Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
PLoS Genet ; 20(6): e1010935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875306

ABSTRACT

Gene regulatory networks that act upstream of skeletal muscle fate determinants are distinct in different anatomical locations. Despite recent efforts, a clear understanding of the cascade of events underlying the emergence and maintenance of the stem cell pool in specific muscle groups remains unresolved and debated. Here, we invalidated Pitx2 with multiple Cre-driver mice prenatally, postnatally, and during lineage progression. We showed that this gene becomes progressively dispensable for specification and maintenance of the muscle stem (MuSC) cell pool in extraocular muscles (EOMs) despite being, together with Myf5, a major upstream regulator during early development. Moreover, constitutive inactivation of Pax7 postnatally led to a greater loss of MuSCs in the EOMs compared to the limb. Thus, we propose a relay between Pitx2, Myf5 and Pax7 for EOM stem cell maintenance. We demonstrate also that MuSCs in the EOMs adopt a quiescent state earlier that those in limb muscles and do not spontaneously proliferate in the adult, yet EOMs have a significantly higher content of Pax7+ MuSCs per area pre- and post-natally. Finally, while limb MuSCs proliferate in the mdx mouse model for Duchenne muscular dystrophy, significantly less MuSCs were present in the EOMs of the mdx mouse model compared to controls, and they were not proliferative. Overall, our study provides a comprehensive in vivo characterisation of MuSC heterogeneity along the body axis and brings further insights into the unusual sparing of EOMs during muscular dystrophy.


Subject(s)
Homeobox Protein PITX2 , Homeodomain Proteins , Myogenic Regulatory Factor 5 , Oculomotor Muscles , PAX7 Transcription Factor , Transcription Factors , Animals , Humans , Mice , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice, Inbred mdx , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Oculomotor Muscles/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Stem Cell Reports ; 19(7): 1024-1040, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38876109

ABSTRACT

Increasing evidence suggests that the muscle stem cell (MuSC) pool is heterogeneous. In particular, a rare subset of PAX7-positive MuSCs that has never expressed the myogenic regulatory factor MYF5 displays unique self-renewal and engraftment characteristics. However, the scarcity and limited availability of protein markers make the characterization of these cells challenging. Here, we describe the generation of StemRep reporter mice enabling the monitoring of PAX7 and MYF5 proteins based on equimolar levels of dual nuclear fluorescence. High levels of PAX7 protein and low levels of MYF5 delineate a deeply quiescent MuSC subpopulation with an increased capacity for asymmetric division and distinct dynamics of activation, proliferation, and commitment. Aging primarily reduces the MYF5Low MuSCs and skews the stem cell pool toward MYF5High cells with lower quiescence and self-renewal potential. Altogether, we establish the StemRep model as a versatile tool to study MuSC heterogeneity and broaden our understanding of mechanisms regulating MuSC quiescence and self-renewal in homeostatic, regenerating, and aged muscles.


Subject(s)
Aging , Genes, Reporter , Myogenic Regulatory Factor 5 , PAX7 Transcription Factor , Regeneration , Animals , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , Mice , Aging/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Cell Differentiation , Mice, Transgenic , Cell Self Renewal
3.
PLoS Negl Trop Dis ; 18(5): e0012227, 2024 May.
Article in English | MEDLINE | ID: mdl-38814992

ABSTRACT

BACKGROUND: Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS: C2C12 myoblast cells were exposed to BjsuV (12.5 µg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кß, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-ß, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-ß, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE: These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.


Subject(s)
Bothrops , Crotalid Venoms , Cytokines , Low-Level Light Therapy , Myoblasts , Myogenin , Animals , Myoblasts/drug effects , Myoblasts/radiation effects , Myoblasts/metabolism , Mice , Low-Level Light Therapy/methods , Cytokines/metabolism , Cell Line , Crotalid Venoms/toxicity , Myogenin/metabolism , Myogenin/genetics , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , NF-kappa B/metabolism , MyoD Protein/metabolism , MyoD Protein/genetics , Cell Movement/drug effects , Cell Movement/radiation effects , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Snake Bites/radiotherapy , Venomous Snakes
4.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673893

ABSTRACT

During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.


