Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.862
Filter
1.
J Agric Food Chem ; 72(11): 5849-5859, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38468401

ABSTRACT

Daidzein is a major isoflavone compound with an immense pharmaceutical value. This study applied a novel P450 CYP82D26 which can biosynthesize daidzein from (2S)-naringenin. However, the recombinant P450 systems often suffer from low coupling efficiency, leading to an electron transfer efficiency decrease and harmful reactive oxygen species release, thereby compromising their stability and catalytic efficiency. To address these challenges, the SH3-GBD-PDZ (SGP) protein scaffold was applied to assemble a multienzyme system comprising CYP82D26, P450 reductase, and NADP+-dependent aldehyde reductase in desired stoichiometric ratios. Results showed that the coupling efficiency of the P450 system was significantly increased, primarily attributed to the channeling effect of NADPH resulting from the proximity of tethered enzymes and the electrostatic interactions between NADPH and SGP. Assembling this SGP-scaffolded assembly system in Escherichia coli yielded a titer of 240.5 mg/L daidzein with an 86% (2S)-naringenin conversion rate, which showed a 9-fold increase over the free enzymes of the P450 system. These results underscore the potential application of the SGP-scaffolded multienzyme system in enhancing the coupling and catalytic efficiency of the P450 system.


Subject(s)
Flavanones , Isoflavones , NADPH-Ferrihemoprotein Reductase , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Proteins , Isoflavones/metabolism
2.
Chemistry ; 30(19): e202304307, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38277424

ABSTRACT

The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.


Subject(s)
Amino Acids , NADPH-Ferrihemoprotein Reductase , Nitrogen Oxides , Humans , Oxidation-Reduction , NADPH-Ferrihemoprotein Reductase/metabolism , Amino Acids/metabolism , Spin Labels , Electron Spin Resonance Spectroscopy , Electron Transport , NADP/chemistry , Flavins/chemistry , Organic Chemicals , Flavin Mononucleotide/chemistry , Flavin-Adenine Dinucleotide/chemistry , Kinetics
3.
J Microbiol Biotechnol ; 34(3): 725-734, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38044690

ABSTRACT

CYP102A1 from Bacillus megaterium is an important enzyme in biotechnology, because engineered CYP102A1 enzymes can react with diverse substrates and produce human cytochrome P450-like metabolites. Therefore, CYP102A1 can be applied to drug metabolite production. Terpinen-4-ol is a cyclic monoterpene and the primary component of essential tea tree oil. Terpinen-4-ol was known for therapeutic effects, including antibacterial, antifungal, antiviral, and anti-inflammatory. Because terpenes are natural compounds, examining novel terpenes and investigating the therapeutic effects of terpenes represent responses to social demands for eco-friendly compounds. In this study, we investigated the catalytic activity of engineered CYP102A1 on terpinen-4-ol. Among CYP102A1 mutants tested here, the R47L/F81I/F87V/E143G/L188Q/N213S/E267V mutant showed the highest activity to terpinen-4-ol. Two major metabolites of terpinen-4-ol were generated by engineered CYP102A1. Characterization of major metabolites was confirmed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopy (NMR). Based on the LC-MS results, the difference in mass-to-charge ratio of an ion (m/z) between terpinen-4-ol and its major metabolites was 16. One major metabolite was defined as 1,4-dihydroxy-p-menth-2-ene by NMR. Given these results, we speculate that another major metabolite is also a mono-hydroxylated product. Taken together, we suggest that CYP102A1 can be applied to make novel terpene derivatives.


Subject(s)
Cytochrome P-450 Enzyme System , Terpenes , Humans , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Terpenes/chemistry , Monoterpenes , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism
4.
Proc Natl Acad Sci U S A ; 120(50): e2317372120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38060561

ABSTRACT

Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.


Subject(s)
NADPH-Ferrihemoprotein Reductase , Tryptophan , Oxidation-Reduction , Tryptophan/metabolism , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/metabolism , Heme/metabolism , Tyrosine/metabolism , Bacterial Proteins/metabolism
5.
Biomolecules ; 13(12)2023 11 30.
Article in English | MEDLINE | ID: mdl-38136599

ABSTRACT

Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.


