Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786104

ABSTRACT

Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.


Subject(s)
Apoptosis , Biglycan , Decorin , Myocytes, Cardiac , Decorin/metabolism , Biglycan/metabolism , Apoptosis/radiation effects , Apoptosis/drug effects , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans
2.
Molecules ; 26(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641361

ABSTRACT

Prunus mume blossom is an edible flower that has been used in traditional Chinese medicine for thousands of years. Flavonoids are one of the most active substances in Prunus mume blossoms. The optimal ultrasonic-assisted enzymatic extraction of flavonoids from Prunus mume blossom (FPMB), the components of FPMB, and its protective effect on injured cardiomyocytes were investigated in this study. According to our results, the optimal extraction process for FPMB is as follows: cellulase at 2.0%, ultrasonic power at 300 W, ultrasonic enzymolysis for 30 min, and an enzymolysis temperature of 40 °C. FPMB significantly promoted the survival rate of cardiomyocytes and reduced the concentration of reactive oxygen species (ROS). FPMB also improved the activities of proteases caspase-3, caspase-8, and caspase-9 in cardiomyocytes. The cardiomyocyte apoptosis rate in mice was significantly reduced by exposure to FPMB. These results suggest that the extraction rate of FPMB may be improved by an ultrasonic-assisted enzymatic method. FPMB has a protective effect on the injured cardiomyocytes.


Subject(s)
Enzymes/metabolism , Flavonoids/pharmacology , Myocytes, Cardiac/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Prunus/chemistry , Ultrasonics/methods , Animals , Male , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/radiation effects
3.
Nat Commun ; 12(1): 3279, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078883

ABSTRACT

Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.


Subject(s)
Antibodies, Neutralizing/pharmacology , Cardiomyopathies/prevention & control , Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Gamma Rays/adverse effects , Neural Cell Adhesion Molecule L1/genetics , Animals , Antibiotics, Antineoplastic/toxicity , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiotoxicity/etiology , Cardiotoxicity/genetics , Cardiotoxicity/metabolism , Case-Control Studies , Coculture Techniques , DNA Damage , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/radiation effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/radiation effects , Humans , Male , Mice , Mice, Inbred BALB C , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/radiation effects , Neural Cell Adhesion Molecule L1/antagonists & inhibitors , Neural Cell Adhesion Molecule L1/metabolism , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
4.
PLoS One ; 16(6): e0252346, 2021.
Article in English | MEDLINE | ID: mdl-34086732

ABSTRACT

Whereas it is evident that a well aligned and regular sarcomeric structure in cardiomyocytes is vital for heart function, considerably less is known about the contribution of individual elements to the mechanics of the entire cell. For instance, it is unclear whether altered Z-disc elements are the reason or the outcome of related cardiomyopathies. Therefore, it is crucial to gain more insight into this cellular organization. This study utilizes femtosecond laser-based nanosurgery to better understand sarcomeres and their repair upon damage. We investigated the influence of the extent and the location of the Z-disc damage. A single, three, five or ten Z-disc ablations were performed in neonatal rat cardiomyocytes. We employed image-based analysis using a self-written software together with different already published algorithms. We observed that cardiomyocyte survival associated with the damage extent, but not with the cell area or the total number of Z-discs per cell. The cell survival is independent of the damage position and can be compensated. However, the sarcomere alignment/orientation is changing over time after ablation. The contraction time is also independent of the extent of damage for the tested parameters. Additionally, we observed shortening rates between 6-7% of the initial sarcomere length in laser treated cardiomyocytes. This rate is an important indicator for force generation in myocytes. In conclusion, femtosecond laser-based nanosurgery together with image-based sarcomere tracking is a powerful tool to better understand the Z-disc complex and its force propagation function and role in cellular mechanisms.