Subject(s)
Cell Proliferation , Fibroblast Growth Factor 2 , Muscle Development , MyoD Protein , Myoblasts , Muscle Development/genetics , Animals , Mice , MyoD Protein/metabolism , MyoD Protein/genetics , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX3 Transcription Factor/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Cell Differentiation , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
5.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38587267

ABSTRACT

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Subject(s)
Ascorbic Acid , Cell Proliferation , Muscle, Skeletal , Myoblasts , PAX7 Transcription Factor , Regeneration , Animals , Male , Mice , Ascorbic Acid/pharmacology , Cell Line , Cell Proliferation/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Regeneration/drug effects , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/drug effects
6.
J Physiol Biochem ; 80(2): 349-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38372933

ABSTRACT

Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of skeletal muscle regeneration dysfunction. This study aimed to examine the effects and mechanisms of lactate (Lac) treatment on PA-induced impairment of C2C12 cell differentiation capacity. Furthermore, the involvement of voltage-gated calcium channels in this context was examined. In this study, Lac could improve the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG. In addition, Lac increases the inward flow of Ca2+, and promotes the depolarization of the cell membrane potential, thereby activating voltage-gated calcium channels during C2C12 cell differentiation. The enchancement of Lac on myoblast differentiative capacity was abolished after the addition of efonidipine (voltage-gated calcium channel inhibitors). Therefore, voltage-gated calcium channels play an important role in improving PA-induced skeletal muscle regeneration disorders by exercising blood Lac. Our study showed that Lac could rescue the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG through the activation of voltage-gated calcium channels.


Subject(s)
Calcium Channels , Cell Differentiation , Lactic Acid , Animals , Mice , Calcium/metabolism , Calcium Channels/drug effects , Calcium Channels/metabolism , Cell Differentiation/drug effects , Cell Line , Lactic Acid/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Myogenic Regulatory Factor 5/metabolism , Palmitic Acid/pharmacology
7.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37688555

ABSTRACT

While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.


This study aimed to elucidate the response of bovine satellite cells to heat exposure. Satellite cells were isolated from Holstein bulls and subjected to varying temperatures. Transcriptional, proteomic, and proliferative changes were assessed. Following extreme heat exposure, cells exhibited upregulated expression of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7). Conversely, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3), key regulators of myogenesis, decreased under conditions of extreme heat. Notably, downregulation of HSP27 expression using siRNA restored Myf5 expression to normal levels, implying an association between HSP27 and Myf5 in the modulation of satellite cell properties during heat exposure. Our results validated the direct binding of HSP27 to Myf5, substantiating its role as a molecular chaperone. These findings underscore the elevation of HSPs, and alteration of early myogenic regulatory factors implicated in muscle development upon exposure to extreme heat. HSP27 functions as a molecular chaperone by engaging with Myf5, thereby influencing the division or differentiation of satellite cells during heat stress (HS). This study contributes to the advancement of our comprehension regarding the muscular physiology of heat-stressed animals, while clarifying the intricate molecular mechanisms governing the response of satellite cells to HS.


Subject(s)
HSP27 Heat-Shock Proteins , Satellite Cells, Skeletal Muscle , Animals , Cattle , Male , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Heat-Shock Response , Muscle, Skeletal/metabolism , Myogenic Regulatory Factor 5/metabolism
8.
Proc Biol Sci ; 289(1981): 20220841, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35975445

ABSTRACT

Developmental pathways encompass transcription factors and cis-regulatory elements that interact as transcription factor-regulatory element (TF-RE) units. Independent origins of similar phenotypes likely involve changes in different parts of these units, a hypothesis promisingly tested addressing the evolution of the rib-associated lumbar (RAL) morphotype that characterizes emblematic animals such as snakes and elephants. Previous investigation in these lineages identified a polymorphism in the Homology region 1 [H1] enhancer of the Myogenic factor-5 [Myf5], which interacts with HOX10 proteins to modulate rib development. Here we address the evolution of TF-RE units focusing on independent origins of RAL morphotypes. We compiled an extensive database for H1-Myf5 and HOX10 sequences with two goals: (i) evaluate if the enhancer polymorphism is present in amphibians exhibiting the RAL morphotype and (ii) test a hypothesis of enhanced evolutionary flexibility mediated by TF-RE units, according to which independent origins of the RAL morphotype might involve changes in either component of the interaction unit. We identified the H1-Myf5 polymorphism in lineages that diverged around 340 Ma, including Lissamphibia. Independent origins of the RAL morphotype in Tetrapoda involved sequence variation in either component of the TF-RE unit, confirming that different changes may similarly affect the phenotypic outcome of a given developmental pathway.


