Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38609025

ABSTRACT

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Subject(s)
Dihydroxyphenylalanine , Mytilus edulis , Animals , Dihydroxyphenylalanine/chemistry , Dihydroxyphenylalanine/metabolism , Mytilus edulis/genetics , Mytilus edulis/chemistry , Mytilus edulis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Verrucomicrobia/genetics , Verrucomicrobia/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/chemistry , Proteins/genetics , Proteins/chemistry , Proteins/isolation & purification , Hydroxylation , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Commun Biol ; 7(1): 166, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38337015

ABSTRACT

The mussel industry faces challenges such as low and inconsistent levels of larvae settlement and poor-quality spat, leading to variable production. However, mussel farming remains a vital sustainable and environmentally responsible method for producing protein, fostering ecological responsibility in the aquaculture sector. We investigate the population connectivity and larval dispersion of blue mussels (Mytilus edulis) in Scottish waters, as a case study, using a multidisciplinary approach that combined genetic data and particle modelling. This research allows us to develop a thorough understanding of blue mussel population dynamics in mid-latitude fjord regions, to infer gene-flow patterns, and to estimate population divergence. Our findings reveal a primary south-to-north particle transport direction and the presence of five genetic clusters. We discover a significant and continuous genetic material exchange among populations within the study area, with our biophysical model's outcomes aligning with our genetic observations. Additionally, our model reveals a robust connection between the southwest coast and the rest of the west coast. This study will guide the preservation of mussel farming regions, ensuring sustainable populations that contribute to marine ecosystem health and resilience.


Subject(s)
Mytilus edulis , Animals , Mytilus edulis/genetics , Estuaries , Ecosystem , Aquaculture , Larva/genetics
3.
Mol Ecol ; 33(3): e17233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38063472

ABSTRACT

The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.


Subject(s)
Mytilus edulis , Mytilus , Humans , Animals , Mytilus/genetics , Mytilus edulis/genetics , Polymorphism, Single Nucleotide , Genome , England
4.
Mol Ecol ; 32(21): 5724-5741, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37795906

ABSTRACT

Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.


Subject(s)
Mytilus edulis , Mytilus , Neoplasms , Animals , Mytilus edulis/genetics , Bays , Mytilus/genetics , DNA, Mitochondrial/genetics
5.
Mar Genomics ; 71: 101060, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567081

ABSTRACT

The Prince Edward Island (PEI) mussel aquaculture industry is being challenged by climate change induced environmental stressors including hypoxic/anoxic episodes, that can impact mussel health and survival. Physiological responses of mussels to hypoxia/anoxia have been studied; however, less is known about how transcriptomic response leads to physiology. The present study examined the transcriptomic response of acute (4 h) hypoxia in blue mussels (Mytilus edulis) from two sites and size classes in PEI, Canada. Overall, major changes in whole-mussel transcriptomics associated with metabolism, cellular organelles/processes and environmental sensing were observed in the first hours of hypoxia exposure. Differences in differentially expressed transcripts were observed between each site and size, indicating that responses to acute hypoxia exposure are highly complex. A size related pattern was observed, with seed size mussels having differential expression of transcripts associated with development, muscle function, and byssal attachment compared to the adults. Adult mussels had higher HSP 90 expression, while HSPs were predominately under-expressed in seed mussels. Seed mussels had significant under-expression of several classes of byssal thread attachment transcripts, indicating a decline in the production of byssal thread or detachment, both which have negative consequences for mussel aquaculture.


Subject(s)
Mytilus edulis , Mytilus , Animals , Mytilus edulis/genetics , Transcriptome , Hypoxia
6.
J Invertebr Pathol ; 200: 107950, 2023 09.
Article in English | MEDLINE | ID: mdl-37301277

ABSTRACT

Mass mortality events affecting the blue mussels Mytilus edulis have been observed in France since 2014. The DNA of the bacterium Francisella halioticida, reported as pathogen of giant abalone (Haliotis gigantea) and Yesso scallop (Mizuhopecten yessoensis) has been detected recently in mussels from areas suffering mortalities. Isolation of this bacterium was attempted from individuals collected during mortality events. Identification was performed by 16S rRNA gene sequencing, real-time specific PCR and MALDI-ToF using spectra produced from the strain 8472-13A isolated from diseased Yesso scallop in Canada. Five isolates were identified as F. halioticida by real-time specific PCR and 16S rRNA sequencing. MALDI-ToF allowed the direct identification of four isolates (FR22a,b,c,d) which had 100% identity on the 16S rRNA gene with the known strains. On the other hand, one isolate (FR21) was not recognized by MALDI-ToF and had 99.9% identity on the 16S rRNA gene. The FR22 isolates showed difficult growth and required media optimization, which was not the case with the FR21 isolate. For these reasons, it was hypothesized that two type strains are present on French coasts, named FR21 and FR22. The FR21 isolate was selected for phenotypic analysis (growth curve, biochemical characteristics, electron microscopy), phylogenetic analysis and an experimental challenge. This isolate showed distinct differences compared to published F. halioticida strains, both at phenotypic and genotypic levels. Experimental infections of adult mussels led to 36% mortalities in 23 days following intramuscular injection with 3 × 107 CFU while a lower dose (3 × 103 CFU) did not lead to significant mortalities. In the context of this study, the strain FR21 was not virulent towards adult mussels.


Subject(s)
Gastropoda , Mytilus edulis , Animals , Mytilus edulis/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , France
7.
Gene ; 879: 147586, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37356740

ABSTRACT

There appears to be an additional set of sex-specific mtDNA-encoded proteins in bivalve species with doubly uniparental mitochondrial inheritance that may be involved in the transmission of the female and male mitogenomes. In the marine mussel Mytilus edulis, the translation of the female-specific open reading frame (F-ORF) was demonstrated but the translation of the male-specific ORF (M-ORF) remains to be shown. Here we validate the male-specific ORF of the paternal mitogenome in M. edulis as a protein-coding gene. The M-ORF protein was detected only in male gonads and localized in sperm mitochondria and acrosome, suggesting that it is involved in a key sperm function in Mytilus edulis.


Subject(s)
Bivalvia , Mytilus edulis , Mytilus , Animals , Male , Female , DNA, Mitochondrial/genetics , Mytilus edulis/genetics , Semen , Mitochondria/genetics , Bivalvia/genetics , Genes, Mitochondrial , Mytilus/genetics
8.
Genes (Basel) ; 14(4)2023 03 24.
Article in English | MEDLINE | ID: mdl-37107545

ABSTRACT

Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial peptides (AMPs) are subjected to massive gene presence/absence variation (PAV), endowing each individual with a potentially unique repertoire of defense molecules. The unavailability of a chromosome-scale assembly has so far prevented a comprehensive evaluation of the genomic arrangement of AMP-encoding loci, preventing an accurate ascertainment of the orthology/paralogy relationships among sequence variants. Here, we characterized the CRP-I gene cluster in the blue mussel Mytilus edulis, which includes about 50 paralogous genes and pseudogenes, mostly packed in a small genomic region within chromosome 5. We further reported the occurrence of widespread PAV within this family in the Mytilus species complex and provided evidence that CRP-I peptides likely adopt a knottin fold. We functionally characterized the synthetic peptide sCRP-I H1, assessing the presence of biological activities consistent with other knottins, revealing that mussel CRP-I peptides are unlikely to act as antimicrobial agents or protease inhibitors, even though they may be used as defense molecules against infections from eukaryotic parasites.


Subject(s)
Anti-Infective Agents , Mytilus edulis , Mytilus , Animals , Mytilus/genetics , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/chemistry , Mytilus edulis/genetics , Genome
9.
Mol Ecol ; 31(3): 736-751, 2022 02.
Article in English | MEDLINE | ID: mdl-34192383

ABSTRACT

Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.


