Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 675
Filter
1.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690726

ABSTRACT

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Subject(s)
Amino Acid Substitution , Distal Myopathies , Proline , Animals , Mice , Humans , Proline/genetics , Proline/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Distal Myopathies/pathology , Mutation, Missense , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Female , Male , Mice, Transgenic , Muscle Contraction/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
2.
PLoS Comput Biol ; 20(4): e1012005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662764

ABSTRACT

Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.


Subject(s)
Adenosine Triphosphate , Myosin Heavy Chains , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Thermodynamics , Molecular Dynamics Simulation , Computational Biology/methods , Hydrolysis , Binding Sites , Models, Molecular , Protein Conformation
3.
Insect Sci ; 31(2): 435-447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37489033

ABSTRACT

Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.


Subject(s)
Locusta migratoria , Muscle, Striated , Animals , Locusta migratoria/genetics , Locusta migratoria/metabolism , Amino Acid Sequence , Myosins/chemistry , Myosins/genetics , Myosins/metabolism , Protein Isoforms/genetics , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Muscle, Striated/metabolism
4.
J Biol Chem ; 299(9): 105143, 2023 09.
Article in English | MEDLINE | ID: mdl-37562567

ABSTRACT

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Subject(s)
Alternative Splicing , Brain , Nonmuscle Myosin Type IIA , Humans , Actins/metabolism , Brain/metabolism , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Nonmuscle Myosin Type IIA/chemistry , Nonmuscle Myosin Type IIA/genetics , Nonmuscle Myosin Type IIA/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Circadian Rhythm , Ca(2+) Mg(2+)-ATPase/metabolism , Organ Specificity
5.
J Phys Chem B ; 126(38): 7262-7270, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36107864

ABSTRACT

Myosin VI dimer walks toward the minus end of the actin filament with a large and variable step size of 25-36 nm. Two competing models have been put forward to explain this large step size. The Spudich model assumes that the myosin VI dimer associates at a distal tail near the cargo-binding domain, which makes two full-length single α-helix (SAH) domains serve as long legs. In contrast, the Houdusse-Sweeney model assumes that the association occurs in the middle (between residues 913 and 940) of the SAH domain and that the three-helix bundles unfold to ensure the large step size. Their consistency with the observation of stepping motion with a large and variable step size has not been examined in detail. To compare the two proposed models of myosin VI, we computationally characterized the free energy landscape experienced by the leading head during the stepping movement along the actin filament using the elastic network model of two heads and an implicit model of the SAH domains. Our results showed that the Spudich model is more consistent with the 25-36 nm step size than the Houdusse-Sweeney model. The unfolding of the three-helix bundles gives rise to the free energy bias toward a shorter distance between two heads. Besides, the stiffness of the SAH domain is a key factor for giving strong energetic bias toward the longer distance of stepping. Free energy analysis of the stepping motion complements the visual inspection of static structures and enables a deeper understanding of underlying mechanisms of molecular motors.


Subject(s)
Actins , Myosin Heavy Chains , Actin Cytoskeleton , Actins/chemistry , Movement , Myosin Heavy Chains/chemistry
6.
J Histochem Cytochem ; 70(3): 225-236, 2022 03.
Article in English | MEDLINE | ID: mdl-34957888

ABSTRACT

The soft palate is the only structure that reversibly separates the respiratory and gastrointestinal systems. Most species can eat and breathe at the same time. Humans cannot do this and malfunction of the soft palate may allow food to enter the lungs and cause fatal aspiration pneumonia. Speech is the most defining characteristic of humans and the soft palate, along with the larynx and tongue, plays the key roles. In addition, palatal muscles are involved in snoring and obstructive sleep apnea. Considering the significance of the soft palate, its function is insufficiently understood. The objectives of this study were to document morphometric and immunohistochemical characteristics of adult human soft palate muscles, including fiber size, the fiber type, and myosin heavy chain (MyHC) composition for better understanding muscle functions. In this study, 15 soft palates were obtained from human autopsies. The palatal muscles were separated, cryosectioned, and stained using histological and immunohistochemical techniques. The results showed that there was a fast type II predominance in the musculus uvulae and palatopharyngeus and a slow type I predominance in the levator veli palatine. Approximately equal proportions of type I and type II fibers existed in both the palatoglossus and tensor veli palatine. Soft palate muscles also contained hybrid fibers and some specialized myofibers expressing slow-tonic and embryonic MyHC isoforms. These findings would help better understand muscle functions.