Subject(s)
Cytochrome P-450 Enzyme System , NADPH-Ferrihemoprotein Reductase , Humans , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation , Mutation, Missense , Oxidation-Reduction , Steroids
6.
Biochemistry (Mosc) ; 88(9): 1347-1355, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37770401

ABSTRACT

Cytochrome CYP102A1 (P450 BM3) of Priestia megaterium (bas. Bacillus megaterium) has several unique functional features and thus provides an ideal object for directed evolution and other synthetic applications. Previously, the CYP102A1-LG23 mutant with 14 mutations in the heme part was obtained that hydroxylates several androstanes at C7ß with the formation of products with the anti-inflammatory and neuroprotective activities. In this study, synthetic cyp102A1-LG23 gene encoding the P450 BM3 mutant was expressed as a component of either monocistronic operon or bicistronic operon containing the gdh (glucose dehydrogenase, GDH) or zwf2 (glucose 6-phosphate dehydrogenase, G6PD) gene in Mycolicibacterium smegmatis BD cells. The recombinant bacteria were able hydroxylate androst-4-ene-3,17-dione (AD) into 7ß-OH-AD. Their biocatalytic activity was increased twice by increasing the solubility of CYP102A1-LG23 protein in the cells and supplementing the cells with the additional cofactor regeneration system by introducing GDH and G6PD. The maximum 7ß-OH-AD yield (37.68 mol%) was achieved by co-expression of cyp102A1-LG23 and gdh genes in M. smegmatis. These results demonstrate the possibility of using synthetic genes to obtain recombinant enzymes and expand our understanding of the processes involved in steroid hydroxylation by bacterial cytochromes. The data obtained can be used to develop new approaches for microbiological production of 7ß-hydroxylated steroids in genetically modified Mycolicibacterium species.


Subject(s)
Genes, Synthetic , NADPH-Ferrihemoprotein Reductase , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Bacteria/metabolism
7.
Molecules ; 28(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513226

ABSTRACT

Wild-type cytochrome P450 CYP102A1 from Bacillus megaterium is a highly efficient monooxygenase for the oxidation of long-chain fatty acids. The unique features of CYP102A1, such as high catalytic activity, expression yield, regio- and stereoselectivity, and self-sufficiency in electron transfer as a fusion protein, afford the requirements for an ideal biocatalyst. In the past three decades, remarkable progress has been made in engineering CYP102A1 for applications in drug discovery, biosynthesis, and biotechnology. The repertoire of engineered CYP102A1 variants has grown tremendously, whereas the substrate repertoire is avalanched to encompass alkanes, alkenes, aromatics, organic solvents, pharmaceuticals, drugs, and many more. In this article, we highlight the major advances in the past five years in our understanding of the structure and function of CYP102A1 and the methodologies used to engineer CYP102A1 for novel applications. The objective is to provide a succinct review of the latest developments with reference to the body of CYP102A1-related literature.


Subject(s)
Bacillus megaterium , NADPH-Ferrihemoprotein Reductase , NADPH-Ferrihemoprotein Reductase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Electron Transport , Bacterial Proteins/chemistry , Bacillus megaterium/genetics , Bacillus megaterium/metabolism
8.
Biomolecules ; 13(7)2023 07 06.
Article in English | MEDLINE | ID: mdl-37509119

ABSTRACT

A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.


Subject(s)
Caffeine , Cytochrome P-450 CYP1A2 , Humans , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 Enzyme System/metabolism , Electron Transport , Mutation , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism
9.
Appl Microbiol Biotechnol ; 107(18): 5727-5737, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37477695

ABSTRACT

Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in E. coli by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the C-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from Bacillus megaterium P450BM3 (CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family. KEY POINTS: • Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins. • The feasibility of three P450 reductase domains to CYP120As was evaluated. • Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.


