Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054778

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.


Subject(s)
Hippocampus/metabolism , Myotonic Dystrophy/physiopathology , Myotonin-Protein Kinase/physiology , Neuronal Plasticity , Neurotransmitter Agents/metabolism , RNA Splicing , Animals , Disease Models, Animal , Excitatory Amino Acid Transporter 2 , Hippocampus/physiology , Homeostasis , Mice , Mice, Transgenic , Myotonic Dystrophy/metabolism , Myotonin-Protein Kinase/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , RNA/metabolism , Synaptic Transmission
2.
Am J Hematol ; 96(4): 480-492, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33476437

ABSTRACT

Efficient erythropoiesis relies on the expression of the transferrin receptor type 2 (TFR2). In erythroid precursors, TFR2 facilitates the export of the erythropoietin receptor (EPOR) to cell surface, which ensures the survival and proliferation of erythroblasts. Although TFR2 has a crucial role in erythropoiesis regulation, its mechanism of action remains to be clarified. To understand its role better, we aimed at identifying its protein partners by mass-spectrometry after immunoprecipitation in erythroid cells. Here we report the kinase MRCKα (myotonic dystrophy kinase-related CDC42-binding kinase α) as a new partner of both TFR2 and EPOR in erythroblasts. We show that MRCKα is co-expressed with TFR2, and TFR1 during terminal differentiation and regulates the internalization of the two types of transferrin receptors. The knockdown of MRCKα by shRNA in human primary erythroblasts leads to a decreased cell surface expression of both TFR1 and TFR2, an increased cell-surface expression of EPOR, and a delayed differentiation. Additionally, knockout of Mrckα in the murine MEDEP cells also leads to a striking delay in erythropoiesis, showcasing the importance of this kinase in both species. Our data highlight the importance of MRCKα in the regulation of erythropoiesis.


Subject(s)
Erythropoiesis/physiology , Myotonin-Protein Kinase/physiology , Animals , CRISPR-Cas Systems , Cells, Cultured , Endocytosis , Erythroblasts/cytology , Erythroblasts/metabolism , Gene Knockout Techniques , Humans , Iron/metabolism , Mice , Myotonin-Protein Kinase/isolation & purification , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Receptors, Erythropoietin/metabolism , Receptors, Transferrin/metabolism , cdc42 GTP-Binding Protein/metabolism
3.
PLoS One ; 12(2): e0171262, 2017.
Article in English | MEDLINE | ID: mdl-28152551

ABSTRACT

Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract.


Subject(s)
Calcium Channels, L-Type/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Myotonin-Protein Kinase/physiology , Serum Response Factor/physiology , Animals , Blotting, Western , Female , Male , Mice , Mice, Knockout , Microscopy, Confocal , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/ultrastructure , Polymerase Chain Reaction , Proteomics , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL