Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 612
Filter
1.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Article in English | MEDLINE | ID: mdl-38747836

ABSTRACT

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Subject(s)
Drug Design , Hydrazines , Leishmania , Naphthoquinones , Trypanocidal Agents , Trypanosoma cruzi , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Leishmania/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Parasitic Sensitivity Tests , Inhibitory Concentration 50 , Structure-Activity Relationship , Cysteine Endopeptidases
2.
Bioorg Med Chem Lett ; 57: 128503, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34922028

ABSTRACT

In this study, a series of novel shikonin N-benzyl matrinic acid ester derivatives (PMMB-299-PMMB-310) were synthesized and tested for their ability to inhibit the proliferation of cancer cells. Compared with shikonin and matrine, some of the ester derivatives were found to exhibit better anti-proliferative activity against seven different cancer cell lines, with less cytotoxicity toward non-cancerous cells. The strongest anti-proliferative activity was exhibited by PMMB-302, which had an IC50 value of 2.71 µM against A549 cells. The compound caused cell cycle arrest in the G2/M phase and induced apoptosis. Effects on the expression of apoptosis-related molecules such as Bcl2, Bcl-XL, caspase-3, caspase-9 and FADD suggested that PMMB-302 has tumor suppressive roles in lung cancer cells. In addition, PMMB-302 inhibited expression of telomerase core proteins, dyskerin and NHP2, and telomerase reverse transcriptase RNA. Moreover, molecular docking of PMMB-302 was subsequently conducted to determine the probable binding mode with telomerase. Taken together, the results indicate that PMMB-302 acts as a tumor suppressor in lung cancer cells by negatively regulating telomerase expression.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Naphthoquinones/pharmacology , Quinolizines/pharmacology , Telomerase/antagonists & inhibitors , Alkaloids/chemical synthesis , Alkaloids/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Naphthoquinones/chemical synthesis , Naphthoquinones/metabolism , Protein Binding , Quinolizines/chemical synthesis , Quinolizines/metabolism , Telomerase/metabolism , Matrines
3.
Bioorg Med Chem Lett ; 53: 128419, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34715305

ABSTRACT

We synthesized ten enamine naphthoquinones with yields ranging from 43 to 76%. These compounds were screened for their in vitro antiproliferative activities by MTT assay against four types of human cancer cell lines: HCT116, PC3, HL60 and SNB19. The naphthoquinones bearing the picolylamine (7) and quinoline (12) moieties were the most actives (IC50 < 24 µM for all the cell lines), which were comparable or better to the values obtained for the control drugs. In silico evaluations allowed us to develop a qualitative Structure-Activity Relationship which suggest that electrostatic features, particularly the C2-C3 internuclear repulsion and the molecular dipole moment, relate to the biological response. Furthermore, Molecular Docking simulations indicate that the synthetic compounds have the potential to act as anticancer molecules by inhibiting topoisomerase-II and thymidylate synthase.


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Naphthoquinones/pharmacology , Amines/chemistry , Amines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Structure-Activity Relationship
4.
Curr Top Med Chem ; 21(22): 2046-2069, 2021.
Article in English | MEDLINE | ID: mdl-34525920

ABSTRACT

BACKGROUND: Naphthoquinones are a class of aromatic compounds relevant for their chemical characteristics, structural properties, and biological activity. These compounds are found in nature with a wide range of effects, highlighting their antibacterial, antifungal, and antiprotozoal properties. Additionally, naphthoquinones are used as a scaffold to obtain new derivatives with pharmacological potential, mainly compounds against parasitic diseases. OBJECTIVE: The purpose of this work was to carry out a comprehensive review of naphthoquinones and their derivatives obtained from both natural and synthetic sources, also, to analyze their biological activity against Leishmania spp. (Leishmaniasis), Trypanosoma cruzi (Chagas disease), Plasmodium falciparum (Malaria), Toxoplasma gondii (Toxoplasmosis), and Toxocara canis (Toxocariasis). All of these agents are responsible for relevant diseases worldwide. RESULTS: Natural naphthoquinones, such as plumbagin, diospyrin, burmanin, lapachol, lawsone and psychorubrin, show an antiprotozoal activity similar or enhanced antiprotozoal activity to reference drugs. Some naphthoquinones obtained by synthesis or semi-synthesis showed better biological activity or less toxic effects than natural compounds. CONCLUSION: In this review, natural and synthetic naphthoquinones showed antiparasitic activity, in most cases, with improved results than current drugs currently used in clinical trials. A modification of their structure with different functional groups can enhance their biological effects, improve solubility, and reduce undesirable side effects. Therefore, naphthoquinones are important molecules in the development of new chemotherapeutic agents against parasitic diseases.