Subject(s)
Bacterial Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Oxidation-Reduction , Electron Transport , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Tretinoin/metabolism
10.
Biotechnol Lett ; 45(8): 993-1000, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37243776

ABSTRACT

The self-sufficient cytochrome P450 BM3 mutant (A74G/F87V/D168H/L188Q) can serve as a biocatalyst for whole-cell catalysis process of indigo. Nevertheless, the bioconversion yield of indigo is generally low under normal cultivation conditions (37 °C, 250 rpm). In this study, a recombinant E. coli BL21(DE3) strain was constructed to co-express the P450 BM3 mutant gene and GroEL/ES genes to investigate whether GroEL/ES can promote the indigo bioconversion yield in E. coli. The results revealed that the GroEL/ES system could significantly increase the indigo bioconversion yield, and the indigo bioconversion yield of the strain co-expressing P450 BM3 mutant and GroEL/ES was about 21-fold that of the strain only expressing the P450 BM3 mutant. In addition, the P450 BM3 enzyme content and in vitro indigo bioconversion yield were determined to explore the underlying mechanism for the improvement of indigo bioconversion yield. The results revealed that GroEL/ES did not increase indigo bioconversion yield by increasing the content of P450 BM3 enzyme and its enzymatic transformation efficiency. Moreover, GroEL/ES could improve the intracellular nicotinamide adenine dinucleotide phosphate (NADPH)/NADP+ ratio. Given that NADPH is an important coenzyme in the catalytic process of indigo, the underlying mechanism for the improvement of indigo bioconversion yield is probably related to an increase in the intracellular NADPH/NADP+ ratio.


Subject(s)
Escherichia coli , Indigo Carmine , Escherichia coli/genetics , Escherichia coli/metabolism , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Biotransformation
11.
Pestic Biochem Physiol ; 190: 105337, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36740331

ABSTRACT

Precocene I is a juvenile hormone antagonist that needs to be activated via oxidative biotransformation catalyzed by cytochrome P450 (CYP). NADPH-cytochrome P450 reductase (CPR) supplies CYP with electrons in the oxidation-reduction process; however, its functional role in the activation of precocene I remains unexplored. Here, the representative characteristics of CPRs were analyzed in the CPR gene of Locusta migratoria (LmCPR), the result of model docking indicated that the hydrogen bonds were formed between reduced nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and NADPH-, FAD-, FMN-domains of LmCPR, respectively. Treating the fourth-instar nymphs with precocene I decreased the juvenile hormone titers of nymphs to 0.55-fold of that in acetone-treated controls, and extended the interval time between fourth- and fifth-instar nymphs. 68.75% of the treated fourth-instar nymphs developed into precocious adults in the fifth-instar. LmCPR knockdown decreased the response to precocene I in the nymphs, the occurrence rate of precocious adults induced by precocene I treatment reduced by 23.11%. Therefore, LmCPR may be involved in the activation of precocene I in L. migratoria. In addition, we generated an active recombinant LmCPR protein using a prokaryotic expression system, its activity in reducing cytochrome c was 33.13 ± 11.50 nmol CytCred/min/µg protein. This study lays the foundation for further research on the role of LmCPR in precocene I activation.


Subject(s)
Locusta migratoria , NADPH-Ferrihemoprotein Reductase , Animals , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Locusta migratoria/genetics , Locusta migratoria/metabolism , NADP/metabolism , Flavin-Adenine Dinucleotide/metabolism , Cytochrome P-450 Enzyme System/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
12.
Mar Drugs ; 21(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36827140

ABSTRACT

The use of marine enzymes as catalysts for biotechnological applications is a topical subject. Marine enzymes usually display better operational properties than their animal, plant or bacterial counterparts, enlarging the range of possible biotechnological applications. Due to the fact that cytochrome P450 enzymes can degrade many different toxic environmental compounds, these enzymes have emerged as valuable tools in bioremediation processes. The present work describes the isolation, purification and biochemical characterization of a liver NADPH-dependent cytochrome P450 reductase (CPR) from the marine fish Liza klunzingeri (LkCPR). Experimental results revealed that LkCPR is a monomer of approximately 75 kDa that is active in a wide range of pH values (6-9) and temperatures (40-60 °C), showing the highest catalytic activity at pH 8 and 50 °C. The activation energy of the enzyme reaction was 16.3 kcal mol-1 K-1. The KM values for cytochrome C and NADPH were 8.83 µM and 7.26 µM, and the kcat values were 206.79 s-1 and 202.93 s-1, respectively. LkCPR displayed a specific activity versus cytochrome C of 402.07 µmol min-1 mg1, the highest activity value described for a CPR up to date (3.2-4.7 times higher than the most active reported CPRs) and showed the highest thermostability described for a CPR. Taking into account all these remarkable catalytic features, LkCPR offers great potential to be used as a suitable biocatalyst.