Subject(s)
Palatal Muscles/cytology , Palate, Soft/cytology , Adult , Aged , Female , Humans , Immunohistochemistry , Male , Middle Aged , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Palatal Muscles/metabolism , Palate, Soft/metabolism
7.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34873039

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identified nonmuscle myosin heavy chain IIA (MYH9) as an important host factor for SARS-CoV-2 infection of human pulmonary cells by using APEX2 proximity-labeling techniques. Genetic ablation of MYH9 significantly reduced SARS-CoV-2 pseudovirus infection in wild type (WT) A549 and Calu-3 cells, and overexpression of MYH9 enhanced the pseudovirus infection in WT A549 and H1299 cells. MYH9 was colocalized with the SARS-CoV-2 S and directly interacted with SARS-CoV-2 S through the S2 subunit and S1-NTD (N-terminal domain) by its C-terminal domain (designated as PRA). Further experiments suggested that endosomal or myosin inhibitors effectively block the viral entry of SARS-CoV-2 into PRA-A549 cells, while transmembrane protease serine 2 (TMPRSS2) and cathepsin B and L (CatB/L) inhibitors do not, indicating that MYH9 promotes SARS-CoV-2 endocytosis and bypasses TMPRSS2 and CatB/L pathway. Finally, we demonstrated that loss of MYH9 reduces authentic SARS-CoV-2 infection in Calu-3, ACE2-A549, and ACE2-H1299 cells. Together, our results suggest that MYH9 is a candidate host factor for SARS-CoV-2, which mediates the virus entering host cells by endocytosis in an ACE2-dependent manner, and may serve as a potential target for future clinical intervention strategies.


Subject(s)
COVID-19/virology , Myosin Heavy Chains/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , Cell Membrane/metabolism , Humans , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Protein Binding , Protein Domains , Severe acute respiratory syndrome-related coronavirus/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
8.
Eur J Med Genet ; 64(11): 104314, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34481090

ABSTRACT

OBJECTIVE: Atrial septal defect, secundum (ASD Ⅱ, OMIM: 603642) is the second common congenital heart defect (CHD) in China. However, the genetic etiology of familial ASD II remains elusive. METHODS AND RESULTS: Using whole-exome sequencing (WES) and Sanger sequencing, we identified a novel myosin heavy chain 6 (MYH6) gene insertion variation, NM_002471.3: c.5465_5470dup (Arg1822_Glu1823dup), in a large Chinese Han family with ASD II. The variant Arg1822_Glu1823dup co-segregated with the disease in this family with autosomal dominant inheritance. The insertion variant located in the coiled-coil domain of the MYH6 protein, which is highly conserved across homologous myosin proteins and species. In transfected myoblast C2C12 cell lines, the MYH6 Arg1822_Glu1823dup variant significantly impaired myofibril formation and increased apoptosis but did not significantly reduce cell viability. Furthermore, molecular simulations revealed that the Arg1822_Glu1823dup variant impaired the myosin α-helix, increasing the stability of the coiled-coil myosin dimer, suggesting that this variant has an effect on the coiled-coil domain self-aggregation. These findings indicate that Arg1822_Glu1823dup variant plays a crucial role in the pathogenesis of ASD II. CONCLUSION: Our findings expand the spectrum of MYH6 variations associated with familial ASD II and may provide a molecular basis in genetic counseling and prenatal diagnosis for this Chinses family.


Subject(s)
Cardiac Myosins/genetics , Heart Septal Defects, Atrial/genetics , Mutagenesis, Insertional , Myosin Heavy Chains/genetics , Adult , Animals , Apoptosis , Cardiac Myosins/chemistry , Cardiac Myosins/metabolism , Cell Line , Cell Survival , Child , Female , Heart Septal Defects, Atrial/metabolism , Heart Septal Defects, Atrial/pathology , Humans , Male , Mice , Middle Aged , Myoblasts/metabolism , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Pedigree , Protein Conformation, alpha-Helical , Protein Stability
9.
ACS Infect Dis ; 7(6): 1483-1502, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34019767

ABSTRACT

Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.