Subject(s)
Mytilus edulis , Mytilus , Neoplasms , Animals , Dogs , Europe , Mytilus/genetics , Mytilus edulis/genetics , Prevalence
10.
PLoS One ; 16(9): e0256961, 2021.
Article in English | MEDLINE | ID: mdl-34473778

ABSTRACT

Smooth-shelled blue mussels, Mytilus spp., have a worldwide antitropical distribution and are ecologically and economically important. Mussels of the Mytilus edulis species complex have been the focus of numerous taxonomic and biogeographical studies, in particular in the Northern hemisphere, but the taxonomic classification of mussels from South America remains unclear. The present study analysed 348 mussels from 20 sites in Argentina, Chile, Uruguay and the Falkland Islands on the Atlantic and Pacific coasts of South America. We sequenced two mitochondrial locus, Cytochrome c Oxidase subunit I (625 bp) and 16S rDNA (443 bp), and one nuclear gene, ribosomal 18S rDNA (1770 bp). Mitochondrial and nuclear loci were analysed separately and in combination using maximum likelihood and Bayesian inference methods to identify the combination of the most informative dataset and model. Species delimitation using five different models (GMYC single, bGMYC, PTP, bPTP and BPP) revealed that the Mytilus edulis complex in South America is represented by three species: native M. chilensis, M. edulis, and introduced Northern Hemisphere M. galloprovincialis. However, all models failed to delimit the putative species Mytilus platensis. In contrast, however, broad spatial scale genetic structure in South America using Geneland software to analyse COI sequence variation revealed a group of native mussels (putatively M. platensis) in central Argentina and the Falkland Islands. We discuss the scope of species delimitation methods and the use of nuclear and mitochondrial genetic data to the recognition of species within the Mytilus edulis complex at regional and global scales.


Subject(s)
Genetic Variation , Mytilus edulis/classification , Mytilus edulis/genetics , Phylogeny , Animals , Argentina , Base Sequence , Bayes Theorem , Chile , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Falkland Islands , Female , Genes, Mitochondrial , Genetic Loci , Haplotypes , Species Specificity , Uruguay
11.
Mar Environ Res ; 169: 105393, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34217095

ABSTRACT

The Kerguelen Islands (49°26'S, 69°50'E) represent a unique environment due to their geographical isolation, which protects them from anthropogenic pollution. The ability of the endemic mussel, part of the Mytilus complex, to cope with moderate heat stress was explored using omic tools. Transcripts involved in six major metabolic functions were selected and the qRT-PCR data indicated mainly changes in aerobic and anaerobic energy metabolism and stress response. Proteomic comparisons revealed a typical stress response pattern with cytoskeleton modifications and elements suggesting increased energy metabolism. Results also suggest conservation of protein homeostasis by the long-lasting presence of HSP while a general decrease in transcription is observed. The overall findings are consistent with an adaptive response to moderate stresses in mussels in good physiological condition, i.e. living in a low-impact site, and with the literature concerning this model species. Therefore, local blue mussels could be advantageously integrated into biomonitoring strategies, especially in the context of Global Change.


Subject(s)
Mytilus edulis , Mytilus , Animals , Antarctic Regions , Heat-Shock Response , Mytilus edulis/genetics , Proteomics
12.
PLoS One ; 16(7): e0249587, 2021.
Article in English | MEDLINE | ID: mdl-34297723