Subject(s)
Cytochromes c , NADPH-Ferrihemoprotein Reductase , Animals , NADP , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Liver/metabolism , Cytochrome P-450 Enzyme System
13.
J Agric Food Chem ; 70(49): 15548-15559, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36468547

ABSTRACT

As an important and expensive natural sesquiterpene compound in grapefruit, the interest in (+)-nootkatone is stimulated by its strong grapefruit-like odor and physiological activities, which induce efforts for its microbial production. However, the low catalytic efficiency of the cytochrome P450-P450 reductase (HPO-CPR) system is the main challenge. We developed a high-throughput screening (HTS) method using the principle of the color reaction between carbonyl compounds and 2,4-dinitrophenylhydrazine (DNPH), which could rapidly screen the activity of candidate HPO mutants. After optimizing the pairing of HPO and CPR and through semirational design, the optimal mutant HPO_M18 with catalytic performance 2.54 times that of the initial was obtained. An encouraging (+)-nootkatone titer of 2.39 g/L was achieved through two-stage fed-batch fermentation after metabolic engineering and endoplasmic reticulum engineering, representing the highest titer reported to date. Our findings lay the foundation for the development of an economically viable bioprocess for (+)-nootkatone.


Subject(s)
Cytochrome P-450 Enzyme System , Saccharomyces cerevisiae , Cytochrome P-450 Enzyme System/metabolism , Fermentation , Metabolic Engineering/methods , NADPH-Ferrihemoprotein Reductase/metabolism , Polycyclic Sesquiterpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
14.
Sci Rep ; 12(1): 14907, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050438

ABSTRACT

Chimeric TK-NOG mice with a humanized liver (normal Hu-liver) are a unique animal model for predicting drug metabolism in humans. However, residual mouse hepatocytes occasionally prevent the precise evaluation of human drug metabolism. Herein, we developed a novel humanized liver TK-NOG mouse with a conditional knockout of liver-specific cytochrome P450 oxidoreductase (POR cKO Hu-liver). Immunohistochemical analysis revealed only a few POR-expressing cells around the portal vein in POR cKO mouse livers. NADPH-cytochrome c reductase and cytochrome P450 (P450)-mediated drug oxidation activity in liver microsomes from POR cKO mice was negligible. After the intravenous administration of S-warfarin, high circulating and urinary levels of S-7-hydroxywarfarin (a major human metabolite) were observed in POR cKO Hu-liver mice. Notably, the circulating and urinary levels of S-4'-hydroxywarfarin (a major warfarin metabolite in mice) were much lower in POR cKO Hu-liver mice than in normal Hu-liver mice. POR cKO Hu-liver mice with minimal interference from mouse hepatic P450 oxidation activity are a valuable model for predicting human drug metabolism.


Subject(s)
Cytochrome P-450 Enzyme System , Liver , Warfarin , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Knockout , NADPH-Ferrihemoprotein Reductase/metabolism , Warfarin/metabolism , Warfarin/pharmacology
15.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077536

ABSTRACT

Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR.


Subject(s)
NADPH-Ferrihemoprotein Reductase , Steroids , Mutation , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Protein Stability , Testosterone
16.
Expert Opin Drug Metab Toxicol ; 18(7-8): 529-535, 2022.
Article in English | MEDLINE | ID: mdl-35946839