Subject(s)
Regulatory Sequences, Nucleic Acid , Transcription Factors , Amphibians/metabolism , Animals , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Snakes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Dev Biol ; 490: 134-143, 2022 10.
Article in English | MEDLINE | ID: mdl-35917935

ABSTRACT

The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.


Subject(s)
MyoD Protein , Myogenic Regulatory Factors , Animals , Aorta/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish/genetics , Zebrafish/metabolism
10.
Biological sciences ; 289(1981)Aug. 2022.
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1393200

ABSTRACT

ABSTRACT: Developmental pathways encompass transcription factors and cis-regulatory elements that interact as transcription factor-regulatory element (TF-RE) units. Independent origins of similar phenotypes likely involve changes in different parts of these units, a hypothesis promisingly tested addressing the evolution of the rib-associated lumbar (RAL) morphotype that characterizes emblematic animals such as snakes and elephants. Previous investigation in these lineages identified a polymorphism in the Homology region 1 [H1] enhancer of the Myogenic factor-5 [Myf5], which interacts with HOX10 proteins to modulate rib development. Here we address the evolution of TF-RE units focusing on independent origins of RAL morphotypes. We compiled an extensive database for H1-Myf5 and HOX10 sequences with two goals: (i) evaluate if the enhancer polymorphism is present in amphibians exhibiting the RAL morphotype and (ii) test a hypothesis of enhanced evolutionary flexibility mediated by TF-RE units, according to which independent origins of the RAL morphotype might involve changes in either component of the interaction unit. We identified the H1-Myf5 polymorphism in lineages that diverged around 340 Ma, including Lissamphibia. Independent origins of the RAL morphotype in Tetrapoda involved sequence variation in either component of the TF-RE unit, confirming that different changes may similarly affect the phenotypic outcome of a given developmental pathway.


Subject(s)
Animals , Snakes/genetics , Regulatory Sequences, Nucleic Acid , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Amphibians/metabolism
11.
Gene ; 834: 146608, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35659893

ABSTRACT

Myod and Myf5 are muscle-specific basic helix-loop-helix (bHLH) transcription factors that play essential roles in regulating skeletal muscle development and growth. In order to investigate potential function of myod and myf5 of Megalobrama amblycephala, an economically important freshwater fish species, in the present study, we characterized the sequences and expression profiles of M. amblycephala myod and myf5. The open reading frame (ORF) sequences of myod and myf5 encoded 275 and 240 amino acids, respectively, possessing analogous structure with the highly conserved domains, bHLH and C-terminal helix III domains. Spatio-temporal expression patterns revealed that myod and myf5 were predominant in skeletal muscle with the highest expression in white muscle, and the highest at 10 days post-hatching (dph) and the segmentation period, respectively. Furthermore, we evaluated the effects of lipopolysaccharide (LPS) on the expression of muscle-related genes in white and red muscle, and proliferation and differentiation of satellite cells. The myod, myf5 and pax-7 expression generally increased and then decreased with increase of LPS concentration and treatment time in red muscle, while these genes showed inconsistent expression patterns in white muscle. In addition, LPS administration caused the frequency increase of satellite cells in red and white muscle especially at 3 and 7 days after LPS-injection.


Subject(s)
Cypriniformes , Satellite Cells, Skeletal Muscle , Animals , Cell Differentiation , Cypriniformes/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Muscle, Skeletal/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factors/genetics
12.
Dev Dyn ; 251(10): 1698-1710, 2022 10.
Article in English | MEDLINE | ID: mdl-35618666