ABSTRACT

Cryptic and hybridizing species may lack diagnostic taxonomic characters leaving researchers with semi-diagnostic ones. Identification based on such characters is probabilistic, the probability of correct identification depending on the species composition in a mixed population. Here we test the possibilities of applying a semi-diagnostic conchological character for distinguishing two cryptic species of blue mussels, Mytilus edulis and M. trossulus. These ecologically, stratigraphically and economically important molluscs co-occur and hybridize in many areas of the North Atlantic and the neighboring Arctic. Any cues for distinguishing them in sympatry without genotyping would save much research effort. Recently these species have been shown to statistically differ in the White Sea, where a simple character of the shell was used to distinguish two mussel morphotypes. In this paper, we analyzed the associations between morphotypes and species-specific genotypes based on an abundant material from the waters of the Kola Peninsula (White Sea, Barents Sea) and a more limited material from Norway, the Baltic Sea, Scotland and the Gulf of Maine. The performance of the "morphotype test" for species identification was formally evaluated using approaches from evidence-based medicine. Interspecific differences in the morphotype frequencies were ubiquitous and unidirectional, but their scale varied geographically (from 75% in the White Sea to 15% in the Baltic Sea). In addition, salinity-related variation of this character within M. edulis was revealed in the Arctic Barents Sea. For every studied region, we established relationships between the proportions of the morphotypes in the populations as well as between the proportions of the morphotypes in samples and the probabilities of mussels of different morphotypes being M. trossulus and M. edulis. We provide recommendations for the application of the morphotype test to mussels from unstudied contact zones and note that they may apply equally well to other taxa identified by semi-diagnostic traits.


Subject(s)
Mytilus edulis/genetics , Animals , Hybridization, Genetic , Phenotype , Species Specificity
13.
BMC Genomics ; 22(1): 437, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112105

ABSTRACT

BACKGROUND: Biomineralization by molluscs involves regulated deposition of calcium carbonate crystals within a protein framework to produce complex biocomposite structures. Effective biomineralization is a key trait for aquaculture, and animal resilience under future climate change. While many enzymes and structural proteins have been identified from the shell and in mantle tissue, understanding biomieralization is impeded by a lack of fundamental knowledge of the genes and pathways involved. In adult bivalves, shells are secreted by the mantle tissue during growth, maintenance and repair, with the repair process, in particular, amenable to experimental dissection at the transcriptomic level in individual animals. RESULTS: Gene expression dynamics were explored in the adult blue mussel, Mytilus edulis, during experimentally induced shell repair, using the two valves of each animal as a matched treatment-control pair. Gene expression was assessed using high-resolution RNA-Seq against a de novo assembled database of functionally annotated transcripts. A large number of differentially expressed transcripts were identified in the repair process. Analysis focused on genes encoding proteins and domains identified in shell biology, using a new database of proteins and domains previously implicated in biomineralization in mussels and other molluscs. The genes implicated in repair included many otherwise novel transcripts that encoded proteins with domains found in other shell matrix proteins, as well as genes previously associated with primary shell formation in larvae. Genes with roles in intracellular signalling and maintenance of membrane resting potential were among the loci implicated in the repair process. While haemocytes have been proposed to be actively involved in repair, no evidence was found for this in the M. edulis data. CONCLUSIONS: The shell repair experimental model and a newly developed shell protein domain database efficiently identified transcripts involved in M. edulis shell production. In particular, the matched pair analysis allowed factoring out of much of the inherent high level of variability between individual mussels. This snapshot of the damage repair process identified a large number of genes putatively involved in biomineralization from initial signalling, through calcium mobilization to shell construction, providing many novel transcripts for future in-depth functional analyses.


Subject(s)
Mytilus edulis , Animal Shells , Animals , Biomineralization , Gene Expression Profiling , Mytilus edulis/genetics , Transcriptome
14.
Mol Biol Evol ; 38(9): 4043-4055, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34014311

