Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Neurology ; 103(4): e209697, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39102614

ABSTRACT

BACKGROUND AND OBJECTIVES: The diagnostic process for myofibrillar myopathies (MFM) and distal myopathies (DM) is particularly complex because of the large number of causative genes, the existence of still molecularly undefined disease entities, and the overlapping features between the 2 categories. This study aimed to characterize a large cohort of patients affected by MFM and DM and identify the most important diagnostic and prognostic aspects of these diseases. METHODS: Patients with either a myopathological diagnosis of MFM or a clinical diagnosis of DM were included in this retrospective multicentric national study. Demographic, genetic, clinical, and histopathologic data of anonymized patients were collected from the neuromuscular centers of the Italian Association of Myology network. RESULTS: Data regarding 132 patients with MFM (mean age 57.0 ± 15.8 years, 49% female) and 298 patients with DM (mean age 50.7 ± 15.9 years, 40% female) were gathered from 20 neuromuscular centers. 69 patients fulfilled the criteria for both groups (distal myopathies with myofibrillar pathology, DM-MP). Molecular confirmation was achieved in 63% of the patients. Fifty-two percent of the patients with MFM carried pathogenic variants in either DES (n = 30), MYOT (n = 20), or DNAJB6 (n = 18), which were also the most frequent disease-causing genes in DM-MP, while GNE (n = 44) and MYH7 (n = 23) were the genes most commonly carrying pathogenic variants in DM. The mean age at onset varied from <25 years in patients with causative variants in MYH7 and DYSF to 59 years in patients with myotilinopathies. Cardiac involvement was reported in 29% of patients with MFM and 16% of patients with DM, with DES and MYH7 variants significantly associated with the development of cardiomyopathy. Respiratory impairment was more prevalent in patients with TTN and DES variants and rare in other disorders such as GNE myopathy and dysferlinopathies, which were instead associated, together with DNAJB6-related and PLIN4-related myopathies, with the risk of losing ambulation during the disease course. DISCUSSION: The Italian cohort of patients with MFM and DM recapitulates the phenotypic heterogeneity and the partial overlap between the 2 groups. However, in relative contrast to the encountered phenotypic variability, only 5 genes accounted for most of the molecular diagnoses. Specific genetic entities are associated with significantly increased risk of developing cardiorespiratory complications or loss of ambulation, which has relevant prognostic implications.


Subject(s)
Distal Myopathies , Myopathies, Structural, Congenital , Humans , Female , Male , Middle Aged , Italy , Adult , Distal Myopathies/genetics , Distal Myopathies/pathology , Distal Myopathies/epidemiology , Retrospective Studies , Aged , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 491-496, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970524

ABSTRACT

X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy. In February 2021, a male neonate was admitted to the West China Second University Hospital, Sichuan University, with clinical manifestations of hypotonia, accompanied by distinctive facial features, and requiring continuous ventilatory support. He was born prematurely at 36+2 weeks gestation and developed respiratory distress postnatally, followed by difficulty in weaning from mechanical ventilation. Additional clinical features included hypotonia of the limbs, swallowing dysfunction, and specific facial characteristics (elongated limbs, narrow face, high-arched palate, wrist drop, empty scrotum, elongated fingers/toes). Genetic testing confirmed the diagnosis of XLMTM. Whole-exome sequencing analysis of the family revealed no mutations in the father, paternal grandfather, or paternal grandmother, while the mother had a heterozygous mutation. The pathogenic mutation was identified as MTM1 gene (OMIM: 300415), chromosome position chrX-150649714, with a nucleotide change of c.868-2A>C. The patient exhibited typical facial features. Genetic testing is crucial for accurate diagnosis of XLMTM in infants presenting with abnormal muscle tone and distinctive facial features.