Subject(s)
Anti-Infective Agents/chemical synthesis , Biological Products/chemical synthesis , Biological Products/pharmacology , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Parasitic Diseases/drug therapy , Animals , Anti-Infective Agents/pharmacology , Humans , Leishmania/drug effects , Plasmodium falciparum/drug effects , Toxocara canis/drug effects , Toxoplasma/drug effects , Trypanosoma cruzi/drug effects
5.
Eur J Med Chem ; 224: 113707, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34303080

ABSTRACT

Since NQO1 is overexpressed in many cancer cells, it can be used as a biomarker for cancer diagnosis and targeted therapy. NQO1 substrates show potent anticancer activity through the redox cycle mediated by NQO1, while the NQO1 probes can monitor NQO1 levels in cancers. High sensitivity of probes is needed for diagnostic imaging in clinic. In this study, based on the analysis of NQO1 catalytic pocket, the naphthoquinone trigger group 13 rationally designed by expanding the aromatic plane of the benzoquinone trigger group 10 shows significantly increased sensitivity to NQO1. The sensitivity of the naphthoquinone trigger group-based probe A was eight times higher than that of benzoquinone trigger group-based probe B in vivo. Probe A was selectively and efficiently sensitive to NQO1 with good safety profile and plasma stability, enabling its combination with NQO1 substrates in vivo for NQO1-overexpressing cancer theranostics for the first time.


Subject(s)
Antineoplastic Agents/chemistry , Drug Design , Fluorescent Dyes/chemistry , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/chemistry , Theranostic Nanomedicine , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzoquinones/chemistry , Benzoquinones/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/genetics , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Optical Imaging , Structure-Activity Relationship , Substrate Specificity
6.
Chem Pharm Bull (Tokyo) ; 69(7): 661-673, 2021.
Article in English | MEDLINE | ID: mdl-34193715

ABSTRACT

In this study, based on our previous study, derivatives of naphtho[2,3-b]furan-4,9-diones were synthesized and their antimicrobial activities were evaluated. The screening of these naphthoquinones revealed that the fluorine-containing NQ008 compound exhibited potent and broad antimicrobial activities against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and fungi. The results of the ratio of the minimum bactericidal concentration (MBC) to the minimum inhibitory concentrations (MICs) and time-kill assays suggest that the mode of action of NQ008 is bactericidal. Additionally, the results of a drug resistance study revealed that NQ008 exhibited potent antibacterial activity and may delay the development of bacteria resistance. Furthermore, NQ008 exhibited preliminary antiviral activity against the swine influenza virus and Feline calicivirus.


Subject(s)
Anti-Infective Agents/chemistry , Naphthoquinones/chemistry , Tabebuia/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Structure-Activity Relationship , Tabebuia/metabolism
7.
Bioorg Chem ; 114: 105118, 2021 09.
Article in English | MEDLINE | ID: mdl-34216896

ABSTRACT

A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.


Subject(s)
Antiprotozoal Agents/pharmacology , Antitubercular Agents/pharmacology , Atovaquone/pharmacology , Leishmania/drug effects , Mycobacterium tuberculosis/drug effects , Naphthoquinones/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Atovaquone/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
8.
Curr Top Med Chem ; 21(22): 1977-1998, 2021.
Article in English | MEDLINE | ID: mdl-34315373

ABSTRACT

Naphthoquinones are important molecules belonging to the general class of quinones, and many of these compounds have become drugs that are in the pharmaceutical market for the treatment of several diseases. A special subclass of compounds is that of the bis(naphthoquinones), which have two linked naphthoquinone units. In the last few years, several synthetic approaches toward such valuable compounds have been described, as well as their evaluation against numerous important biological targets. In this review, we provide a thorough discussion on the various synthetic methods reported for the synthesis of bis(naphthoquinone) analogues, also highlighting the biological activities of these substances.