ABSTRACT

Mollusc shells are a result of the deposition of crystalline and amorphous calcite catalyzed by enzymes and shell matrix proteins (SMP). Developing a detailed understanding of bivalve mollusc biomineralization pathways is complicated not only by the multiplicity of shell forms and microstructures in this class, but also by the evolution of associated proteins by domain co-option and domain shuffling. In spite of this, a minimal biomineralization toolbox comprising proteins and protein domains critical for shell production across species has been identified. Using a matched pair design to reduce experimental noise from inter-individual variation, combined with damage-repair experiments and a database of biomineralization SMPs derived from published works, proteins were identified that are likely to be involved in shell calcification. Eighteen new, shared proteins likely to be involved in the processes related to the calcification of shells were identified by the analysis of genes expressed during repair in Crassostrea gigas, Mytilus edulis, and Pecten maximus. Genes involved in ion transport were also identified as potentially involved in calcification either via the maintenance of cell acid-base balance or transport of critical ions to the extrapallial space, the site of shell assembly. These data expand the number of candidate biomineralization proteins in bivalve molluscs for future functional studies and define a minimal functional protein domain set required to produce solid microstructures from soluble calcium carbonate. This is important for understanding molluscan shell evolution, the likely impacts of environmental change on biomineralization processes, materials science, and biomimicry research.


Subject(s)
Crassostrea , Mytilus edulis , Animal Shells/metabolism , Animals , Biomineralization , Calcification, Physiologic/genetics , Crassostrea/genetics , Mytilus edulis/genetics , Mytilus edulis/metabolism
15.
Mar Genomics ; 60: 100865, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33933383

ABSTRACT

The blue mussel (Mytilus edulis) has global commercial and ecological importance both in wild and cultured conditions. However there is a qualitative and quantitative lack of knowledge of the molecular mechanisms associated with its reproductive physiology, especially with reference to environmental interactions. Here we initiated a transcriptomic analysis (RNA-sequencing (RNA-seq)) of the mantle from both sexes sampled during a seasonal spawning event and from two culture depths (shallow-5 m; deep- 15 m). Mantle libraries were produced from 3 males and 3 females sampled from each of two shallow sites and two deep sites for a total of 12 replicate male and 12 replicate female libraries (24 total libraries). Overall a total of 2.3 billion raw 100 base reads with an average of 96.5 million reads/library were obtained and assembled into 296,118 transcripts with an average length of 568 bp. Overall, 315 transcripts from male libraries and 25 from female libraries were found to be upregulated in deep water as compared to shallow (edgeR adjusted p value ≤ 0.05). Conversely, 126 transcripts from male libraries and 135 from female libraries were found to be significantly downregulated at the same depth. Thirteen transcripts were selected for qPCR validation based on importance in reproduction, antimicrobial defense and metabolism. Of these, 9 RNA-seq identified transcripts were shown by qPCR to be differentially expressed between groups: 2 were upregulated in deep compared with shallow water (dhx38, mt-co1), 2 were upregulated for female compared with male mantle (pias2, mapkap1) and 6 genes (fndc3a, acbd3, klhl10, ccnb3, armc4, mt-co1) showed to be upregulated in males compared to females. The majority of qPCR studied transcripts were identified as involved in gamete development based on the UniProt database. This study further characterizes the importance of the mantle transcriptome during reproductive activities of M. edulis.


Subject(s)
Mytilus edulis , Animals , Female , Male , Mytilus edulis/genetics , Newfoundland and Labrador , Seasons , Sequence Analysis, RNA , Transcriptome , Water
16.
Arch Toxicol ; 94(12): 4043-4054, 2020 12.
Article in English | MEDLINE | ID: mdl-33094350