Subject(s)
Lasers/adverse effects , Myocytes, Cardiac/radiation effects , Sarcomeres/radiation effects , Algorithms , Animals , Cell Differentiation , Cells, Cultured , Image Processing, Computer-Assisted/methods , Myocardial Contraction/radiation effects , Rats , Rats, Sprague-Dawley
5.
Biomed Res Int ; 2021: 8880179, 2021.
Article in English | MEDLINE | ID: mdl-33532500

ABSTRACT

Regulated necrosis (necroptosis) is crucially involved in cardiac ischaemia-reperfusion injury (MIRI). The aim of our study is to investigate whether shock wave therapy (SWT) is capable of exerting protective effects by inhibiting necroptosis during myocardial ischaemia-reperfusion (I/R) injury and the possible role of autophagy in this process. We established a hypoxia/reoxygenation (H/R) model in vitro using HL-1 cells to simulate MIRI. MTS assays and LDH cytotoxicity assay were performed to measure cell viability and cell damage. Annexin V/PI staining was used to determine apoptosis and necrosis. Western blotting was performed to assess the changes in cell signaling pathways associated with autophagy, necroptosis, and apoptosis. Reactive oxygen species (ROS) production was detected using DHE staining. Autophagosome generation and degradation (autophagic flux) were analysed using GFP and RFP tandemly tagged LC3 (tfLC3). HL-1 cells were then transfected with p62/SQSTM1 siRNA in order to analyse its role in cardioprotection. Our results revealed that SWT increased cell viability in the H/R model and decreased receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 expression. ROS production was also inhibited by SWT. Moreover, SWT decreased Beclin1 expression and the ratio of LC3-II/LC3-I following H/R. Simultaneously, in the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. siRNA-mediated knockdown of p62 attenuated H/R-induced necroptosis, and SWT did not exert additive effects. Taken together, SWT ameliorated H/R injury by inhibiting necroptosis. SWT also relieved the blockade of autophagic flux in response to H/R injury. The restoration of autophagic flux by SWT might contribute to its cardioprotective effect on necroptosis following H/R injury.


Subject(s)
Autophagy/radiation effects , Cell Hypoxia/radiation effects , Extracorporeal Shockwave Therapy , Myocytes, Cardiac , Necroptosis/radiation effects , Animals , Cell Line , Cell Survival/radiation effects , Heart/radiation effects , Mice , Models, Biological , Myocardial Reperfusion Injury , Myocardium/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/radiation effects
6.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008778

ABSTRACT

Cardiac radioablation is emerging as an alternative option for refractory ventricular arrhythmias. However, the immediate acute effect of high-dose irradiation on human cardiomyocytes remains poorly known. We measured the electrical activities of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) upon irradiation with 0, 20, 25, 30, 40, and 50 Gy using a multi-electrode array, and cardiomyocyte function gene levels were evaluated. iPSC-CMs showed to recover their electrophysiological activities (total active electrode, spike amplitude and slope, and corrected field potential duration) within 3-6 h from the acute effects of high-dose irradiation. The beat rate immediately increased until 3 h after irradiation, but it steadily decreased afterward. Conduction velocity slowed in cells irradiated with ≥25 Gy until 6-12 h and recovered within 24 h; notably, 20 and 25 Gy-treated groups showed subsequent continuous increase. At day 7 post-irradiation, except for cTnT, cardiomyocyte function gene levels increased with increasing irradiation dose, but uniquely peaked at 25-30 Gy. Altogether, high-dose irradiation immediately and reversibly modifies the electrical conduction of cardiomyocytes. Thus, compensatory mechanisms at the cellular level may be activated after the high-dose irradiation acute effects, thereby, contributing to the immediate antiarrhythmic outcome of cardiac radioablation for refractory ventricular arrhythmias.


Subject(s)
Arrhythmias, Cardiac/therapy , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/radiation effects , Radiofrequency Ablation , Arrhythmias, Cardiac/physiopathology , Dose-Response Relationship, Radiation , Electrodes , Electrophysiological Phenomena/radiation effects , Gene Expression Regulation/radiation effects , Humans , Time Factors
7.
Chin J Nat Med ; 18(6): 436-445, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32503735

ABSTRACT

This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts (CFs) and its potential mechanism, as well as whether sodium tanshinone IIA sulfonate (STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin II (Ang II) and brain natriuretic peptide (BNP). STS inhibited the X-ray-induced increases in Ang II and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38, cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK 1/2)/ERK 1/2 and B cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein (BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/radiation effects , Phenanthrenes/pharmacology , Radiation Injuries/prevention & control , Animals , Apoptosis/drug effects , Cells, Cultured , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
8.
FASEB J ; 34(2): 3347-3358, 2020 02.
Article in English | MEDLINE | ID: mdl-31919902