ABSTRACT

BACKGROUND: The turtle carapace is an evolutionary novelty resulting from changes in the processes that build ribs and their associated muscles in most tetrapod species. Turtle embryos have several unique features that might play a role in this process, including the carapacial ridge, a Myf5 gene with shorter coding region that generates an alternative splice variant lacking exon 2, and unusual expression patterns of Lbx1 and HGF. RESULTS: We investigated these turtle-specific expression differences using genetic approaches in mouse embryos. At mid-gestation, mouse embryos producing Myf5 transcripts lacking exon 2 replicated some early properties of turtle somites, but still developed into viable and fertile mice. Extending Lbx1 expression into the hypaxial dermomyotomal lip of trunk somites to mimic the turtle Lbx1 expression pattern, produced fusions in the distal part of the ribs. CONCLUSIONS: Turtle-like Myf5 activity might generate a plastic state in developing trunk somites under which they can either enter carapace morphogenetic routes, possibly triggered by signals from the carapacial ridge, or still engage in the development of a standard tetrapod ribcage in the absence of those signals. In addition, trunk Lbx1 expression might play a later role in the formation of the lateral border of the carapace.


Subject(s)
Turtles , Animal Shells , Animals , Biological Evolution , Mice , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Plastics/metabolism , Somites , Turtles/genetics
13.
J Cell Sci ; 135(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35099008

ABSTRACT

Muscle stem (satellite) cells express Pax7, a key transcription factor essential for satellite cell maintenance and adult muscle regeneration. We identify the corepressor transducin-like enhancer of split-4 (TLE4) as a Pax7 interaction partner expressed in quiescent satellite cells under homeostasis. A subset of satellite cells transiently downregulate TLE4 during early time points following muscle injury. We identify these to be activated satellite cells, and that TLE4 downregulation is required for Myf5 activation and myogenic commitment. Our results indicate that TLE4 represses Pax7-mediated Myf5 transcriptional activation by occupying the -111 kb Myf5 enhancer to maintain quiescence. Loss of TLE4 function causes Myf5 upregulation, an increase in satellite cell numbers and altered differentiation dynamics during regeneration. Thus, we have uncovered a novel mechanism to maintain satellite cell quiescence and regulate muscle differentiation mediated by the corepressor TLE4.


Subject(s)
Cell Differentiation , Muscle Development , Muscle, Skeletal , Nuclear Proteins , Repressor Proteins , Cell Differentiation/genetics , Humans , Muscle Development/genetics , Muscle, Skeletal/cytology , Muscle, Skeletal/injuries , Muscular Diseases/physiopathology , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PAX7 Transcription Factor/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Satellite Cells, Skeletal Muscle/cytology
14.
Nat Commun ; 12(1): 6838, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824202

ABSTRACT

Brown adipocytes share the same developmental origin with skeletal muscle. Here we find that a brown adipocyte-to-myocyte remodeling also exists in mature brown adipocytes, and is induced by prolonged high fat diet (HFD) feeding, leading to brown fat dysfunction. This process is regulated by the interaction of epigenetic pathways involving histone and DNA methylation. In mature brown adipocytes, the histone demethylase UTX maintains persistent demethylation of the repressive mark H3K27me3 at Prdm16 promoter, leading to high Prdm16 expression. PRDM16 then recruits DNA methyltransferase DNMT1 to Myod1 promoter, causing Myod1 promoter hypermethylation and suppressing its expression. The interaction between PRDM16 and DNMT1 coordinately serves to maintain brown adipocyte identity while repressing myogenic remodeling in mature brown adipocytes, thus promoting their active brown adipocyte thermogenic function. Suppressing this interaction by HFD feeding induces brown adipocyte-to-myocyte remodeling, which limits brown adipocyte thermogenic capacity and compromises diet-induced thermogenesis, leading to the development of obesity.


Subject(s)
Adipose Tissue, Brown/pathology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Diet, High-Fat/adverse effects , Epigenesis, Genetic , Histone Demethylases/metabolism , Muscle Development/genetics , Adipocytes, Brown/metabolism , Adipocytes, Brown/pathology , Adipose Tissue, Brown/metabolism , Adiposity/genetics , Animals , DNA (Cytosine-5-)-Methyltransferase 1/deficiency , DNA Methylation , DNA Methyltransferase 3A/deficiency , DNA Methyltransferase 3A/metabolism , DNA-Binding Proteins/metabolism , Gene Silencing , Histone Demethylases/deficiency , Mice , Mice, Knockout , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/metabolism , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Promoter Regions, Genetic , Thermogenesis/genetics , Transcription Factors/metabolism , Weight Gain/genetics
16.
Sci Rep ; 11(1): 18188, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521928

ABSTRACT

Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient's immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and ß-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.