Subject(s)
Papain , Peptide Hydrolases , SARS-CoV-2/enzymology , Viral Proteases/metabolism , Amino Acid Sequence , Cardiac Myosins/chemistry , Forkhead Transcription Factors/chemistry , Humans , Myosin Heavy Chains/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , Protein S/chemistry , Receptor, ErbB-4/chemistry
10.
Molecules ; 26(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800606

ABSTRACT

We investigated the effect of endogenous cathepsin L on surimi gel produced from olive flounder (Paralichthys olivaceus). The amino acid sequences of six proteins predicted or identified as cathepsin L were obtained from the olive flounder genome database, and a phylogenetic analysis was conducted. Next, cathepsin L activity toward N-α-benzyloxycarbonyl-l-phenylalanyl-l-arginine-(7-amino-4-methylcoumarin) (Z-F-R-AMC) was detected in crude olive flounder extract and a crude enzyme preparation. A considerable decrease in the level of myosin heavy chain (MHC) in surimi occurred during autolysis at 60 °C. In contrast, the levels of actin, troponin-T, and tropomyosin decreased only slightly. To prevent protein degradation by cathepsin L, a protease inhibitor was added to surimi. In the presence of 1.0% protease inhibitor, the autolysis of olive flounder surimi at 60 °C was inhibited by 12.2%; the degree of inhibition increased to 44.2% as the inhibitor concentration increased to 3.0%. In addition, the deformation and hardness of modori gel increased as the inhibitor concentration increased to 2.0%. Therefore, cathepsin L plays an important role in protein degradation in surimi, and the quality of surimi gel could be enhanced by inhibiting its activity.


Subject(s)
Cathepsin L/metabolism , Fish Proteins/metabolism , Flounder/metabolism , Food Technology/methods , Muscle Proteins/metabolism , Actins/chemistry , Actins/metabolism , Amino Acid Sequence , Animals , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Cathepsin L/isolation & purification , Fish Products/analysis , Fish Proteins/antagonists & inhibitors , Fish Proteins/genetics , Fish Proteins/isolation & purification , Flounder/classification , Flounder/genetics , Gene Expression , Humans , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Muscle Proteins/isolation & purification , Muscles/chemistry , Muscles/enzymology , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Phylogeny , Protease Inhibitors/pharmacology , Proteolysis , Sequence Alignment , Sequence Homology, Amino Acid , Tropomyosin/chemistry , Tropomyosin/metabolism , Troponin T/chemistry , Troponin T/metabolism
11.
J Biol Chem ; 296: 100694, 2021.
Article in English | MEDLINE | ID: mdl-33895132

ABSTRACT

Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, ß-myosin heavy chain (ß-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike ß-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of ß-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate ß-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.


Subject(s)
Cardiac Myosins/metabolism , Myocardium/metabolism , Myosin Heavy Chains/metabolism , RNA, Long Noncoding/genetics , Cardiac Myosins/chemistry , Humans , Induced Pluripotent Stem Cells , MicroRNAs/genetics , Molecular Dynamics Simulation , Myocardium/cytology , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/chemistry , Protein Conformation
12.
Acta Neuropathol Commun ; 9(1): 79, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33926564

ABSTRACT

The MYH2 gene encodes the skeletal muscle myosin heavy chain IIA (MyHC-IIA) isoform, which is expressed in the fast twitch type 2A fibers. Autosomal dominant or recessive pathogenic variants in MYH2 lead to congenital myopathy clinically featured by ophthalmoparesis and predominantly proximal weakness. MYH2-myopathy is pathologically characterized by loss and atrophy of type 2A fibers. Additional myopathological abnormalities have included rimmed vacuoles containing small p62 positive inclusions, 15-20 nm tubulofilaments, minicores and dystrophic changes. We report an adult patient with late-pediatric onset MYH2-myopathy caused by two heterozygous pathogenic variants: c.3331C>T, p.Gln1111* predicted to result in truncation of the proximal tail region of MyHC-IIA, and c.1546T>G, p.Phe516Val, affecting a highly conserved amino acid within the highly conserved catalytic motor head relay loop. This missense variant is predicted to result in a less compact loop domain and in turn could affect the protein affinity state. The patient's genotype is accompanied by a novel myopathological phenotype characterized by centralized large myofilamentous tangles associated with clusters of nemaline rods, and ring fibers, in addition to the previously reported rimmed vacuoles, paucity and atrophy of type 2A fibers. Electron microscopy demonstrated wide areas of disorganized myofibrils which were oriented in various planes of direction and entrapped multiple nemaline rods, as corresponding to the large tangles with rods seen on light microscopy. Nemaline rods were rarely observed also in nuclei. We speculate that the mutated MyHC-IIA may influence myofibril disorganization. While nemaline rods have been described in myopathies caused by pathogenic variants in genes encoding several sarcomeric proteins, to our knowledge, nemaline rods have not been previously described in MYH2-myopathy.