ABSTRACT

Radiation therapy (RT) is commonly used to treat solid tumors of the breast, lung, and esophagus; however, the heart is an unintentional target of ionizing radiation (IR). IR exposure to the heart results in chronic toxicities including heart failure. We hypothesize that the circadian system plays regulatory roles in minimizing the IR-induced cardiotoxicity. We treated mice in control (Day Shift), environmentally disrupted (Rotating Shift), and genetically disrupted (Per 1/2 mutant) circadian conditions with 18 Gy of IR to the heart. Compared to control mice, circadian clock disruption significantly exacerbated post-IR systolic dysfunction (by ultrasound echocardiography) and increased fibrosis in mice. At the cellular level, Bmal1 protein bound to Atm, Brca1, and Brca2 promoter regions and its expression level was inversely correlated with the DNA damage levels based on the state of the clock. Further studies with circadian synchronized cardiomyocytes revealed that Bmal1 depletion increased the IR-induced DNA damage and apoptosis. Collectively, these findings suggest that the circadian clock protects from IR-induced toxicity and potentially impacts RT treatment outcome in cancer patients through IR-induced DNA damage responses.


Subject(s)
Myocytes, Cardiac/metabolism , Period Circadian Proteins/genetics , Radiation Injuries, Experimental/genetics , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Cell Line , DNA Damage , Mice , Mice, Inbred C57BL , Mutation , Myocytes, Cardiac/physiology , Myocytes, Cardiac/radiation effects , Promoter Regions, Genetic , Radiation Injuries, Experimental/metabolism , Radiation, Ionizing , Rats , Systole
9.
Prog Biophys Mol Biol ; 154: 51-61, 2020 08.
Article in English | MEDLINE | ID: mdl-31738979

ABSTRACT

Optogenetics enables cell-type specific monitoring and actuation via light-activated proteins. In cardiac research, expressing light-activated depolarising ion channels in cardiomyocytes allows optical pacing and defibrillation. Previous studies largely relied on epicardial illumination. Light penetration through the myocardium is however problematic when moving to larger animals and humans. To overcome this limitation, we assessed the utility of an implantable multi light-emitting diode (LED) optical probe (IMLOP) for intramural pacing of mouse hearts expressing cardiac-specific channelrhodopsin-2 (ChR2). Here we demonstrated that IMLOP insertion needs approximately 20 mN of force, limiting possible damage from excessive loads applied during implantation. Histological sections confirmed the confined nature of tissue damage during acute use. The temperature change of the surrounding tissue was below 1 K during LED operation, rendering the probe safe for use in situ. This was confirmed in control experiments where no effect on cardiac action potential conduction was observed even when using stimulation parameters twenty-fold greater than required for pacing. In situ experiments on ChR2-expressing mouse hearts demonstrated that optical stimulation is possible with light intensities as low as 700 µW/mm2; although stable pacing requires higher intensities. When pacing with a single LED, rheobase and chronaxie values were 13.3 mW/mm2 ± 0.9 mW/mm2 and 3 ms ± 0.6 ms, respectively. When doubling the stimulated volume the rheobase decreased significantly (6.5 mW/mm2 ± 0.9 mW/mm2). We have demonstrated IMLOP-based intramural optical pacing of the heart. Probes cause locally constrained tissue damage in the acute setting and require low light intensities for pacing. Further development is necessary to assess effects of chronic implantation.


Subject(s)
Channelrhodopsins/metabolism , Gene Expression Regulation , Hearing/physiology , Optical Devices , Action Potentials/radiation effects , Animals , Gene Expression Regulation/radiation effects , Hearing/radiation effects , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Temperature
10.
Int J Mol Sci ; 20(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652604

