , Myocardial Infarction/prevention & control , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Cardiotonic Agents/pharmacology , Stilbenes/pharmacology , Stilbenes/therapeutic use
9.
Arterioscler Thromb Vasc Biol ; 44(4): 826-842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328937

ABSTRACT

BACKGROUND: Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS: We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS: Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS: Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.


Subject(s)
Heart Failure , Hypertension , Myocardial Ischemia , Animals , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Acetylation , Cardiomegaly/metabolism , Myocardium/metabolism , Myocardial Ischemia/metabolism , Mice, Knockout , Hypertension/metabolism
10.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38421727

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) injury is a major cause of adverse outcomes of revascularization following myocardial infarction. Anaerobic glycolysis during myocardial ischemia is well studied, but the role of aerobic glycolysis during the early phase of reperfusion is incompletely understood. Lactylation of Histone H3 (H3) is an epigenetic indicator of the glycolytic switch. Heat shock protein A12A (HSPA12A) is an atypic member of the HSP70 family. In the present study, we report that, during reperfusion following myocardial ischemia, HSPA12A was downregulated and aerobic glycolytic flux was decreased in cardiomyocytes. Notably, HSPA12A KO in mice exacerbated MI/R-induced aerobic glycolysis decrease, cardiomyocyte death, and cardiac dysfunction. Gain- and loss-of-function studies demonstrated that HSPA12A was required to support cardiomyocyte survival upon hypoxia/reoxygenation (H/R) challenge and that its protective effects were mediated by maintaining aerobic glycolytic homeostasis for H3 lactylation. Further analyses revealed that HSPA12A increased Smurf1-mediated Hif1α protein stability, thus increasing glycolytic gene expression to maintain appropriate aerobic glycolytic activity to sustain H3 lactylation during reperfusion and, ultimately, improving cardiomyocyte survival to attenuate MI/R injury.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Mice , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Myocardial Infarction/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism
11.
J Mol Cell Cardiol ; 189: 1-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387309

ABSTRACT

Persistent immune activation contributes significantly to left ventricular (LV) dysfunction and adverse remodeling in heart failure (HF). In contrast to their well-known essential role in acute myocardial infarction (MI) as first responders that clear dead cells and facilitate subsequent reparative macrophage polarization, the role of neutrophils in the pathobiology of chronic ischemic HF is poorly defined. To determine the importance of neutrophils in the progression of ischemic cardiomyopathy, we measured their production, levels, and activation in a mouse model of chronic HF 8 weeks after permanent coronary artery ligation and large MI. In HF mice, neutrophils were more abundant both locally in failing myocardium (more in the border zone) and systemically in the blood, spleen, and bone marrow, together with increased BM granulopoiesis. There were heightened stimuli for neutrophil recruitment and trafficking in HF, with increased myocardial expression of the neutrophil chemoattract chemokines CXCL1 and CXCL5, and increased neutrophil chemotactic factors in the circulation. HF neutrophil NETotic activity was increased in vitro with coordinate increases in circulating neutrophil extracellular traps (NETs) in vivo. Neutrophil depletion with either antibody-based or genetic approaches abrogated the progression of LV remodeling and fibrosis at both intermediate and late stages of HF. Moreover, analogous to murine HF, the plasma milieu in human acute decompensated HF strongly promoted neutrophil trafficking. Collectively, these results support a key tissue-injurious role for neutrophils and their associated cytotoxic products in ischemic cardiomyopathy and suggest that neutrophils are potential targets for therapeutic immunomodulation in this disease.


Subject(s)
Cardiomyopathies , Heart Failure , Myocardial Ischemia , Humans , Animals , Mice , Neutrophils/metabolism , Ventricular Remodeling , Myocardium/metabolism , Myocardial Ischemia/metabolism , Cardiomyopathies/metabolism , Mice, Inbred C57BL
12.
Sci Rep ; 14(1): 4046, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374168

ABSTRACT

When exposed to oxidative and electrophilic stress, a protective antioxidant response is initiated by nuclear factor erythroid 2-related factor 2 (Nrf2). However, the extent of its importance in the forensic diagnosis of acute ischemic heart diseases (AIHD), such as myocardial infarction (MI), remains uncertain. On the other hand, immunohistochemical analyses of fibronectin (FN) and the terminal complement complex (C5b-9) prove valuable in identifying myocardial ischemia that precedes necrosis during the postmortem diagnosis of sudden cardiac death (SCD). In this study, we investigated the immunohistochemical levels of Nrf2, FN, and C5b-9 in human cardiac samples to explore their forensic relevance for the identification of acute cardiac ischemia. Heart samples were obtained from 25 AIHD cases and 39 non-AIHD cases as controls. Nrf2 was localized in the nuclei of cardiomyocytes, while FN and C5b-9 were detected in the myocardial cytoplasm. The number of intranuclear Nrf2 positive signals in cardiomyocytes increased in AIHD cases compared to control cases. Additionally, the grading of positive portions of cardiac FN and C5b-9 in the myocardium was also significantly enhanced in AIHD, compared to controls. Collectively, these results indicate that the immunohistochemical investigation of Nrf2 combined with FN, and/or C5b-9 holds the potential for identifying early-stage myocardial ischemic lesions in cases of SCD.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , NF-E2-Related Factor 2 , Humans , Complement Membrane Attack Complex/metabolism , Death, Sudden, Cardiac/pathology , Myocardial Infarction/pathology , Myocardial Ischemia/metabolism , Myocardium/metabolism , NF-E2-Related Factor 2/metabolism
13.
Phytomedicine ; 125: 155359, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301300