ABSTRACT

BACKGROUND: Tacrolimus is a immunosuppressant drug in transplantation with a narrow therapeutic range and high pharmacokinetic variability. Clinical studies have revealed that POR*28 contributes enhanced tacrolimus clearance in CYP3A5 expressers. However, it remains unknown that how exactly the POR polymorphism could influence the metabolism of tacrolimus via CYP3A5 in vitro. RESEARCH DESIGN & METHODS: A503V is an amino acid sequence variant encoded by POR*28. Wild-type (WT) and A503V POR, with WT CYP3A5 were expressed in recombinant HepG2 cells and reconstituted proteins. Michaelis constant (Km) and maximum velocity (Vmax) of CYP3A5 with tacrolimus as substrates were determined, and catalytic efficiency is expressed as Vmax/Km. RESULTS: Both WT and A503V POR down-regulated the CYP3A5 mRNA expression, and WT POR rather than A503V down-regulated the protein expression of CYP3A5 in recombinant HepG2 cells. Compared with WT POR, A503V increased metabolism of tacrolimus by CYP3A5 in both cellular and protein levels. CONCLUSION: A503V can affect CYP3A5-catalyzed tacrolimus metabolism in vitro, which suggests that A503V has the potential to serve as a biomarker for tacrolimus treatment in transplantation recipients.


Subject(s)
Cytochrome P-450 CYP3A , Tacrolimus , Cytochrome P-450 CYP3A/genetics , Genotype , Hep G2 Cells , Humans , Immunosuppressive Agents/pharmacokinetics , NADPH-Ferrihemoprotein Reductase/genetics , NADPH-Ferrihemoprotein Reductase/metabolism , Polymorphism, Single Nucleotide , Tacrolimus/pharmacokinetics
17.
Anal Chem ; 94(34): 11908-11915, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35977417

ABSTRACT

Although polymer-based lipid nanodiscs are increasingly used in the structural studies of membrane proteins, the charge of the belt-forming polymer is a major limitation for functional reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This limitation also rules out the reconstitution of a protein-protein complex composed of oppositely charged membrane proteins. In this study, we report the first successful functional reconstitution of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid nanodiscs. The gel-to-liquid-crystalline phase-transition temperature (Tm) of DMPC:DMPG (7:3 w/w) lipids in polymer nanodiscs was determined by differential scanning calorimetry (DSC) and 31P NMR experiments. The CYP450-CPR redox complex reconstitution in polymer nanodiscs was characterized by size-exclusion chromatography (SEC), and the electron transfer kinetics was carried out using the stopped-flow technique under anaerobic conditions. The Tm of DMPC:DMPG (7:3 w/w) in polymer nanodiscs measured from 31P NMR agrees with that obtained from DSC and was found to be higher than that for liposomes due to the decreased cooperativity of lipids present in the nanodiscs. The stopped-flow measurements revealed the CYP450-CPR redox complex reconstituted in nanodiscs to be functional, and the electron transfer kinetics was found to be temperature-dependent. Based on the successful demonstration of the use of non-ionic inulin-based polymer nanodiscs reported in this study, we expect them to be useful in studying the function and structures of a variety of membrane proteins/complexes irrespective of the charge of the molecular components. Since the polymer nanodiscs were shown to align in an externally applied magnetic field, they can also be used to measure residual dipolar couplings (RDCs) and residual quadrupolar couplings (RQCs) for various molecules ranging from small molecules to soluble proteins and nucleic acids.


Subject(s)
Lipid Bilayers , Nanostructures , Cytochrome P-450 Enzyme System/metabolism , Dimyristoylphosphatidylcholine , Electron Transport , Inulin/metabolism , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Nanostructures/chemistry
18.
Environ Sci Pollut Res Int ; 29(43): 65755-65770, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35501435