ABSTRACT

Chronic exposure to low-dose ionizing radiation is associated with an increased risk of cardiovascular disease. Alteration in energy metabolism has been suggested to contribute to radiation-induced heart pathology, mitochondrial dysfunction being a hallmark of this disease. The goal of this study was to investigate the regulatory role of acetylation in heart mitochondria in the long-term response to chronic radiation. ApoE-deficient C57Bl/6J mice were exposed to low-dose-rate (20 mGy/day) gamma radiation for 300 days, resulting in a cumulative total body dose of 6.0 Gy. Heart mitochondria were isolated and analyzed using quantitative proteomics. Radiation-induced proteome and acetylome alterations were further validated using immunoblotting, enzyme activity assays, and ELISA. In total, 71 proteins showed peptides with a changed acetylation status following irradiation. The great majority (94%) of the hyperacetylated proteins were involved in the TCA cycle, fatty acid oxidation, oxidative stress response and sirtuin pathway. The elevated acetylation patterns coincided with reduced activity of mitochondrial sirtuins, increased the level of Acetyl-CoA, and were accompanied by inactivation of major cardiac metabolic regulators PGC-1 alpha and PPAR alpha. These observations suggest that the changes in mitochondrial acetylation after irradiation is associated with impairment of heart metabolism. We propose a novel mechanism involved in the development of late cardiac damage following chronic irradiation.


Subject(s)
Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational , Sirtuins/genetics , Whole-Body Irradiation/adverse effects , Acetylation , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Down-Regulation , Female , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Mitochondria, Heart/radiation effects , Mitochondrial Proteins/radiation effects , Myocytes, Cardiac/radiation effects , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
11.
Biofactors ; 45(6): 983-990, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31509323

ABSTRACT

Cardiac optogenetics is an emergent research area and refers to the delivery of light-activated proteins to excitable heart tissue and the subsequent use of light for controlling the electrical function with high spatial and temporal resolution. Channelrhodopsin-2 (ChR2) is a light-sensitive ion channel with the chromophore, all trans retinal, derived from vitamin A (all-trans-retinol; retinol). In this study, we explored whether exogenous vitamin A can be a limiting factor in the light responsiveness of cardiomyocytes-expressing ChR2. We showed that in cardiomyocytes virally transduced with ChR2 (H134R)-enhanced yellow fluorescent protein, vitamin A supplements lower than 10 µM significantly increased ChR2 expression. Adding 1 µM vitamin A changed light-induced transmembrane potential difference significantly, whereas 5 µM dramatically induced membrane depolarization and triggered intracellular calcium elevation. We concluded that vitamin A supplementation can modulate the efficiency of ChR2 and provide a complementary strategy for improving the performance of optogenetic tools.


Subject(s)
Carrier Proteins/genetics , Myocardium/metabolism , Optogenetics , Vitamin A/pharmacology , Animals , Animals, Newborn , Calcium/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Light Signal Transduction/drug effects , Membrane Potentials/drug effects , Membrane Potentials/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Rats
12.
Adv Healthc Mater ; 8(13): e1900198, 2019 07.
Article in English | MEDLINE | ID: mdl-31066237

ABSTRACT

The use of light for triggering skeletal and cardiac muscles allows lower invasiveness higher selectivity and unprecedented possibility to target individual cells or even subcellular compartments in a temporally and spatially precise manner. Because cells are in general transparent, this requires the development of suitable interfaces that bestow light sensitivity to living matter. In the present work, successfully demonstrated is the use of conjugated polymer films as transducer to optically enhance the contraction rate of a human and patient-specific cardiac in vitro cell model. By different experimental approaches, the coupling mechanism to the photothermal effect is assigned. This work extends the range of application of the polymer-mediated cell photostimulation phenomenon to cardiac muscle cells, opening up possible applications in cardiac therapy and for implementation of in vitro studies.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Polymers/chemistry , Biocompatible Materials/chemistry , Cell Differentiation , Cell Survival/drug effects , Cellular Reprogramming , Glass/chemistry , Humans , Induced Pluripotent Stem Cells/metabolism , Light , Muscle Contraction/drug effects , Muscle Contraction/radiation effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/radiation effects , Polymers/pharmacology , Temperature
13.
Nat Commun ; 10(1): 1281, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894542