ABSTRACT

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) poses a formidable challenge to cardiac reperfusion therapy due to the absence of effective clinical interventions. Methylation of N6-methyladenosine (m6A), which is the most common post-transcriptional modifications occurring within mammalian mRNA, is believed to be involved in MIRI by modulating autophagy. MicroRNAs (miRNAs) play a crucial role in regulating gene expression at the post-transcriptional level and have been implicated in the regulation of m6A methylation. Suxiao Jiuxin Pill (SJP) is extensively used in China for the clinical treatment of angina pectoris and confers benefits to patients with acute coronary syndrome who have received percutaneous coronary intervention. However, the precise mechanisms underlying SJP intervention in MIRI remain unclear. PURPOSE: This study aimed to demonstrate, both in vivo and in vitro, that SJP could alleviate autophagy in MIRI by regulating miR-193a-3p to target and upregulate the demethylase ALKBH5. METHODS: An in vitro hypoxia/reoxygenation model was established using H9c2 cells, while an in vivo MIRI model was established using Wistar rats. A lentivirus harboring the precursor sequence of miR-193a-3p was employed for its overexpression. Adeno-associated viruses were used to silence both miR-193a-3p and ALKBH5 expressions. Cardiac function, infarct size, and tissue structure in rats were assessed using echocardiography, triphenyl tetrazolium chloride (TTC) staining, and HE staining, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was employed to detect the levels of apoptosis in rat cardiac tissue. m6A methylation levels were assessed using colorimetry. GFP-RFP-LC3B was used to monitor autophagic flux and transmission electron microscopy was used to evaluate the development of autophagosomes. Western Blot and qRT-PCR were respectively employed to assess the levels of autophagy-related proteins and miR-193a-3p. RESULTS: SJP alleviated autophagy, preserved cardiac function, and minimized myocardial damage in the hearts of MIRI rats. SJP attenuated autophagy in H/R H9C2 cells. Elevated levels of miR-193a-3p were observed in the cardiac tissues of MIRI rats and H/R H9C2 cells, whereas SJP downregulated miR-193a-3p levels in these models. ALKBH5, a target gene of miR-193, is negatively regulated by miR-193a-3p. Upon overexpression of miR-193a-3p or silencing of ALKBH5, m6A methylation decreased, and the autophagy-attenuating effects of SJP and its components, senkyunolide A and l-borneol, were lost in H/R H9C2 cells, whereas in MIRI rats, these effects were not abolished but merely weakened. Further investigation indicated that the METTL3 inhibitor STM2475, combined with the silencing of miR-193a-3p, similarly attenuated autophagy in the hearts of MIRI rats. This suggests that a reduction in m6A methylation is involved in autophagy alleviation. CONCLUSION: We demonstrated that SJP mitigates autophagy in MIRI by downregulating miR-193a-3p, enhancing ALKBH5 expression, and reducing m6A methylation, a mechanism potentially attributed to its constituents, senkyunolide A and l-borneol.


Subject(s)
Camphanes , MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Rats, Wistar , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy , Reperfusion , Apoptosis , Myocytes, Cardiac/metabolism , Mammals/genetics , Mammals/metabolism , Methyltransferases/metabolism , Methyltransferases/pharmacology , AlkB Homolog 5, RNA Demethylase/metabolism
14.
Mol Biol Rep ; 51(1): 261, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302805

ABSTRACT

BACKGROUND: The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI). METHODS AND RESULTS: Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group. CONCLUSION: Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.


Subject(s)
Coronary Artery Disease , Curcumin , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Myocardial Ischemia , Rats , Male , Animals , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Curcumin/pharmacology , Curcumin/metabolism , Bone Marrow/metabolism , Angiogenesis , Myocardial Ischemia/metabolism , Myocardium/metabolism , Coronary Artery Disease/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells
15.
J Transl Med ; 22(1): 168, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368334

ABSTRACT

BACKGROUND: MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS: To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS: Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION: In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Myocytes, Cardiac/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/therapy , Myocardial Infarction/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/metabolism , Mesenchymal Stem Cells/metabolism , Apoptosis , Reperfusion
16.
J Am Coll Surg ; 238(6): 1045-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38288953