Subject(s)
Mutation , Myopathies, Structural, Congenital , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/diagnosis , Male , Infant, Newborn , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Exome Sequencing , Genetic Testing , Muscle Hypotonia/genetics
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 812-816, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946363

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of two newborns with Central nuclear myopathy (CNM). METHODS: Two newborns with CNM diagnosed clinically at Wuhan Children's Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology in April 2019 and November 2021 were selected as the study subjects, and their clinical data was collected. Both newborns and their parents were subjected chromosomal karyotyping analysis and whole exome sequencing (WES). Candidate variants were verified by Sanger sequencing. Pathogenicity of the candidate variants was evaluated based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). RESULTS: Patient 1 was a male neonate and Patient 2 was a 20-day-old male infant. Both newborns had featured difficulty in breathing and swallowing. WES revealed that both had harbored hemizygous variants of the MTM1 gene, which were verified by Sanger sequencing. Patient 1 had harbored a c.1261A>G variant. Based on the ACMG guidelines, it was rated as pathogenic (PVS1+PM2_Supporting+PP3). Patient 2 harbored a c.342delT variant, which was also rated as pathogenic (PVS1+PM2_Supporting+PP3). CONCLUSION: The c.1261A>G and c.342delT variants of the MTM1 gene probably underlay the pathogenesis of CNM in the two patients.


Subject(s)
Myopathies, Structural, Congenital , Humans , Male , Myopathies, Structural, Congenital/genetics , Infant, Newborn , Mutation , Exome Sequencing , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Genetic Testing
4.
Genome Med ; 16(1): 87, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982518

ABSTRACT

BACKGROUND: Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS: To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS: Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS: Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.


Subject(s)
Exome Sequencing , Genetic Association Studies , Phenotype , Humans , Male , Female , Genetic Predisposition to Disease , Mutation , Exome/genetics , Pedigree , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/diagnosis , Muscular Diseases/genetics , Muscular Diseases/diagnosis , Muscular Diseases/congenital , Child , Adult
5.
Elife ; 132024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995680

ABSTRACT

Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.


Subject(s)
Adaptor Proteins, Signal Transducing , Myopathies, Structural, Congenital , Nuclear Proteins , Tumor Suppressor Proteins , src Homology Domains , Myopathies, Structural, Congenital/metabolism , Myopathies, Structural, Congenital/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Binding , Dynamin II/metabolism , Dynamin II/genetics , Mutation
6.
Nat Commun ; 15(1): 6327, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068203

ABSTRACT

Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness.


Subject(s)
Muscle, Skeletal , Trinucleotide Repeat Expansion , White People , Humans , Male , Female , Adult , Trinucleotide Repeat Expansion/genetics , Middle Aged , White People/genetics , Muscle, Skeletal/pathology , ATP-Binding Cassette Transporters/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Pedigree , Aged , Young Adult , Fibroblasts/metabolism , Fibroblasts/pathology , Muscle Weakness/genetics , Muscle Weakness/pathology , Adolescent , Muscular Dystrophies
7.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710289

ABSTRACT

The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.


Subject(s)
Calcium Signaling , Calcium , Homeostasis , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Calcium/metabolism , Animals , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Mutation
8.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38717859

ABSTRACT

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Subject(s)
Adaptor Proteins, Signal Transducing , Dynamin II , Tumor Suppressor Proteins , Dynamin II/metabolism , Dynamin II/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Membrane/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mitochondrial Dynamics/physiology , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism
9.
JCI Insight ; 9(6)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38516893

ABSTRACT

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.


Subject(s)
Blood Platelet Disorders , Dyslexia , Ichthyosis , Migraine Disorders , Myopathies, Structural, Congenital , ORAI1 Protein , Spleen , Animals , Mice , Calcium/metabolism , Erythrocytes, Abnormal , Migraine Disorders/drug therapy , Miosis/drug therapy , Miosis/genetics , Miosis/metabolism , Muscle Fatigue , Myopathies, Structural, Congenital/drug therapy , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Spleen/metabolism , Spleen/abnormalities
10.
Stem Cell Res ; 76: 103338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354647

