Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
Int J Nanomedicine ; 19: 3973-3989, 2024.
Article in English | MEDLINE | ID: mdl-38711615

ABSTRACT

Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.


Subject(s)
Antineoplastic Agents , Graphite , Neoplasms , Graphite/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Drug Delivery Systems/methods , Photochemotherapy/methods , Autophagy/drug effects , Animals , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanomedicine
2.
Nanoscale ; 16(17): 8479-8494, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38590261

ABSTRACT

Catalytic generation of toxic hydroxyl radicals (˙OH) from hydrogen peroxide (H2O2) is an effective strategy for tumor treatment in chemodynamic therapy (CDT). However, the intrinsic features of the microenvironment in solid tumors, characterized by limited H2O2 and overexpressed glutathione (GSH), severely impede the accumulation of intracellular ˙OH, posing significant challenges. To circumvent these critical issues, in this work, a CaO2-based multifunctional nanocomposite with a surface coating of Cu2+ and L-buthionine sulfoximine (BSO) (named CaO2@Cu-BSO) is designed for enhanced CDT. Taking advantage of the weakly acidic environment of the tumor, the nanocomposite gradually disintegrates, and the exposed CaO2 nanoparticles subsequently decompose to produce H2O2, alleviating the insufficient supply of endogenous H2O2 in the tumor microenvironment (TME). Furthermore, Cu2+ detached from the surface of CaO2 is reduced by H2O2 and GSH to Cu+ and ROS. Then, Cu+ catalyzes H2O2 to generate highly cytotoxic ˙OH and Cu2+, forming a cyclic catalysis effect for effective CDT. Meanwhile, GSH is depleted by Cu2+ ions to eliminate possible ˙OH scavenging. In addition, the decomposition of CaO2 by TME releases a large amount of free Ca2+, resulting in the accumulation and overload of Ca2+ and mitochondrial damage in tumor cells, further improving CDT efficacy and accelerating tumor apoptosis. Besides, BSO, a molecular inhibitor, decreases GSH production by blocking γ-glutamyl cysteine synthetase. Together, this strategy allows for enhanced CDT efficiency via a ROS storm generation strategy in tumor therapy. The experimental results confirm and demonstrate the satisfactory tumor inhibition effect both in vitro and in vivo.


Subject(s)
Calcium , Copper , Glutathione , Hydrogen Peroxide , Nanocomposites , Tumor Microenvironment , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Glutathione/metabolism , Glutathione/chemistry , Animals , Humans , Mice , Calcium/metabolism , Calcium/chemistry , Copper/chemistry , Copper/pharmacology , Tumor Microenvironment/drug effects , Cell Line, Tumor , Buthionine Sulfoximine/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Hydroxyl Radical/metabolism , Hydroxyl Radical/chemistry , Mice, Inbred BALB C
3.
Chem Rec ; 24(4): e202400010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501833

ABSTRACT

Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.


Subject(s)
Nanocomposites , Neoplasms , Humans , Hydroxides/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Nanocomposites/therapeutic use , Nanocomposites/chemistry
4.
ACS Appl Mater Interfaces ; 16(14): 17285-17299, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38539044

ABSTRACT

Cytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response. These obtained nanocomposites contain a proton sponge G5AcP dendrimer, a Fenton-like agent Cu(II), and chemical drug doxorubicin (DOX). When accumulated in tumor regions, G5AcP can act as an immunomodulator to realize deacidification-promoted macrophage repolarization toward antitumoral type, which then secretes inflammatory cytokines to activate T cells. They also regulate intracellular lysosomal pH to inhibit cytoprotective autophagy. The released Cu(II) and DOX can induce aggravated damage through a Fenton-like reaction and chemotherapeutic effect in this autophagy-inhibition condition. Tumor-associated antigens are released from these dying tumor cells to promote the maturity of dendritic cells, further activating T cells. Effective tumor elimination can be achieved by this dendrimer-based therapeutic strategy, providing significant guidance for the design of a promising antitumor nanomedicine.