ABSTRACT

Millions of tons of all kind of munitions, including mines, bombs and torpedoes have been dumped after World War II in the marine environment and do now pose a new threat to the seas worldwide. Beside the acute risk of unwanted detonation, there is a chronic risk of contamination, because the metal vessels corrode and the toxic and carcinogenic explosives (trinitrotoluene (TNT) and metabolites) leak into the environment. While the mechanism of toxicity and carcinogenicity of TNT and its derivatives occurs through its capability of inducing oxidative stress in the target biota, we had the idea if TNT can induce the gene expression of carbonyl reductase in blue mussels. Carbonyl reductases are members of the short-chain dehydrogenase/reductase (SDR) superfamily. They metabolize xenobiotics bearing carbonyl functions, but also endogenous signal molecules such as steroid hormones, prostaglandins, biogenic amines, as well as sugar and lipid peroxidation derived reactive carbonyls, the latter providing a defence mechanism against oxidative stress and reactive oxygen species (ROS). Here, we identified and cloned the gene coding for carbonyl reductase from the blue mussel Mytilus spp. by a bioinformatics approach. In both laboratory and field studies, we could show that TNT induces a strong and concentration-dependent induction of gene expression of carbonyl reductase in the blue mussel. Carbonyl reductase may thus serve as a biomarker for TNT exposure on a molecular level which is useful to detect TNT contaminations in the environment and to perform a risk assessment both for the ecosphere and the human seafood consumer.


Subject(s)
Alcohol Oxidoreductases/biosynthesis , Bombs , Environmental Monitoring , Explosive Agents/toxicity , Hazardous Waste , Mytilus edulis/drug effects , Trinitrotoluene/toxicity , Water Pollutants, Chemical/toxicity , Alcohol Oxidoreductases/genetics , Animals , Computational Biology , Dose-Response Relationship, Drug , Environmental Biomarkers/genetics , Enzyme Induction , Mytilus edulis/enzymology , Mytilus edulis/genetics , Oceans and Seas , Risk Assessment , World War II
17.
Mar Environ Res ; 159: 104960, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32250881

ABSTRACT

Clock genes and environmental cues regulate essential biological rhythms. The blue mussel, Mytilus edulis, is an ecologically and economically important intertidal bivalve undergoing seasonal reproductive rhythms. We previously identified seasonal expression differences in M. edulis clock genes. Herein, the effects of light/dark cycles, constant darkness, and daily temperature cycles on the circadian expression patterns of such genes are characterised. Clock genes Clk, Cry1, ROR/HR3, Per and Rev-erb/NR1D1, and Timeout-like, show significant mRNA expression variation, persisting in darkness indicating endogenous control. Rhythmic expression was apparent under diurnal temperature cycles in darkness for all except Rev-erb. Temperature cycles induced a significant expression difference in the non-circadian clock-associated gene aaNAT. Furthermore, Suppression Subtractive Hybridisation (SSH) was used to identify seasonal genes with potential links to molecular clock function and revealed numerous genes meriting further investigation. Understanding the relationship between environmental cues and molecular clocks is crucial in predicting the outcomes of environmental change on fundamental rhythmic processes.


Subject(s)
Circadian Clocks , Mytilus edulis , Animals , Circadian Rhythm , Light , Mytilus edulis/genetics , Photoperiod , Temperature
18.
Aquat Toxicol ; 220: 105397, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954981

ABSTRACT

Within monitoring frameworks, biomarkers provide several benefits because they serve as intermediates between pollutant exposure and effects, and integrate the responses of contaminants that operate through the same mechanism of action. This study was designed to verify the use of transcriptomic biomarkers developed in our prior work (i.e., Coastal Biosensor of Endocrine Disruption; C-BED assay) on Mytilus edulis and identify additional biomarkers for legacy pollutants. M. edulis were collected from a reference site in Pemaquid, ME, USA and deployed by the Massachusetts Water Resources Authority (MWRA) at locations in and outside Boston Harbor, MA, USA: including (1) Boston Inner Harbor (IH), (2) the current outfall (OS), (3) 1 km away from the current outfall (LNB), and (4) Deer Island (DI), the site where untreated wastewater was formerly discharged into the bay. Differential gene expression was quantified with a high density microarray. Seven genes significantly correlated with whole tissue concentration of PAHs, and six genes significantly correlated with whole body concentrations of PCBs, two groups of legacy contaminants that were elevated at stations IH, OS, and DI. Enrichment analysis indicated that IH mussels had the highest induction of stress response genes, which correlated with the higher levels of contaminants measured at this site. Based on the C-BED assay gene analysis, stations IH and OS exhibited signs of endocrine disruption, which were further confirmed by incorporating the results for the C-BED assay within the Integrated Biomarker Response (IBR) approach. This study successfully demonstrated the potential use of transcriptomic biomarkers within a monitoring program to identify the presence and organismal responses to endocrine disrupting and legacy contaminant classes.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Biomarkers/genetics , Environmental Monitoring/methods , Mytilus edulis/drug effects , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Endocrine Disruptors/analysis , Mytilus edulis/genetics , New England , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Seawater/chemistry , Water Pollutants, Chemical/analysis
19.
Philos Trans R Soc Lond B Biol Sci ; 375(1790): 20190177, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31787040