ABSTRACT

The standard technique for investigating adrenergic effects on heart function is perfusion with pharmaceutical agonists, which does not provide high temporal or spatial precision. Herein we demonstrate that the light sensitive Gs-protein coupled receptor JellyOp enables optogenetic stimulation of Gs-signaling in cardiomyocytes and the whole heart. Illumination of transgenic embryonic stem cell-derived cardiomyocytes or of the right atrium of mice expressing JellyOp elevates cAMP levels and instantaneously accelerates spontaneous beating rates similar to pharmacological ß-adrenergic stimulation. Light application to the dorsal left atrium instead leads to supraventricular extrabeats, indicating adverse effects of localized Gs-signaling. In isolated ventricular cardiomyocytes from JellyOp mice, we find increased Ca2+ currents, fractional cell shortening and relaxation rates after illumination enabling the analysis of differential Gs-signaling with high temporal precision. Thus, JellyOp expression allows localized and time-restricted Gs stimulation and will provide mechanistic insights into different effects of site-specific, long-lasting and pulsatile Gs activation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Heart Atria/metabolism , Heart Ventricles/metabolism , Light Signal Transduction , Myocytes, Cardiac/metabolism , Optogenetics/methods , Animals , Calcium/metabolism , Cations, Divalent , Cell Differentiation , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart Atria/cytology , Heart Atria/radiation effects , Heart Ventricles/cytology , Heart Ventricles/radiation effects , Light , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/radiation effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/radiation effects
14.
Sci Rep ; 9(1): 5000, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30899027

ABSTRACT

Noninvasive X-ray stereotactic treatment is considered a promising alternative to catheter ablation in patients affected by severe heart arrhythmia. High-energy heavy ions can deliver high radiation doses in small targets with reduced damage to the normal tissue compared to conventional X-rays. For this reason, charged particle therapy, widely used in oncology, can be a powerful tool for radiosurgery in cardiac diseases. We have recently performed a feasibility study in a swine model using high doses of high-energy C-ions to target specific cardiac structures. Interruption of cardiac conduction was observed in some animals. Here we report the biological effects measured in the pig heart tissue of the same animals six months after the treatment. Immunohistological analysis of the target tissue showed (1.) long-lasting vascular damage, i.e. persistent hemorrhage, loss of microvessels, and occurrence of siderophages, (2.) fibrosis and (3.) loss of polarity of targeted cardiomyocytes and wavy fibers with vacuolization. We conclude that the observed physiological changes in heart function are produced by radiation-induced fibrosis and cardiomyocyte functional inactivation. No effects were observed in the normal tissue traversed by the particle beam, suggesting that charged particles have the potential to produce ablation of specific heart targets with minimal side effects.


Subject(s)
Arrhythmias, Cardiac/radiotherapy , Myocardium/pathology , Myocytes, Cardiac/radiation effects , X-Ray Therapy/adverse effects , Animals , Arrhythmias, Cardiac/pathology , Catheter Ablation/adverse effects , Heart/radiation effects , Heart Rate/radiation effects , Heavy Ions/adverse effects , Humans , Myocytes, Cardiac/pathology , Radiation, Nonionizing/adverse effects , Radiosurgery/adverse effects , Stereotaxic Techniques/trends , Swine
15.
Int J Mol Sci ; 20(3)2019 Feb 03.
Article in English | MEDLINE | ID: mdl-30717456

ABSTRACT

Space radiation has recently been considered a risk factor for astronauts' cardiac health. As an example, for the case of how to query and identify datasets within NASA's GeneLab database and demonstrate the database utility, we used an unbiased systems biology method for identifying key genes/drivers for the contribution of space radiation on the cardiovascular system. This knowledge can contribute to designing appropriate experiments targeting these specific pathways. Microarray data from cardiomyocytes of male C57BL/6 mice followed-up for 28 days after exposure to 900 mGy of 1 GeV proton or 150 mGy of 1 GeV/n 56Fe were compared to human endothelial cells (HUVECs) cultured for 7 days on the International Space Station (ISS). We observed common molecular pathways between simulated space radiation and HUVECs flown on the ISS. The analysis suggests FYN is the central driver/hub for the cardiovascular response to space radiation: the known oxidative stress induced immediately following radiation would only be transient and would upregulate FYN, which in turn would reduce reactive oxygen species (ROS) levels, protecting the cardiovascular system. The transcriptomic signature of exposure to protons was also much closer to the spaceflight signature than 56Fe's signature. To our knowledge, this is the first time GeneLab datasets were utilized to provide potential biological indications that the majority of ions on the ISS are protons, clearly illustrating the power of omics analysis. More generally, this work also demonstrates how to combine animal radiation studies done on the ground and spaceflight studies to evaluate human risk in space.