Subject(s)
Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Myosin Heavy Chains/genetics , Phenotype , Adult , Humans , Male , Myosin Heavy Chains/chemistry , Protein Structure, Secondary
13.
Food Chem ; 353: 129453, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33765599

ABSTRACT

This study investigated the effects of transglutaminase (TGase) on the properties of myofibrillar protein (MP) and its heat-induced gels under malondialdehyde (MDA)-induced oxidation. The physicochemical characteristics, protein aggregation and rheological properties of MP were assessed. The gelling behaviours of MP were analysed with measurements of gel strength, cooking loss, microstructure and secondary structure. Under varying degrees of MDA oxidation, the addition of TGase always led to changes in the tertiary structure, loss of free amine and thiol groups, crosslinking of the myosin heavy chain, and decreasing solubility. However, the effect of TGase on MP gel quality differed. At 6 mmol/L MDA, the addition of TGase reduced the quality of MP gels by increasing cooking loss. However, at 12 mmol/L MDA, TGase reduced both the cooking loss and gel strength.


Subject(s)
Malondialdehyde/chemistry , Meat Proteins/chemistry , Transglutaminases/chemistry , Animals , Cooking , Gels/chemistry , Hot Temperature , Malondialdehyde/metabolism , Meat Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Myofibrils/chemistry , Myosin Heavy Chains/chemistry , Oxidation-Reduction , Oxidative Stress , Pork Meat , Protein Structure, Secondary , Rheology , Solubility , Sulfhydryl Compounds/chemistry , Swine , Transglutaminases/metabolism
14.
J Food Sci ; 86(3): 881-891, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33598951

ABSTRACT

The combined effect of ascorbic acid (AsA) and hydrogen peroxide (H2 O2 ) on gel-forming ability and structural changes of lizardfish (LZ) and threadfin bream (TB) surimi were investigated. Addition of 0.15% AsA and 0.1% H2 O2 greatly increased breaking force and distance of LZ surimi by 300% and 55%, respectively. Combination of 0.2% AsA and 0.15% H2 O2 resulted in the maximum TB surimi gel improvement with 150% and 90% increase in breaking force and distance, respectively. Browning reaction obviously occurred when combined AsA and H2 O2 was added, due to ascorbic acid oxidation. Polymerization of myosin heavy chain via disulfide bonds was promoted, and the formation of disulfide bonds was involved through oxidation of sulfhydryl groups with increasing AsA and H2 O2 . Fourier-transform infrared (FT-IR) spectroscopy revealed a decrease in α-helix and an increase in ß-sheet content as AsA and H2 O2 increased in both species. A decrease of band area of aliphatic (2,800 to 3,000 and 1,450 cm-1 ), aromatic (1,208, 757, and ratio 850/830 cm-1 ), and change of disulfide bonds (525 and 540 cm-1 ) suggested an increase in hydrophobic interactions and disulfide bonds with addition of these additives. Based on principal component analysis (PCA), textural characteristics were positively correlated with ß-sheet content. Our study suggested that combination of AsA and H2 O2 greatly enhanced gelation of LZ and TB by increasing not only disulfide bonds but also hydrophobic interactions. PRACTICAL APPLICATION: The combined ascorbic acid and hydrogen peroxide can be used to improve gelation of two important tropical surimi species, namely threadfin bream and lizardfish surimi, without requirement of setting. The optimum concentration of each additive varied with fish species.


Subject(s)
Ascorbic Acid/administration & dosage , Fish Proteins/chemistry , Gels/chemistry , Hydrogen Peroxide/administration & dosage , Animals , Colloids , Fish Products/analysis , Food Handling/methods , Hydrophobic and Hydrophilic Interactions , Mechanical Phenomena , Myosin Heavy Chains/chemistry , Sea Bream , Spectroscopy, Fourier Transform Infrared , Vibration
15.
Food Chem ; 334: 127611, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32712493