ABSTRACT

Providing robust links between mitochondrial genotype and phenotype is of major importance given that mitochondrial DNA (mtDNA) variants can affect reproductive success. Because of the strict maternal inheritance (SMI) of mitochondria in animals, haplotypes that negatively affect male fertility can become fixed in populations. This phenomenon is known as 'mother's curse'. Doubly uniparental inheritance (DUI) of mitochondria is a stable exception in bivalves, which entails two mtDNA lineages that evolve independently and are transmitted separately through oocytes and sperm. This makes the DUI mitochondrial lineages subject to different sex-specific selective sieves during mtDNA evolution, thus DUI is a unique model to evaluate how direct selection on sperm mitochondria could contribute to male reproductive fitness. In this study, we tested the impact of mtDNA variants on sperm performance and bioenergetics in DUI and SMI species. Analyses also involved measures of sperm performance following inhibition of main energy pathways and sperm response to oocyte presence. Compared to SMI, DUI sperm exhibited (i) low speed and linearity, (ii) a strict OXPHOS-dependent strategy of energy production, and (iii) a partial metabolic shift towards fermentation following egg detection. Discussion embraces the adaptive value of mtDNA variation and suggests a link between male-energetic adaptation, fertilization success and paternal mitochondria preservation. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.


Subject(s)
Bivalvia/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Genotype , Maternal Inheritance , Paternal Inheritance , Spermatozoa/physiology , Animals , Male , Mercenaria/genetics , Mytilus edulis/genetics
20.
Adv Anat Embryol Cell Biol ; 231: 25-49, 2019.
Article in English | MEDLINE | ID: mdl-30637482

ABSTRACT

We recount the basic observations about doubly uniparental inheritance (DUI) of mtDNA in bivalvian mollusks with an emphasis on those that were obtained from work in Mytilus and appeared after the review by Zouros (Evol Biol 40:1-31, 2013). Using this information, we present a new model about DUI that is a revised version of previously suggested models. The model can be summarized as follows. A Mytilus female either provides its eggs with the "masculinizing" factor S and the "sperm mitochondria binding" factor Z, or it does not. This property of the female is determined by two nuclear genes, S and Z, that are always in the on/on or the off/off phase. In fertilized eggs without factors S and Z the embryo develops into a female and the sperm mitochondria are randomly dispersed among cells following development. In fertilized eggs with factors S and Z, the first factor causes the cell to become eventually sperm and the second causes the sperm mitochondria to aggregate and anchor to the nuclear membrane by binding to a specific motif of the sperm-derived mtDNA. Factors S and Z are continuously co-synthesized and co-localized in the cell line from the egg to the sperm. The sperm mitochondria of the aggregate escape the mechanism that eliminates the cell's mitochondria before the formation of the sperm. The rescued mitochondria are subsequently packed into five mega-mitochondria in the sperm and are delivered in the egg.


Subject(s)
Cell Nucleus/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mytilus edulis/embryology , Nuclear Proteins/metabolism , Zygote/metabolism , Animals , DNA, Mitochondrial/genetics , Female , Heredity/genetics , Heredity/physiology , Male , Mitochondria/genetics , Models, Genetic , Mytilus edulis/genetics , Nuclear Proteins/genetics , Nucleotide Motifs/genetics , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...