Subject(s)
Cardiovascular System/radiation effects , Myocytes, Cardiac/radiation effects , Proto-Oncogene Proteins c-fyn/genetics , Radiation, Ionizing , Space Flight , Transcriptome , Animals , Cardiovascular System/metabolism , Cells, Cultured , Cosmic Radiation , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-fyn/metabolism , Protons , Reactive Oxygen Species/metabolism
16.
J Cell Mol Med ; 23(3): 1963-1975, 2019 03.
Article in English | MEDLINE | ID: mdl-30592150

ABSTRACT

The aggressive immunological activity elicited by acute viral myocarditis contributes to a large amount of cardiomyocytes loss and poor prognosis of patients in clinic. Low-intensity pulsed ultrasound (LIPUS), which is an effective treatment modality for osteoarthropathy, has been recently illustrated regulating the overactive inflammatory response in various diseases. Here, we aimed to investigate whether LIPUS could attenuate coxsackievirus B3 (CVB3) infection-induced injury by coordinating the inflammatory response. Male BALB/c mice were inoculated intraperitoneally with CVB3 to establish the model of acute viral myocarditis. LIPUS treatment was given on Day 1, Day 1, 3 and Day 1, 3, 5 post-inoculation, respectively. All mice were followed up for 14 days. Day 1, 3, 5 LIPUS treatment significantly improved the survival rate, attenuated the ventricular dysfunction and ameliorated the cardiac histopathological injury of CVB3-infected mice. Western blotting analysis showed Day 1, 3, 5 LIPUS treatment decreased pro-inflammatory cytokines, increased the activation of caveolin-1 and suppressed p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) signallings in heart tissue. RAW264.7 cells were treated with lipopolysaccharides (LPS) to simulate the augmented inflammatory response in vivo. LIPUS treatment on RAW264.7 inhibited the expression of pro-inflammatory cytokines, activated caveolin-1 and suppressed p38 MAPK and ERK signallings. Transfecting RAW264.7 with caveolin-1 siRNA blunted the suppression of pro-inflammatory cytokines and MAPK signallings by LIPUS treatment. Taken together, we demonstrated for the first time that LIPUS treatment attenuated the aggressive inflammatory response during acute viral myocarditis. The underlying mechanism may be activating caveolin-1 and suppressing MAPK signallings.


Subject(s)
Coxsackievirus Infections/therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , Heart/radiation effects , Inflammation/therapy , Myocarditis/therapy , Signal Transduction/radiation effects , Animals , Caveolin 1/metabolism , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Cytokines/metabolism , Enterovirus/pathogenicity , Humans , Inflammation/virology , Male , Mice , Mice, Inbred BALB C , Myocarditis/virology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Myocytes, Cardiac/virology , RAW 264.7 Cells , Ultrasonic Therapy/methods , Ultrasonic Waves
17.
Int J Radiat Biol ; 94(12): 1095-1103, 2018 12.
Article in English | MEDLINE | ID: mdl-30247079

ABSTRACT

Purpose: Radiation-induced heart disease caused by cardiac exposure to ionizing radiation comprises a variety of cardiovascular effects. Research in this field has been hampered by limited availability of clinical samples and appropriate test models. In this study, we wanted to elucidate the molecular mechanisms underlying electrophysiological changes, which we have observed in a previous study. Materials and methods: We employed RNA deep-sequencing of human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) 48 h after 5 Gy X-ray irradiation. By comparison to public data from hiPSC-CMs and human myocardium, we verified the expression of cardiac-specific genes in hiPSC-CMs. Results were validated by qRT-PCR. Results: Differentially gene expression analysis identified 39 and 481 significantly up- and down-regulated genes after irradiation, respectively. Besides, a large fraction of genes associated with cell cycle processes, we identified genes implicated in cardiac calcium homeostasis (PDE3B), oxidative stress response (FDXR and SPATA18) and the etiology of cardiomyopathy (SGCD, BBC3 and GDF15). Conclusions: Notably, observed gene expression characteristics specific to hiPSC-CMs might be relevant regarding further investigations of the response to external stressors like radiation. The genes and biological processes highlighted in our study present promising starting points for functional follow-up studies for which hiPSC-CMs could pose an appropriate cell model when cell type specific peculiarities are taken into account.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/radiation effects , Cell Survival/radiation effects , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/physiology , Gene Expression/radiation effects , Growth Differentiation Factor 15/physiology , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Sequence Analysis, RNA , X-Rays
18.
Biomed Environ Sci ; 31(8): 561-571, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30231960