Subject(s)
Communicable Diseases/drug therapy , Naphthoquinones/chemical synthesis , Naphthoquinones/therapeutic use , Animals , Humans , Naphthoquinones/pharmacology
9.
Bioorg Med Chem Lett ; 49: 128274, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34303812

ABSTRACT

Two series of (hetero)arylamino-naphthoquinones and benzo-fused carbazolequinones were considered for study with the rationale that related structural motifs are present in numerous drugs, clinical trial agents, natural products and hTopoIIα inhibitors. Total 42 compounds were synthesized by reactions including dehydrogenative CN and Pd-catalyzed CC bond forming transformations. These compounds were screened against numerous cancer cells including highly metastatic one (MCF-7, MDA-MB-231, H-357 and HEK293T), and normal cells (MCF 10A). Some of the active compounds were evaluated for clonogenic cell survival and apoptotic effects in cancer cells (DAPI nuclear staining, Comet assay, Annexin-V-FITC/PI dual staining, flow cytometry, and western blot analysis with relevant proteins). All compounds were tested for hTopoIIα inhibitory activity. The investigated series compounds showed important properties like significant apoptotic antiproliferation in cancer cells with cell cycle arrest at S-phase and downregulation of NF- κß signaling cascade, relatively less cytotoxicity to normal cells, and hTopoIIα inhibition with more efficiency compared to an anticancer drug etoposide.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carbazoles/pharmacology , DNA Topoisomerases, Type II/metabolism , Naphthoquinones/pharmacology , Poly-ADP-Ribose Binding Proteins/metabolism , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Carbazoles/chemical synthesis , Carbazoles/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Naphthoquinones/chemical synthesis , Naphthoquinones/toxicity , S Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/toxicity
10.
Bioorg Chem ; 114: 105069, 2021 09.
Article in English | MEDLINE | ID: mdl-34134033

ABSTRACT

Some metabolic enzyme inhibitors can be used as Multi-target-Directed-Ligands (MTDL) in Medicinal chemistry therefore, synthesis and determination of alternative inhibitors are essential. In this study, novel bis-napthoquinone derivatives (5a-o) were synthesized through a multi-component cascade reaction of two molecules of 2-hydroxy-1,4-naphthoquinone with an aromatic aldehyde in basic media using triethylamine as a catalyst. This novel heterocyclic derivatives (5a-o) are applied to inhibit the carbonic anhydrase (hCA I and hCA II) isoform in low levels of nano molecules with Ki values exist between 4.62 ± 1.01 to 70.45 ± 9.03 nM for hCA I and for hCA II which is physiologically dominant Kis values are in the range of 5.61 ± 1.04 to 73.26 ± 10.25 nM. Further these novel derivatives (5a-o) efficiently inhibit AChE with Ki values in the range of 0.13 ± 0.02 to 3.16 ± 0.56 nM. The compounds are also applied for BChE with Ki values varying between 0.50 ± 0.10 to 9.23 ± 1.15 nM. For α-glycosidase, the most efficient Ki values of 5e and 5f are 76.14 ± 9.60 and 95.27 ± 12.55 nM respectively. Finally, molecular docking calculations against enzymes (acetylcholinesterase, butyrylcholinesterase, and the human carbonic anhydrase I and II) are compared using biological activities of heterocyclic derivatives. After these calculations, an ADME/T analysis is performed to study the future medicinal use of heterocyclic derivatives from lawsone.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , Naphthoquinones/pharmacology , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Humans , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Structure-Activity Relationship
11.
Bioorg Chem ; 113: 104995, 2021 08.
Article in English | MEDLINE | ID: mdl-34034133