ABSTRACT

Myofibrillar myopathy (MFM) is a rare genetic disorder characterized by muscular dystrophy that is often associated with cardiac disease. This disease is caused by mutations in several genes, among them DES (encoding desmin) is the most frequently affected. Peripheral blood mononuclear cells from 5 different MFM patients with different DES mutations were reprogrammed into induced pluripotent stem cells (IPSC) using non-integrative vectors. For each patient, one IPSC clone was selected and demonstrated pluripotency hallmarks without genomic abnormalities. SNP profiles were identical to the cells of origin and all the clones have the capacity to differentiate into all three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Myopathies, Structural, Congenital , Humans , Leukocytes, Mononuclear , Myopathies, Structural, Congenital/genetics , Mutation/genetics
12.
J Med Genet ; 61(7): 626-632, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38413182

ABSTRACT

BACKGROUND: Congenital myopathies are a clinical, histopathological and genetic heterogeneous group of inherited muscle disorders that are defined on peculiar architectural abnormalities in the muscle fibres. Although there have been at least 33 different genetic causes of the disease, a significant percentage of congenital myopathies remain genetically unresolved. The present study aimed to report a novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy. METHODS: A comprehensive strategy combining laser capture microdissection, proteomics and whole-exome sequencing was performed to identify the candidate genes. In addition, the available clinical data, myopathological changes, the findings of electrophysiological examinations and thigh muscle MRIs were also reviewed. A cellular model was established to assess the pathogenicity of the TUBA4A variant. RESULTS: We identified a recurrent novel heterozygous de novo c.679C>T (p.L227F) variant in the TUBA4A (NM_006000), encoding tubulin alpha-4A, in two unrelated patients with clinicopathologically diagnosed sporadic congenital myopathy. The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiquitin-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of the L227F mutant TUBA4A resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model. CONCLUSION: Our findings expanded the phenotypic and genetic manifestations of TUBA4A as well as tubulinopathies, and added a new type of congenital myopathy to be taken into consideration in the differential diagnosis.


Subject(s)
Myopathies, Structural, Congenital , Tubulin , Adult , Female , Humans , Male , Exome Sequencing , Muscle, Skeletal/pathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Mutation , Myofibrils/pathology , Myofibrils/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Pedigree , Tubulin/genetics
13.
Int J Rheum Dis ; 27(2): e15036, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333999

ABSTRACT

Myofibrillar myopathies (MFMs) are a group of genetically heterogeneous diseases affecting the skeletal and cardiac muscles. Myofibrillar myopathies are characterized by focal lysis of myogenic fibers and integration of degraded myogenic fiber products into inclusion bodies, which are typically rich in desmin and many other proteins. Herein, we report a case of a 54-year-old woman who experienced bilateral thigh weakness for over three years. She was diagnosed with MFMs based on muscle biopsy findings and the presence of a novel mutation in exon 8 of the LDB3 gene. Myofibrillar myopathies caused by a mutation in the LDB3 gene are extremely uncommon and often lack distinct clinical characteristics and typically exhibit a slow disease progression. When considering a diagnosis of MFMs, particularly in complex instances of autosomal dominant myopathies where muscle biopsies do not clearly indicate MFMs, it becomes crucial for clinicians to utilize genetic test as a diagnostic tool.


Subject(s)
Myofibrils , Myopathies, Structural, Congenital , Female , Humans , Middle Aged , Myofibrils/genetics , Myofibrils/metabolism , Myofibrils/pathology , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Mutation , Exons , Myocardium , Muscle, Skeletal/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
14.
Genes (Basel) ; 14(12)2023 12 03.
Article in English | MEDLINE | ID: mdl-38136996

ABSTRACT

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. METHODS: We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. RESULTS: Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). CONCLUSIONS: Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.