ABSTRACT

BACKGROUND: Although sodium-glucose cotransporter-2 inhibitors have been shown to improve cardiovascular outcomes in general, little is presently known about any sex-specific changes that may result from this therapy. We sought to investigate and quantify potential sex-specific changes seen with the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a swine model of chronic myocardial ischemia. STUDY DESIGN: Eighteen Yorkshire swine underwent left thoracotomy with placement of an ameroid constrictor. Two weeks postop, swine were assigned to receive either control (F = 5 and M = 5) or CAN 300 mg daily (F = 4 and M = 4). After 5 weeks of therapy, swine underwent myocardial functional measurements, and myocardial tissue was sent for proteomic analysis. RESULTS: Functional measurements showed increased cardiac output, stroke volume, ejection fraction, and ischemic myocardial flow at rest in male swine treated with CAN compared with control male swine (all p < 0.05). The female swine treated with CAN had no change in cardiac function as compared with control female swine. Proteomic analysis demonstrated 6 upregulated and 97 downregulated proteins in the CAN female group compared with the control female group. Pathway analysis showed decreases in proteins in the tricarboxylic acidic cycle. The CAN male group had 639 upregulated and 172 downregulated proteins compared with control male group. Pathway analysis showed increases in pathways related to cellular metabolism and decreases in pathways relevant to the development of cardiomyopathy and to oxidative phosphorylation. CONCLUSIONS: Male swine treated with CAN had significant improvements in cardiac function that were not observed in female swine treated with CAN. Moreover, CAN treatment in male swine was associated with significantly more changes in protein expression than in female swine treated with CAN. The increased proteomic changes seen in the CAN male group likely contributed to the more robust changes in cardiac function seen in male swine treated with CAN.


Subject(s)
Canagliflozin , Myocardial Ischemia , Proteomics , Sodium-Glucose Transporter 2 Inhibitors , Animals , Female , Male , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Myocardial Ischemia/metabolism , Swine , Sex Factors , Disease Models, Animal , Myocardium/metabolism , Chronic Disease
17.
Vascul Pharmacol ; 154: 107273, 2024 03.
Article in English | MEDLINE | ID: mdl-38182082

ABSTRACT

The current approach to myocardial ischemia has been influenced by the misconception of a close link between ischemia and coronary atherosclerotic obstructions. Recent guidelines have, however, acknowledged the multifactorial nature of this condition, with an identifiable cause present in less than half of angina patients, and a large fraction with angina of unknown origin. Because of this background, focusing on cardiac energy metabolim offers new opportunities to manage myocardial ischemia even when its cause is unknown.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Humans , Ranolazine/adverse effects , Ranolazine/metabolism , Myocardial Ischemia/chemically induced , Myocardial Ischemia/metabolism , Coronary Artery Disease/metabolism , Myocardium/metabolism , Energy Metabolism
18.
Cell Signal ; 116: 111065, 2024 04.
Article in English | MEDLINE | ID: mdl-38281616

ABSTRACT

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.


Subject(s)
Myocardial Ischemia , Proto-Oncogene Proteins c-akt , Humans , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Hypoxia/metabolism , Lysine/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mitochondrial Proteins/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Transcription Factors/metabolism
19.
Arch Biochem Biophys ; 753: 109885, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232798

ABSTRACT

Carbon nanomaterials possess antioxidant properties that can be applied in biomedicine and clinics for the development of new highly effective treatments against oxidative stress-induced diseases like ischemic heart disease. We previously reported the usage of graphene oxide (GrO) as a precursor for the elaboration of such prototypes. The promising findings led to the development of two new modifications of GrO: nitrogen-doped (N-GrO) and l-cysteine functionalized (S-GrO) derivatives as possible antioxidant agents in ischemia-reperfusion (I/R) conditions. In this study, the cardioprotective and antioxidant potential of modified GrO as a pre-treatment in rats was evaluated for the first time. In Langendorff isolated rat heart I/R model, the left ventricle developed pressure (LVDP), the end-diastolic pressure (EDP), the maximal (dP/dtmax) and minimal (dP/dtmin) value of the first derivative of LVDP, and heart rate (HR) were measured. The oxidative-nitrosative markers, in particular, the rate of O2*- and H2O2 generation, the content of malonic dialdehyde, diene conjugates, and leukotriene as well as cNOS and iNOS activity were estimated. Obtained results show a significant restoration of cadiodynamic parameters at the reperfusion period. Simultaneously, all samples significantly reduced the rate of reactive oxygen species (ROS) and lipid peroxidation markers in cardiac homogenates and preserved cNOS activity at the preischemic level. This evidence makes GrO derivatives promising candidates for the correction of reperfusion disorders affecting myocardial function.


Subject(s)
Graphite , Myocardial Ischemia , Myocardial Reperfusion Injury , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Hydrogen Peroxide/metabolism , Heart , Myocardium/metabolism , Myocardial Ischemia/metabolism , Oxidative Stress
20.
Surgery ; 175(2): 265-270, 2024 02.
Article in English | MEDLINE | ID: mdl-37940431

ABSTRACT

BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P < .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P < .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways.


Subject(s)
Myocardial Ischemia , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Swine , Animals , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Canagliflozin/metabolism , Myocardium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Acetyl-CoA Carboxylase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/therapeutic use , Myocardial Ischemia/drug therapy , Myocardial Ischemia/complications , Myocardial Ischemia/metabolism , Inflammation/metabolism , Glucose/metabolism , Symporters/metabolism , Fatty Acids/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...