ABSTRACT

OBJECTIVE: To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. METHODS: The primary hippocampal neurons and primary cardiomyocytes were cultured and labeled with probes, including Fluo-4 AM, Mag-Fluo-AM, and Rhod-2, to reflect the levels of whole calcium [Ca2+], endoplasmic reticulum calcium [Ca2+]ER, and mitochondrial calcium [Ca2+]MIT, respectively. Then, the cells were exposed to a pulsed microwave of 2.856 GHz with specific absorption rate (SAR) values of 0, 4, and 40 W/kg for 6 min to observe the changes in calcium levels. RESULTS: The results showed that the 4 and 40 W/kg microwave radiation caused a significant decrease in the levels of [Ca2+], [Ca2+]ER, and [Ca2+]MIT in primary hippocampal neurons. In the primary cardiomyocytes, only the 40 W/kg microwave radiation caused the decrease in the levels of [Ca2+], [Ca2+]ER, and [Ca2+]MIT. Primary hippocampal neurons were more sensitive to microwave exposure than primary cardiomyocytes. The mitochondria were more sensitive to microwave exposure than the endoplasmic reticulum. CONCLUSION: The calcium efflux was occurred during microwave exposure in primary hippocampal neurons and primary cardiomyocytes. Additionally, neurons and mitochondria were sensitive cells and organelle respectively.


Subject(s)
Calcium/metabolism , Microwaves , Myocytes, Cardiac/radiation effects , Neurons/radiation effects , Animals , Cells, Cultured , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/radiation effects , Hippocampus/cytology , Mitochondria/metabolism , Mitochondria/radiation effects , Myocytes, Cardiac/metabolism , Neurons/metabolism , Rats, Wistar
19.
Int J Mol Med ; 42(5): 2849-2858, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30226567

ABSTRACT

Radiotherapy significantly increases survival innumerous cancer patients, although it may have delayed adverse effects, including significant short­ and long­term effects on cardiovascular function, leading to significant morbidity and mortality. However, the mechanisms underlying these effects remain unclear. Cardiomyocyte senescence contributes to cardiovascular disease via impaired cardiac function. MicroRNA­34a (miR­34a) is a senescence­associated miR involved in the pathology of cardiovascular diseases, while macrophage migration inhibitory factor (MIF) is a cardioprotective cytokine with an important role in cardiovascular diseases. The present study aimed to determine whether MIF has a cytoprotective effect in cardiomyocytes exposed to radiation through modulating miR­34a. Human cardiomyocytes (HCMs) were incubated with MIF and then exposed to radiation. Cellular proliferation was measured using a Cell Counting Kit­8, while cellular senescence was evaluated based on the senescence­associated ß­galactosidase activity and the gene expression levels of cyclin­dependent kinase inhibitor 1a (Cdkn1a) and Cdkn2c. Oxidative stress was evaluated by measuring the generation of reactive oxygen species and malondialdehyde, as well as the expression of antioxidant genes. In addition, HCMs were treated with small interfering RNA against sirtuin 1 (SIRT1) to examine the role of this gene in MIF­associated rejuvenation following radiation­associated senescence. miR­34a was significantly increased in HCMs exposed to radiation, while MIF inhibited senescence by suppressing miR­34a. SIRT1 was identified as a target gene of miR­34a, mediating the anti­senescence effect induced by MIF. Furthermore, MIF rejuvenation involved rebalancing the oxidation process disturbed by radiation. These results provided direct evidence that inhibition of miR­34a by MIF protected against radiation­induced cardiomyocyte senescence via targeting SIRT1. Inhibition of miR­34a by MIF may thus be a novel strategy for combating cardiac radiation­associated damage.


Subject(s)
Cellular Senescence/radiation effects , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/radiation effects , Sirtuin 1/metabolism , Cell Line , Humans , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/radiation effects , Up-Regulation/radiation effects
20.
Acta Biochim Pol ; 65(2): 309-318, 2018.
Article in English | MEDLINE | ID: mdl-29906297

ABSTRACT

Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.


Subject(s)
Metabolome/radiation effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Radiation, Ionizing , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Dose-Response Relationship, Radiation , Humans , Magnetic Resonance Spectroscopy , Metabolomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...