Subject(s)
Drug Discovery/methods , Gene Editing/methods , Muscular Dystrophy, Duchenne/genetics , Myoblasts/drug effects , Primary Cell Culture/methods , Utrophin/genetics , 3' Untranslated Regions/genetics , CRISPR-Cas Systems , Cells, Cultured , Cytoskeletal Proteins/metabolism , Dystroglycans/metabolism , Dystrophin/genetics , HEK293 Cells , Humans , Muscular Dystrophy, Duchenne/metabolism , Myoblasts/metabolism , Myogenic Regulatory Factor 5/metabolism , Sarcoglycans/metabolism , Utrophin/metabolism
17.
Biomolecules ; 11(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34439754

ABSTRACT

Increasing energy expenditure through activation of brown fat thermogenesis is a promising therapeutic strategy for the treatment of obesity. Epigenetic regulation has emerged as a key player in regulating brown fat development and thermogenic program. Here, we aimed to study the role of DNA methyltransferase 3b (Dnmt3b), a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat function and energy homeostasis. We generated a genetic model with Dnmt3b deletion in brown fat-skeletal lineage precursor cells (3bKO mice) by crossing Dnmt3b-floxed (fl/fl) mice with Myf5-Cre mice. Female 3bKO mice are prone to diet-induced obesity, which is associated with decreased energy expenditure. Dnmt3b deficiency also impairs cold-induced thermogenic program in brown fat. Surprisingly, further RNA-seq analysis reveals a profound up-regulation of myogenic markers in brown fat of 3bKO mice, suggesting a myocyte-like remodeling in brown fat. Further motif enrichment and pyrosequencing analysis suggests myocyte enhancer factor 2C (Mef2c) as a mediator for the myogenic alteration in Dnmt3b-deficient brown fat, as indicated by decreased methylation at its promoter. Our data demonstrate that brown fat Dnmt3b is a key regulator of brown fat development, energy metabolism and obesity in female mice.


Subject(s)
Adipose Tissue, Brown/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Myogenic Regulatory Factor 5/metabolism , Obesity/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, White/metabolism , Alleles , Animals , Body Weight , Crosses, Genetic , DNA (Cytosine-5-)-Methyltransferases/genetics , Disease Models, Animal , Energy Metabolism , Epigenesis, Genetic , Female , Insulin Resistance , Mice , Mice, Knockout , Muscle Cells/metabolism , RNA-Seq , Thermogenesis , DNA Methyltransferase 3B
18.
Cells ; 10(7)2021 07 02.
Article in English | MEDLINE | ID: mdl-34359837

ABSTRACT

Induced pluripotent stem (iPS) cells constitute a perfect tool to study human embryo development processes such as myogenesis, thanks to their ability to differentiate into three germ layers. Currently, many protocols to obtain myogenic cells have been described in the literature. They differ in many aspects, such as media components, including signaling modulators, feeder layer constituents, and duration of culture. In our study, we compared three different myogenic differentiation protocols to verify, side by side, their efficiency. Protocol I was based on embryonic bodies differentiation induction, ITS addition, and selection with adhesion to collagen I type. Protocol II was based on strong myogenic induction at the embryonic bodies step with BIO, forskolin, and bFGF, whereas cells in Protocol III were cultured in monolayers in three special media, leading to WNT activation and TGF-ß and BMP signaling inhibition. Myogenic induction was confirmed by the hierarchical expression of myogenic regulatory factors MYF5, MYOD, MYF6 and MYOG, as well as the expression of myotubes markers MYH3 and MYH2, in each protocol. Our results revealed that Protocol III is the most efficient in obtaining myogenic cells. Furthermore, our results indicated that CD56 is not a specific marker for the evaluation of myogenic differentiation.