ABSTRACT

A series of novel 3-(1-benzotriazole)-nor-ß-lapachones 5a-5l were synthesized as the NQO1-targeted anticancer agents. Most of these compounds displayed good antiproliferative activity against the breast cancer MCF-7, lung cancer A549 and hepatocellular carcinoma HepG2 cells in agreements with their NQO1 activity. Among them, compound 5k was identified as a favorable NQO1 substrate. It could activate the ROS production in a NQO1-dependent manner, arrest tumor cell cycle at G0/G1 phase, promote tumor cell apoptosis, and decrease the mitochondrial membrane potential. In HepG2 xenograft models, 5k significantly suppressed the tumor growth with no influences on animal body weights. Therefore, 5k could be a good lead for further anticancer drug developments.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Naphthoquinones/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Tumor Cells, Cultured
12.
Mol Biol Rep ; 48(4): 3253-3263, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34009563

ABSTRACT

We developed a novel method for the synthesis of bis-naphthoquinones (BNQ), which are hybrids of lawsone (2-hydroxy-1,4-naphthoquinone) and 3-hydroxy-juglone (3,5-dihydroxy-1,4-naphthoquinone). The anticancer activity of three synthesized compounds, named 4 (RC10), 5 (RCDFC), and 6 (RCDOH) was evaluated in vitro against two metastatic prostate cancer (PCa) cell lines, DU145 and PC3, using MTT assays. We found that 4 (RC10) and 5 (RCDFC) induced cytotoxicity against DU145 and PC3 cells. Flow cytometry analysis revealed that these two compounds promoted cell cycle arrest in G1/S and G2/M phases, increased Sub-G1 peak and induced inhibition in cell viability. We also showed that these effects are cell-type context dependent and more selective for these tested PCa cells than for HUVEC non-tumor cells. The two BNQ compounds 4 (RC10) and 5 (RCDFC) displayed promising anticancer activity against the two tested metastatic PCa cell lines, DU145 and PC3. Their effects are mainly associated with inhibition of cell viability, possibly through apoptotic cell death, besides altering the SubG1, G1/S and G2/M phases of cell cycle. 5 (RCDFC) compound was found to be more selective than 4 (RC10), when comparing their cytotoxic effects in relation to HUVEC non-tumoral cells. Future work should also test these compounds in combination with other chemotherapeutic drugs to evaluate their effects on further sensitizing drug-resistant metastatic PCa cells.


Subject(s)
Antineoplastic Agents , Naphthoquinones , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Male , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , PC-3 Cells , Prostatic Neoplasms/drug therapy
13.
Bioorg Chem ; 111: 104872, 2021 06.
Article in English | MEDLINE | ID: mdl-33838560

ABSTRACT

Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC50 = 4.52 ± 0.28 µM; SK: IC50 = 7.62 ± 0.26 µM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/ß-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Esters/pharmacology , Naphthoquinones/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esters/chemical synthesis , Esters/chemistry , Humans , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
14.
Org Biomol Chem ; 19(15): 3434-3440, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33899892

ABSTRACT

A method for the synthesis of fused 1,2-naphthoquinones, as analogues of biologically active natural terpene quinones, is described. The intermediate polycyclic naphthalenes were prepared by a one-pot palladium-catalysed process from simple alkynes, one of which was made from an optically pure biomass-derived levoglucosenone. The prepared methoxy-substituted naphthalenes were subsequently transformed in one step to 1,2-naphthoquinones by a trivalent-iodine-mediated oxidation. The naphthoquinone products were found to have cytotoxic properties.