Subject(s)
Dendrimers , Nanocomposites , Neoplasms , Humans , Protons , Cell Line, Tumor , Dendrimers/pharmacology , Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Autophagy , Immunity , Macrophages , Nanocomposites/therapeutic use , Apoptosis , Tumor Microenvironment
5.
Int J Nanomedicine ; 19: 1041-1054, 2024.
Article in English | MEDLINE | ID: mdl-38317849

ABSTRACT

Purpose: The search for effective and low-risk treatment methods for colorectal cancer (CRC) is a pressing concern, given the inherent risks and adverse reactions associated with traditional therapies. Photothermal therapy (PTT) has emerged as a promising approach for cancer treatment, offering advantages such as non-radiation, non-invasiveness, and targeted treatment. Consequently, the development of nanoparticles with high stability, biocompatibility, and photothermal effects has become a significant research focus within the field of PTT. Methods: In this study, TiO2-Ti3C2 nanocomposites were synthesized and characterized, and their photothermal conversion efficiency in the near-infrared region II (NIR-II) was determined. Then studied the in vivo and in vitro photothermal activity and anti-tumor effect of TiO2-Ti3C2 in human colorectal cancer cell lines and nude mice subcutaneous tumor model. Results: The results showed that TiO2-Ti3C2 nanocomposites have strong absorption ability in the NIR-II, and have high photothermal conversion efficiency under 1064 nm (0.5 W/cm2, 6 min) laser stimulation. In addition, in vitro experiments showed that TiO2-Ti3C2 nanocomposites significantly inhibited the invasion, migration, and proliferation of colorectal cancer cells, and induced cell apoptosis; in vivo, experiments showed that TiO2-Ti3C2 nanocomposites-mediated PTT had good biocompatibility and efficient targeted inhibition of tumor growth. Conclusion: In conclusion, TiO2-Ti3C2 nanocomposites can be used as NIR-II absorption materials in PTT to suppress the invasion, migration, and proliferation of colorectal cancer cells, induce colorectal cancer cell apoptosis, and thus inhibit the development of CRC. Therefore, TiO2-Ti3C2 nanocomposites can be used as potential anti-tumor drugs for photothermal ablation of colorectal cancer cells.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Nanocomposites , Neoplasms , Animals , Mice , Humans , Mice, Nude , Titanium , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Nanocomposites/therapeutic use , Phototherapy , Colorectal Neoplasms/drug therapy , Cell Line, Tumor
6.
ACS Biomater Sci Eng ; 10(3): 1494-1506, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38414275

ABSTRACT

The use of hemoperfusion adsorbents for the removal of bilirubin in patients with liver failure has become a critical treatment. However, the insufficient clearance of bilirubin and the possibility of bacterial infection during hemoperfusion limit the application. In this work, we designed a novel antibacterial bilirubin adsorbent (PSVT) through the suspension polymerization reaction between double-bond functionalized TiO2 nanoparticles and styrene. PSVT showed an excellent bilirubin adsorption ability and antibacterial performance, ensuring efficient clearance of bilirubin in liver failure patients during hemoperfusion and preventing bacterial infection. The experimental results indicated that TiO2 was uniformly dispersed in the microspheres, which improved the mesoporous structure and increased the specific surface area. Composite adsorbent PSVT showed an exceptional bilirubin adsorption capacity, with the maximum adsorption capacity reaching 24.3 mg/g. In addition, the introduction of TiO2 endowed PSVT with excellent antibacterial ability; the ultimate antibacterial rates against Escherichia coli and Staphylococcus aureus reached 97.31 and 96.47%, respectively. In summary, PSVT served as a novel antibacterial bilirubin adsorbent with excellent bilirubin clearance capacity and antibacterial performance, providing excellent application prospects for treating liver failure patients.


Subject(s)
Bacterial Infections , Hemoperfusion , Liver Failure , Nanocomposites , Humans , Bilirubin/chemistry , Polystyrenes/chemistry , Hemoperfusion/methods , Nanocomposites/therapeutic use
7.
Adv Mater ; 36(19): e2307081, 2024 May.
Article in English | MEDLINE | ID: mdl-38395039

ABSTRACT

The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.