ABSTRACT

Plant polyphenols applied as natural antioxidant ingredients, are known to bind to cysteine residues on meat proteins. The aim of this study was to examine the effect of light exposure on the formation of cysteine-phenol adduct in meat added 4-methylcatechol (4MC), a model polyphenol, during storage through quantitative LC-MS/MS-based analysis. Cysteine-4-methylcatechol adduct (Cys-4MC) formation in meat added 1500 ppm 4-MC increased significantly (by 50%) when stored under light in oxygen at 4 °C for 7 days as compared to storage in the dark. This was reflected by a significant decrease in thiol concentrations in the same sample. Gel electrophoresis showed loss in myosin heavy chain (MHC), and a resulting increase in cross-linked MHC (CL-MHC) and larger protein polymers in samples added 4MC. Protein blots stained with nitroblue tetrazolium (NBT) showed intensive protein-polyphenol binding in the meat samples added 4MC, but no major differences between storage conditions.


Subject(s)
Catechols/chemistry , Food Storage/methods , Meat Proteins/chemistry , Meat , Oxygen/chemistry , Antioxidants/chemistry , Chromatography, Liquid , Cysteine/chemistry , Electrophoresis, Polyacrylamide Gel , Light , Meat/analysis , Meat Proteins/metabolism , Myosin Heavy Chains/chemistry , Sulfhydryl Compounds/chemistry , Tandem Mass Spectrometry
16.
J Biol Chem ; 296: 100232, 2021.
Article in English | MEDLINE | ID: mdl-33372034

ABSTRACT

Myosin VI ensembles on endocytic cargo facilitate directed transport through a dense cortical actin network. Myosin VI is recruited to clathrin-coated endosomes via the cargo adaptor Dab2. Canonically, it has been assumed that the interactions between a motor and its cargo adaptor are stable. However, it has been demonstrated that the force generated by multiple stably attached motors disrupts local cytoskeletal architecture, potentially compromising transport. In this study, we demonstrate that dynamic multimerization of myosin VI-Dab2 complexes facilitates cargo processivity without significant reorganization of cortical actin networks. Specifically, we find that Dab2 myosin interacting region (MIR) binds myosin VI with a moderate affinity (184 nM) and single-molecule kinetic measurements demonstrate a high rate of turnover (1 s-1) of the Dab2 MIR-myosin VI interaction. Single-molecule motility shows that saturating Dab2-MIR concentration (2 µM) promotes myosin VI homodimerization and processivity with run lengths comparable with constitutive myosin VI dimers. Cargo-mimetic DNA origami scaffolds patterned with Dab2 MIR-myosin VI complexes are weakly processive, displaying sparse motility on single actin filaments and "stop-and-go" motion on a cellular actin network. On a minimal actin cortex assembled on lipid bilayers, unregulated processive movement by either constitutive myosin V or VI dimers results in actin remodeling and foci formation. In contrast, Dab2 MIR-myosin VI interactions preserve the integrity of a minimal cortical actin network. Taken together, our study demonstrates the importance of dynamic motor-cargo association in enabling cargo transportation without disrupting cytoskeletal organization.


Subject(s)
Actin Cytoskeleton/genetics , Adaptor Proteins, Signal Transducing/chemistry , Apoptosis Regulatory Proteins/chemistry , Multiprotein Complexes/chemistry , Myosin Heavy Chains/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/ultrastructure , Clathrin-Coated Vesicles/chemistry , Clathrin-Coated Vesicles/genetics , Cytoskeleton/chemistry , Cytoskeleton/genetics , Cytoskeleton/ultrastructure , Endocytosis/genetics , Endosomes/genetics , Humans , Kinetics , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Myosin Heavy Chains/genetics , Myosin Heavy Chains/ultrastructure , Phosphatidylserines/genetics , Protein Binding/genetics , Protein Multimerization/genetics , Single Molecule Imaging
17.
Cells ; 9(8)2020 08 15.
Article in English | MEDLINE | ID: mdl-32824179

ABSTRACT

The myosin family is a large inventory of actin-associated motor proteins that participate in a diverse array of cellular functions. Several myosin classes are expressed in neural cells and play important roles in neural functioning. A recently discovered member of the myosin superfamily, the vertebrate-specific myosin XVI (Myo16) class is expressed predominantly in neural tissues and appears to be involved in the development and proper functioning of the nervous system. Accordingly, the alterations of MYO16 has been linked to neurological disorders. Although the role of Myo16 as a generic actin-associated motor is still enigmatic, the N-, and C-terminal extensions that flank the motor domain seem to confer unique structural features and versatile interactions to the protein. Recent biochemical and physiological examinations portray Myo16 as a signal transduction element that integrates cell signaling pathways to actin cytoskeleton reorganization. This review discusses the current knowledge of the structure-function relation of Myo16. In light of its prevalent localization, the emphasis is laid on the neural aspects.