Subject(s)
Cell Culture Techniques , Culture Media/pharmacology , Embryoid Bodies/drug effects , Fibroblasts/drug effects , Induced Pluripotent Stem Cells/drug effects , Muscle Development/drug effects , Muscle Fibers, Skeletal/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Colforsin/pharmacology , Collagen Type I/pharmacology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Humans , Indoles/pharmacology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Insulin/pharmacology , Muscle Development/genetics , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Myogenin/genetics , Myogenin/metabolism , Oximes/pharmacology , Selenium/pharmacology , Transferrin/pharmacology
19.
Int J Biol Macromol ; 187: 603-613, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34314795

ABSTRACT

Although crotoxin B (CB) is a well-established catalytically active secretory phospholipase A2 group IIA (sPLA2-IIA) myotoxin, we investigated its potential stimulatory effect on myogenesis with the involvement of prostaglandins (PGs) produced by cyclooxygenase (COX)-1 and -2 pathways. Myoblast C2C12 were cultured in proliferation or commitment protocols and incubated with CB followed by lumiracoxib (selective COX-2 inhibitor) or valeryl salicylate (selective COX-1 inhibitor) and subjected to analysis of PG release, cell proliferation and activation of myogenic regulatory factors (MRFs). Our data showed that CB in non-cytotoxic concentrations induces an increase of COX-2 protein expression and stimulates the activity of both COX isoforms to produce PGE2, PGD2 and 15d-PGJ2. CB induced an increase in the proliferation of C2C12 myoblast cells dependent on PGs from both COX-1 and COX-2 pathways. In addition, CB stimulated the activity of Pax7, MyoD, Myf5 and myogenin in proliferated cells. Otherwise, CB increased myogenin activity but not MyoD in committed cells. Our findings evidence the role of COX-1- and COX-2-derived PGs in modulating CB-induced activation of MRFs. This study contributes to the knowledge that CB promote early myogenic events via regulatory mechanisms on PG-dependent COX pathways, showing new concepts about the effect of sPLA2-IIA in skeletal muscle repair.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Crotoxin/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Group II Phospholipases A2/pharmacology , Membrane Proteins/metabolism , Muscle Development/drug effects , Myoblasts, Skeletal/drug effects , Neurotoxins/pharmacology , Prostaglandins/metabolism , Animals , Cell Line , Mice , MyoD Protein/metabolism , Myoblasts, Skeletal/enzymology , Myogenic Regulatory Factor 5/metabolism , Myogenin/metabolism , PAX7 Transcription Factor/metabolism , Signal Transduction
20.
Dev Biol ; 476: 272-281, 2021 08.
Article in English | MEDLINE | ID: mdl-33905720

ABSTRACT

Muscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons which extend through peripheral tissues as a compact bundle, then diverge to create terminal nerve branches to specific muscle targets. As motor nerves approach their targets, they undergo a transition where the fasciculated nerve halts further growth then after a pause, the nerve later initiates branching to muscles. This transition point is potentially an intermediate target or guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve and its association with developing muscles in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any extraocular muscles. The oculomotor axons spread to form a plexus within a mass of cells, which included precursors of extraocular muscles and other orbital tissues and expressed the transcription factor Pitx2. The nerve growth paused in the plexus for more than two days, persisting during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve contact with Pitx2+ cells in the plexus, we used two strategies to genetically ablate Pitx2+ cells or muscle precursors early in nerve development. The first strategy used Myf5-Cre-mediated expression of diphtheria toxin A to ablate muscle precursors, leading to loss of extraocular muscles. The oculomotor axons navigated to the eye to form the main nerve, but subsequently largely failed to initiate terminal branches. The second strategy studied Pitx2 homozygous mutants, which have early apoptosis of Pitx2-expressing precursor cells, including precursors for extraocular muscles and other orbital tissues. Oculomotor nerve fibers also grew to the eye, but failed to stop to form the plexus, instead grew long ectopic projections. These results show that neither Pitx2 function nor Myf5-expressing cells are required for oculomotor nerve navigation to the eye. However, Pitx2 function is required for oculomotor axons to pause growth in the plexus, while Myf5-expressing cells are required for terminal branch initiation.


Subject(s)
Oculomotor Muscles/innervation , Oculomotor Nerve/embryology , Animals , Axons/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Homeodomain Proteins/metabolism , Mice , Muscle Development , Myogenic Regulatory Factor 5/metabolism , Oculomotor Muscles/growth & development , Oculomotor Muscles/metabolism , Oculomotor Nerve/metabolism , Pregnancy , Transcription Factors/metabolism , Homeobox Protein PITX2
SELECTION OF CITATIONS
SEARCH DETAIL
...