Subject(s)
Administration, Intranasal , Alzheimer Disease , Chitosan , Cognitive Dysfunction , Hydrogels , Methylene Blue , Methylene Blue/chemistry , Methylene Blue/therapeutic use , Methylene Blue/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Mice , Hydrogels/chemistry , Chitosan/chemistry , Chitosan/analogs & derivatives , Cognitive Dysfunction/drug therapy , Poloxamer/chemistry , Drug Carriers/chemistry , Brain/metabolism , Brain/drug effects , Brain/pathology , Micelles , tau Proteins/metabolism , Disease Models, Animal , Drug Liberation , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects
8.
Nanomedicine (Lond) ; 19(3): 255-275, 2024 02.
Article in English | MEDLINE | ID: mdl-38275154

ABSTRACT

Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.


Subject(s)
Nanocomposites , Nanotechnology , Biocompatible Materials/therapeutic use , Biocompatible Materials/chemistry , Bone Regeneration , Nanocomposites/therapeutic use , Nanocomposites/chemistry , Tissue Engineering
9.
Biomater Adv ; 158: 213763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227988

ABSTRACT

Biofilm-mediated implant-associated infections are one of the most serious complications of implantation surgery, posing a grave threat to patient well-being. Effectively addressing bacterial infections is crucial for the success of implantation procedures. In this study, we prepared a bismuth sulfide silver@carbon quantum dot composite coating (AgBiS2@CQDs/Ti) on a medical titanium surface by surface engineering design to treat implant-associated infections. The photocatalytic/photothermal activity test results confirmed the excellent photogenerated ROS and photothermal properties of AgBiS2@CQDs/Ti under near-infrared laser irradiation. In vitro antibacterial and in vivo anti-infection experiments showed that the coating combined with photodynamic and photothermal therapies to eradicate bacteria and disrupt mature biofilms under 1064 nm laser irradiation. Consequently, AgBiS2@CQDs/Ti shows promise as an implant coating for treating implant-associated infections post-surgery, thereby enhancing the success rate of implantation procedures. This study also provides a new idea for combating implant-associated infections.


Subject(s)
Nanocomposites , Photochemotherapy , Humans , Photothermal Therapy , Titanium , Infrared Rays , Nanocomposites/therapeutic use
10.
Int J Biol Macromol ; 260(Pt 2): 129391, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242413

ABSTRACT

The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Nanocomposites , Neoplasms , Humans , Metal-Organic Frameworks/chemistry , Gold , Biomimetics , Phototherapy , Drug Delivery Systems , Neoplasms/diagnosis , Neoplasms/drug therapy , Nanocomposites/therapeutic use
11.
Nanoscale ; 16(4): 1633-1649, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38168813

ABSTRACT

Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.


Subject(s)
Nanocomposites , Neoplasms , Humans , Precision Medicine , Biomimetics , Nanocomposites/therapeutic use , Theranostic Nanomedicine , Neoplasms/therapy
12.
ACS Nano ; 18(5): 4269-4286, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38270104

ABSTRACT

The repair of diabetic wounds remains challenging, primarily due to the high-glucose-derived immune inhibition which often leads to the excessive inflammatory response, impaired angiogenesis, and heightened susceptibility to infection. However, the means to reduce the immunosuppression and regulate the conversion of M2 phenotype macrophages under a high-glucose microenvironment using advanced biomaterials for diabetic wounds are not yet fully understood. Herein, we report two-dimensional carbide (MXene)-M2 macrophage exosome (Exo) nanohybrids (FM-Exo) for promoting diabetic wound repair by overcoming the high-glucose-derived immune inhibition. FM-Exo showed the sustained release of M2 macrophage-derived exosomes (M2-Exo) up to 7 days and exhibited broad-spectrum antibacterial activity. In the high-glucose microenvironment, relative to the single Exo, FM-Exo could significantly induce the optimized M2a/M2c polarization ratio of macrophages by activating the PI3K/Akt signaling pathway, promoting the proliferation, migration of fibroblasts, and angiogenic ability of endothelial cells. In the diabetic full-thickness wound model, FM-Exo effectively regulated the polarization status of macrophages and promoted their transition to the M2 phenotype, thereby inhibiting inflammation, promoting angiogenesis through VEGF secretion, and improving proper collagen deposition. As a result, the healing process was accelerated, leading to a better healing outcome with reduced scarring. Therefore, this study introduced a promising approach to address diabetic wounds by developing bioactive nanomaterials to regulate immune inhibition in a high-glucose environment.