Subject(s)
Mutation, Missense , Myopathies, Structural, Congenital , Infant, Newborn , Humans , Prognosis , Phenotype , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Genetic Association Studies
15.
Pediatr. aten. prim ; 22(88): e211-e215, oct.-dic. 2020.
Article in Spanish | IBECS | ID: ibc-201450

ABSTRACT

INTRODUCCIÓN: la elevación persistente de creatinfosfoquinasa (CK) puede constituir la primera manifestación de una patología muscular subyacente. Su correcto abordaje permite un adecuado tratamiento precoz, asesoramiento familiar e información sobre su pronóstico y sus complicaciones. CASO CLÍNICO: niño de siete años, asintomático, con elevación de CK como hallazgo casual en una analítica de rutina, persistiendo en controles seriados. Exploración física normal. Tras un estudio metabólico completo normal, se solicita estudio genético dirigido a descartar distrofinopatías u otras miopatías. Se observa una mutación en el gen RYR1, c.9912C>A; p. (Cys3304*), variante probablemente patogénica compatible con miopatía congénita de cores centrales (#MIM11700). Ante un diagnóstico genético en paciente asintomático, se evita la realización de otras técnicas invasivas. CONCLUSIONES: la miopatía congénita de cores centrales es la patología neuromuscular congénita más frecuente. Se relaciona con la presencia de mutaciones en el gen RYR1 (90% de los pacientes). Pertenece a la familia de los canales liberadores de calcio iónico, cuyo papel es fundamental en el fenómeno de acoplamiento excitación-contracción muscular. Su diagnóstico clásico era la biopsia muscular. Está asociado a complicaciones como hipertermia maligna o rabdomiolisis


INTRODUCTION: persistently elevated serum creatine kinase levels may lean the first manifestation of an underlying neuromuscular disease. Its appropriate approach allows an adequate early treatment, a genetic counselling and information concerning complications and prognosis. CASE DESCRIPTION: our patient was an asymptomatic 7-year-old boy with persistent serum CK elevation. He had a normal physical examination. After a normal metabolic study, a specific genetic study for dystrophinopaties or other myopathies was requested. A variant of uncertain significance mutation [RYR1, c.9912C>A; p. (Cys3304*)] associated with central core disease (#MIM11700) was obtained. Before this genetic diagnosis the invasive testing was rejected. DISCUSSION: central core disease is the most frequent congenital neuromuscular disease. About 90% of cases are linked to RYR1 gene mutations. RYR1 protein is a part of macromolecular complex deputed to excitation-contraction coupling through Ca2+ channels. Its diagnosis is confirmed by histological examination. CCD is associated to malignant hyperthermia and rabdomiolisis susceptibility


Subject(s)
Humans , Male , Child , Hypercalcemia/diagnosis , Creatine Kinase/blood , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics
17.
Rev. neurol. (Ed. impr.) ; 57(supl.1): s53-s64, 6 sept., 2013. tab, ilus
Article in Spanish | IBECS | ID: ibc-149006

ABSTRACT

Introducción. Las miopatías congénitas son un grupo heterogéneo de enfermedades que comparten clínica de inicio precoz y alteraciones histopatológicas musculares específicas. El estudio genético permite determinar la mutación causal en la mayoría de los casos. Existe heterogeneidad fenotípica y genotípica, lo que se ilustra al observar que un genotipo puede expresarse en más de una forma clinicopatológica y un fenotipo puede estar causado por diferentes mutaciones genéticas. Desarrollo. En esta revisión, se detallan las características de las principales miopatías congénitas que permiten su identificación clínica, patológica y genética. Se describen los hallazgos de la biopsia muscular que constituyen el principal pilar diagnóstico. Se enfatiza y se detalla la importancia del diagnóstico diferencial, descartando otras patologías que se presentan con hipotonía en la lactancia o el período neonatal. Se destacan las formas neonatales graves (nemalínica, miotubular ligada al X) que se deben identificar precozmente para establecer el pronóstico y brindar un consejo genético adecuado. Se subrayan las mutaciones del gen rianodina (RYR1) por su asociación a la hipertermia maligna y las mutaciones de la selenoproteína 1 (SEPN1) y la miopatía nemalínica por su asociación a hipoventilación nocturna. Conclusiones. El conocimiento profundo de las miopatías estructurales congénitas facilita la confirmación diagnóstica de la miopatía congénita, lo que permite la aplicación oportuna de medidas relacionadas con la respiración y la alimentación de los casos más graves y con la optimización de la función motora en todos los pacientes con miopatía congénita (AU)