ABSTRACT

Bisphenol A (BPA), a broadly disseminated endocrine disturbing chemicals in environment, is harmful to creatures and plants. Plants can uptake and metabolize BPA, but a single plant species ability is limited. Undeniably, plant species compositions have a more vital ability to remove pollutants than a single plant species. However, the mechanisms of plant species compositions alleviating toxicological effects of bisphenol A are poorly understood. Here, we administered plant species compositions, which based on a full-factorial design of Phragmites australis (A), Typha latifolia (B), and Arundo donax (C), to unveil their role in BPA exposure. The results illustrated that the root activity, biomass, and photosynthetic pigment contents of the mixed hydroponic group (e.g., sp(ABC)) were significantly increased under concentration of BPA(1.5, 5, and 10 mg L-1), which showed that the root activity, fresh weight, dry weight, chlorophyll a, and total chlorophyll contents of shoots were increased. While mixed-hydroponic culture groups (e.g., sp(AB), sp(ABC)) significantly increased antioxidant enzyme activity and antioxidant substances under concentration of BPA(5 and 10 mg L-1), it astoundingly diminished responsive oxygen species (ROS) and malondialdehyde (MDA) substance, proposing that mixed-hydroponic culture groups calmed oxidative stress. Further analysis revealed that mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) of 1.5, 5, and 10 mg L-1 BPA exposure significantly increased detoxification enzyme activity of NADPH-cytochrome P450 reductase (CPR), glutathione S-transferase (GST), and glycosyltransferase (GT). Moreover, mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) decreased the BPA substance in leaves, proposing that mixed-hydroponic culture groups advanced BPA metabolism by improving CPR, GST, and GT enzyme activities. These results demonstrated that a mixed-hydroponic culture strategy can alleviate BPA phytotoxicity and possibly offer natural and potential phytoremediation methods for BPA.


Subject(s)
Antioxidants , Environmental Pollutants , Antioxidants/metabolism , Benzhydryl Compounds/toxicity , Chlorophyll A , Environmental Pollutants/toxicity , Glutathione Transferase/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/pharmacology , Malondialdehyde/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , NADPH-Ferrihemoprotein Reductase/pharmacology , Oxidative Stress , Oxygen , Phenols , Plant Roots/metabolism , Plants/metabolism , Reactive Oxygen Species/metabolism
19.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408976

ABSTRACT

The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as 'molecular Lego'. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the 'molecular Lego' approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.


Subject(s)
Bacillus megaterium , Heme , Bacterial Proteins/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Heme/metabolism , Humans , NADPH-Ferrihemoprotein Reductase/metabolism , Recombinant Fusion Proteins/genetics
20.
Biochemistry ; 61(10): 909-921, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35475372

ABSTRACT

The endoplasmic reticulum (ER) membrane of plant cells contains several enzymes responsible for the biosynthesis of a diverse range of molecules essential for plant growth and holds potential for industrial applications. Many of these enzymes are dependent on electron transfer proteins to sustain their catalytic cycles. In plants, two crucial ER-bound electron transfer proteins are cytochrome b5 and cytochrome b5 reductase, which catalyze the stepwise transfer of electrons from NADH to redox enzymes such as fatty acid desaturases, cytochrome P450s, and plant aldehyde decarbonylase. Despite the high significance of plant cytochrome b5 and cytochrome b5 reductase, they have eluded detailed characterization to date. Here, we overexpressed the full-length membrane-bound cytochrome b5 isoform B from the model plant Arabidopsis thaliana in Escherichia coli, purified the protein employing detergents as well as styrene-maleic acid (SMA) copolymers, and biochemically characterized the protein. The SMA-encapsulated cytochrome b5 exhibits a discoidal shape and the characteristic features of the active heme-bound state. We also overexpressed and purified the soluble domain of cytochrome b5 reductase from A. thaliana, establishing its activity, stability, and kinetic parameters. Further, we demonstrated that the plant cytochrome b5, purified in detergents and styrene maleic acid lipid particles (SMALPs), readily accepts electrons from the cognate plant cytochrome b5 reductase and distant electron mediators such as plant NADPH-cytochrome P450 oxidoreductase and cyanobacterial NADPH-ferredoxin reductase. We also measured the kinetic parameters of cytochrome b5 reductase for cytochrome b5. Our studies are the first to report the purification and detailed biochemical characterization of the plant cytochrome b5 and cytochrome b5 reductase from the bacterial overexpression system.


Subject(s)
Arabidopsis , Cytochrome-B(5) Reductase , Cytochromes b5 , Arabidopsis/genetics , Arabidopsis/metabolism , Catalytic Domain , Cytochromes b5/genetics , Cytochromes b5/metabolism , Detergents , Endoplasmic Reticulum/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Styrenes
SELECTION OF CITATIONS
SEARCH DETAIL
...