Subject(s)
Diabetes Mellitus , Exosomes , Nanocomposites , Nitrites , Transition Elements , Humans , Wound Healing , Endothelial Cells , Exosomes/metabolism , Phosphatidylinositol 3-Kinases , Diabetes Mellitus/metabolism , Glucose/metabolism , Nanocomposites/therapeutic use
13.
Biomaterials ; 305: 122467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224643

ABSTRACT

Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.


Subject(s)
Diabetes Mellitus , Diazonium Compounds , Lidocaine/analogs & derivatives , Nanocomposites , Pyridines , Rats , Animals , Pain , Analgesics/therapeutic use , Nanocomposites/therapeutic use , Fibrin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
14.
Angew Chem Int Ed Engl ; 63(2): e202310252, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38010197

ABSTRACT

Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC ) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3 O4 ) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3 O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.


Subject(s)
Bone Neoplasms , Nanocomposites , Nanoparticles , Neoplasms , Humans , Polymers , Precision Medicine , Biomimetics , Theranostic Nanomedicine/methods , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/therapy , Nanocomposites/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
15.
Chemistry ; 30(10): e202302961, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38014860

ABSTRACT

The single-functionality of traditional chemodynamic therapy (CDT) reagents usually limits the therapeutic efficacy of cancer treatment. Synergistic nanocomposites that involve cascade reaction provide a promising strategy to achieve satisfactory anticancer effects. Herein, a cuprous-based nanocomposite (CCS@GOx@HA) is fabricated, which owns the tumor targeting ability and can undergo tumor microenvironment responsive cascade reaction to enhance the tumor therapeutic efficiency significantly. Surface modification of nanocomposite with hyaluronic acid enables the targeted delivery of the nanocomposite to cancer cells. Acid-triggered decomposition of nanocomposite in cancer cell results in the release of Cu+ , Se2- and GOx. The Cu+ improves the Fenton-like reaction with endogenous H2 O2 to generate highly toxic • OH for CDT. While GOx can not only catalyze the in situ generation of endogenous H2 O2 , but also accelerate the consumption of intratumoral glucose to reduce nutrient supply in tumor site. In addition, Se2- further improves the therapeutic effects of CDT by upregulating the reactive oxygen species (ROS) in tumor cells. Meanwhile, the surface modification endows the nanocomposite the good water dispersibility and biocompatibility. Moreover, in vitro and in vivo experiments demonstrate satisfactory anti-cancer therapeutic performance by the synergistic cascade function of CCS@GOx@HA than CDT alone.


Subject(s)
Nanocomposites , Neoplasms , Humans , Neoplasms/drug therapy , Catalysis , Glucose , Hyaluronic Acid , Nanocomposites/therapeutic use , Hydrogen Peroxide , Cell Line, Tumor , Tumor Microenvironment
16.
Adv Healthc Mater ; 13(5): e2302634, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992213

ABSTRACT

Second near-infrared (NIR-II) mild photothermal therapy with higher tissue penetration depth and less damage to healthy tissues is emerging as an attractive antitumor modality, but its therapeutic efficiency is dramatically suppressed by the resistance of heat shock proteins (HSPs). As a widely explored photothermal agent, the application of polydopamine (PDA) in the NIR-II region is hampered by low photothermal conversion efficiency (PCE). Herein, its PCE in the NIR-II region is improved by developing novel hollow cavity CaO2 @PDA nanocomposites through chelation-induced diffusion of inner core Ca2+ to the shell PDA to facilitate multiple reflections of laser in the cavity. Upon pH-responsive degradation of CaO2 , its structure is transformed into a stacked "nano-mesh" with excellent light absorption and an enlarged effective irradiation area. Overloading of Ca2+ ions not only induces downregulation of HSPs but also enhances interference of light on membrane potential, which further aggravate mitochondrial dysfunction and reduce the thermotolerance of tumor cells, promoting efficient mild hyperthermia of PDA in the NIR-II region.