Introduction. Congenital myopathies are a heterogeneous group of diseases that share clinical early onset and specific hystopathological alterations in muscle. Genetic studies allow to determine the causative mutation in most cases. Genotypic and phenotypic heterogeneity exists, which is illustrated by noting that a genotype can be expressed in more than one clinicopathologic way and a phenotype may be caused by different genetic mutations. Development. In this review we detail the characteristics of major congenital myopathies that allow clinical, pathological and genetic identification. We describe the findings of muscle biopsy that are the mainstay diagnosis. We emphasize and detail the importance of differential diagnosis by ruling out other diseases that present with hypotonia in infancy or neonatal period. We highlight the severe neonatal forms (nemaline, X-linked myotubular) to be identified early to establish prognosis and provide appropriate genetic counseling. We emphasize mutations of ryanodine gene (RYR1) through its association with malignant hyperthermia and mutations of selenoprotein 1 (SEPN1) and nemaline by its association with nocturnal hypoventilation. Conclusions. The deep knowledge of structural congenital myopathies facilitates diagnostic confirmation of congenital myopathy, allowing the timely implementation of measures related to breathing and feeding in more severe cases and the optimization of motor function in all patients with myopathy congenital (AU)


Subject(s)
Humans , Infant, Newborn , Infant , Myopathies, Structural, Congenital/classification , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Myopathies, Nemaline/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Genotype , Genes, Recessive , Genes, Dominant , Muscle Proteins/genetics , Phenotype , Adaptor Proteins, Signal Transducing/genetics , Muscle, Skeletal/pathology , Myopathy, Central Core/genetics , Selenoproteins/genetics , Tropomyosin/genetics , Tumor Suppressor Proteins/genetics
18.
Yonsei Medical Journal ; : 547-550, 2011.
Article in English | WPRIM (Western Pacific) | ID: wpr-181460

ABSTRACT

X-linked myotubular myopathy (XLMTM) is a rare congenital muscle disorder, caused by mutations in the MTM1 gene. Affected male infants present severe hypotonia, and generalized muscle weakness, and the disorder is most often complicated by respiratory failure. Herein, we describe a family with 2 infants with XLMTM which was diagnosed by gene analysis and muscle biopsy. In both cases, histological findings of muscle showed severely hypoplastic muscle fibers with centrally placed nuclei. From the family gene analysis, the Arg486STOP mutation in the MTM1 gene was confirmed.


Subject(s)
Humans , Male , Codon, Nonsense , Muscle Hypotonia/genetics , Myopathies, Structural, Congenital/genetics , Pedigree , Protein Tyrosine Phosphatases, Non-Receptor/genetics
20.
Article in English | WPRIM (Western Pacific) | ID: wpr-204030

ABSTRACT

Centronuclear myopathies are clinically and genetically heterogenous diseases with common histological findings, namely, centrally located nuclei in muscle fibers with a predominance and hypotrophy of type 1 fibers. We describe two cases from one family with autosomal dominant centronuclear myopathy with unusual clinical features that had initially suggested distal myopathy. Clinically, the patients presented with muscle weakness and atrophy localized mainly to the posterior compartment of the distal lower extremities. Magnetic resonance imaging revealed predominant atrophy and fatty changes of bilateral gastrocnemius and soleus muscles. This report demonstrates the expanding clinical heterogeneity of autosomal dominant centronuclear myopathy.


Subject(s)
Adolescent , Female , Humans , Middle Aged , Genes, Dominant , Muscle, Skeletal/pathology , Myopathies, Structural, Congenital/genetics
SELECTION OF CITATIONS
SEARCH DETAIL