Subject(s)
Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Neurons/metabolism , Signal Transduction , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Humans , Ligands , Mice , Nervous System Diseases/metabolism , Profilins/metabolism , Protein Binding , Protein Phosphatase 1/metabolism
18.
J Biol Chem ; 295(42): 14522-14535, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32817166

ABSTRACT

We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal ß-barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3-encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D ) in the absence of actin is completely reversed for each chimera compared with the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared with wild-type (WT) IFI, whereas for EMB-3b these values are increased compared with wild-type (WT) EMB. In the presence of actin, ADP affinity (KAD ) is unchanged for IFI-3a, compared with IFI, but ADP affinity for EMB-3b is increased, compared with EMB, and shifted toward IFI values. ATP-induced dissociation of acto-S1 (K1k+2 ) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicates that the exon 3-encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating actomyosin crossbridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Myosin Heavy Chains/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Exons , Kinetics , Molecular Dynamics Simulation , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Purines/chemistry , Purines/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
19.
J Sports Sci ; 38(20): 2390-2395, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32602402

ABSTRACT

The purpose of the present study was to compare the myosin heavy chain (MHC) isoform composition of the deltoid and vastus lateralis muscles of the dominant and non-dominant limbs in handball players. Eleven male Greek elite handball players (age 22.6 ± 1.9 yrs, training experience 10.6 ± 2.1 yrs, height 184.1 ± 4.1 cm, and weight 81.0 ± 12.5 kg) participated in the study. Four muscle biopsies were obtained from the dominant and non-dominant deltoid and vastus lateralis muscles during the in-season period. The MHC composition was determined using SDS-PAGE. No significant difference was found between the dominant and non-dominant muscles; Deltoid muscle: MHC I [(95%CI = -1.22, 0.33), P = 0.228], MHC ΙΙa [(95%CI = -0.32, 1.59), P = 0.168] and MHC IIx [(95%CI = -1.49, 1.10), P = 0.749]; Vastus lateralis muscle: MHC I [(95%CI = -0.38, 0.63), P = 0.586], MHC ΙΙa [(95%CI = -0.50, 0.65), P = 0.783] and MHC IIx [(95%CI = -1.08, 0.42), P = 0.355]. The findings of the present study indicate that the greater use of the dominant limbs for throwing actions and body movements in handball do not lead to altered MHC isoform composition compared to the non-dominant limbs.


Subject(s)
Deltoid Muscle/chemistry , Myosin Heavy Chains/analysis , Quadriceps Muscle/chemistry , Sports/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Male , Myosin Heavy Chains/chemistry , Protein Isoforms/analysis , Young Adult
20.
J Agric Food Chem ; 68(32): 8629-8636, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32678614

ABSTRACT

The effect of susceptibility to in vitro oxidation on the degradation of myosin isolated from beef muscles via µ-calpain or caspase-3 was examined, and the measurement of the oxidation sites of myosin heavy chains was performed. Myosin was incubated with hydroxyl free radical-generating systems, which were composed of 0.01 M FeCl3, 0.1 M ascorbic acid, and 0, 25, 50, and 100 µM H2O2 at 37 °C for 20 min. The oxidized myosin then reacted with µ-calpain or caspase-3 at 37 °C for 30 min, respectively. The results showed that protein oxidation systems in vitro resulted in different levels of myosin oxidation, leading to significant changes in the secondary structure of myosin (P < 0.05). The sodium dodecyl dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting results showed that in vitro oxidation promoted myosin degradation via µ-calpain or caspase-3. Proteomics research suggested that the number of myosin oxidation sites increased constantly with the increase of oxidation levels. Oxidation sites of myosin were mainly cysteine, methionine, arginine, histidine, tyrosine, lysine, and asparagine. These results indicated that oxidation using H2O2 in the range of 0-100 µM could increase the degradation of myosin via µ-calpain and caspase-3 due to increased exposure of the oxidation sites of myosin.


Subject(s)
Calpain/chemistry , Caspase 3/chemistry , Myosin Heavy Chains/chemistry , Animals , Calpain/metabolism , Caspase 3/metabolism , Cattle , Meat/analysis , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...