Subject(s)
Hyperthermia, Induced , Nanocomposites , Nanoparticles , Polymers , Indoles/pharmacology , Indoles/chemistry , Phototherapy , Nanocomposites/therapeutic use , Nanocomposites/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry
17.
Nanomedicine (Lond) ; 19(5): 397-412, 2024 02.
Article in English | MEDLINE | ID: mdl-38112257

ABSTRACT

Aim: This report proposes using the Hill model to assess the benchmark dose, the 50% lethal dose, the cooperativity and the dissociation constant while analyzing cell viability data using nanomaterials to evaluate the antitumor potential while combined with radiofrequency therapy. Materials & methods: A nanocomposite was synthesized (graphene oxide-polyethyleneimine-gold) and the viability was evaluated using two tumor cell lines, namely LLC-WRC-256 and B16-F10. Results: Our findings demonstrated that while the nanocomposite is biocompatible against the LLC-WRC-256 and B16-F10 cancer cell lines in the absence of radiofrequency, the application of radiofrequency enhances the cell toxicity by orders of magnitude. Conclusion: This result points to prospective studies with the tested cell lines using tumor animal models.


Subject(s)
Graphite , Nanocomposites , Animals , Prospective Studies , Cell Line, Tumor , Graphite/pharmacology , Nanocomposites/therapeutic use
18.
ACS Appl Mater Interfaces ; 15(50): 58041-58053, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38038271

ABSTRACT

Conventional inorganic semiconductor nanoparticles have emerged as photothermal agents in photothermal therapy and as sonosensitizers in sonodynamic therapy. However, their weak drug-loading capabilities and the deficient techniques for multifunctional inorganic nanoparticles limit their applications. A bismuth-based gold-crowned nanocomposite (BACN) was rationally designed and successfully synthesized and could then be used to prepare nanoplatforms with excellent biocompatibilities for synergistic therapy and real-time imaging. Because of the constituent gold nanoparticles and pyridine, the nanoplatforms functioned as drug delivery vehicles, ultrasonically activated sonosensitizers, and photothermal agents. The BACNs exhibited excellent photothermal conversion efficiency (79.1%) in the second near-infrared biowindow (1064 nm). Cellular and mouse experiments demonstrated that under laser and ultrasound irradiation bufalin-loaded BACNs significantly reduced cancer cell counts and completely eradicated tumors, along with great therapeutic biosafety and no discernible recurrence. Additionally, BACNs were also used as contrast agents in computed tomography-photoacoustic imaging. The versatile BACN nanoplatform with multitreatment effects and trimodal imaging properties shows immense potential as an antitumor nanotherapeutic system.


Subject(s)
Metal Nanoparticles , Nanocomposites , Nanoparticles , Neoplasms , Animals , Mice , Gold/pharmacology , Bismuth , Metal Nanoparticles/therapeutic use , Phototherapy/methods , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Nanocomposites/therapeutic use , Cell Line, Tumor
19.
ACS Appl Mater Interfaces ; 15(47): 54322-54334, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37967339

ABSTRACT

Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.


Subject(s)
Breast Neoplasms , Nanocomposites , Nanoparticles , Photoacoustic Techniques , Humans , Female , Phosphorus , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Phototherapy , Immunotherapy , Nanocomposites/therapeutic use , Photoacoustic Techniques/methods , Cell Line, Tumor
20.
Nanotechnology ; 35(7)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37976543

ABSTRACT

The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.


Subject(s)
Nanocomposites , Osteoporosis , Animals , Simvastatin/pharmacology , Simvastatin/therapeutic use , Osteoporosis/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Calcium Phosphates/chemistry , Nanocomposites/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...