Subject(s)
Antineoplastic Agents/pharmacology , Naphthoquinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry
15.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803437

ABSTRACT

Melanoma is the deadliest form of skin cancer and accounts for about three quarters of all skin cancer deaths. Especially at an advanced stage, its treatment is challenging, and survival rates are very low. In previous studies, we showed that the constituents of the roots of Onosma paniculata as well as a synthetic derivative of the most active constituent showed promising results in metastatic melanoma cell lines. In the current study, we address the question whether we can generate further derivatives with optimized activity by synthesis. Therefore, we prepared 31, mainly novel shikonin derivatives and screened them in different melanoma cell lines (WM9, WM164, and MUG-Mel2 cells) using the XTT viability assay. We identified (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl 2-cyclopropyl-2-oxoacetate as a novel derivative with even higher activity. Furthermore, pharmacological investigations including the ApoToxGloTM Triplex assay, LDH assay, and cell cycle measurements revealed that this compound induced apoptosis and reduced cells in the G1 phase accompanied by an increase of cells in the G2/M phase. Moreover, it showed hardly any effects on the cell membrane integrity. However, it also exhibited cytotoxicity against non-tumorigenic cells. Nevertheless, in summary, we could show that shikonin derivatives might be promising drug leads in the treatment of melanoma.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Cyclopropanes , Melanoma/drug therapy , Naphthoquinones , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Humans , Melanoma/metabolism , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Naphthoquinones/pharmacology
16.
Bioorg Med Chem Lett ; 41: 127976, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33766765

ABSTRACT

A series of 1,4-naphthoquinone derivatives of lawsone (1), 6-hydroxy-1,4-naphthoquinone (2), and juglone (3) were synthesized by alkylation, acylation, and sulfonylation reactions. The yields of lawsone derivatives 1a-1k (type A), 6-hydroxy-1,4-naphthoquinone derivatives 2a-2j (type B), and juglone derivatives 3a-3h (type C) were 52-99%, 53-96%, and 28-95%, respectively. All compounds were tested in vitro for the cytotoxicity against human oral epidermoid carcinoma (KB) and cervix epithelioid carcinoma (HeLa) cells and their structure-activity relationship was studied. Compound 3c was found to be most potent in KB cell line (IC50 = 1.39 µM). Some compounds were evaluated for DNA topoisomerase I inhibition. Compounds 2c, 3, 3a, and 3d showed topoisomerase inhibition activity with IC50 values of 8.3-91 µM. Standard redox potentials (E°) of all naphthoquinones in phosphate buffer at pH 7.2 were examined by means of cyclic voltammetry. A definite correlation has been found between the redox potentials and inhibitory effects of type A compounds.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Naphthoquinones/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , KB Cells , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Oxidation-Reduction , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
17.
Bioorg Med Chem Lett ; 41: 127977, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33766771

ABSTRACT

In order to expand structural diversity and improve antitumor efficiency, forty new naphthoquinone phenacylimidazolium derivatives were designed, synthesized and evaluated. Good synthetic yields were obtained under mild conditions using easily available starting materials. Cytotoxicity of these compounds was evaluated in vitro against a panel of human tumor cell lines: human breast carcinoma cell lines (MCF-7), human cervical carcinoma cell lines (HeLa), and human lung carcinoma cell lines (A549). Among them, the optimal compound 7m showed splendid antiproliferative activity with low to 50 nM IC50 values against MCF-7 and excellent selectivity of 256-fold compared with the normal cell lines L929. Compound 7m induced apoptosis in a dose-dependent manner. Further mechanism experiments showed that compound 7m dramatically inhibited the expression of survivin and activated the pro-apoptotic protein caspase-3. Our results indicated that the structural modification on the 1,3-substituents of naphthoquinone imidazoliums without 2-substituent is also promising to obtain new antitumor compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Naphthoquinones/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mice , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Structure-Activity Relationship
18.
Angew Chem Int Ed Engl ; 60(23): 12992-12998, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33772992

ABSTRACT

Discrimination of cancer cells/tissues from normal ones is of critical importance for early diagnosis and treatment of cancers. Herein, we present a new strategy for high-contrast fluorescence diagnosis of cancer cells/tissues based on ß-Lapachone (ß-Lap, an anticancer agent) triggered ROS (reactive oxygen species) amplification specific in cancer cells/tissues. With the strategy, a wide range of cancer cells/tissues, including surgical tissue specimens harvested from patients, were distinguished from normal ones by using a combination of ß-Lap and a Si-rhodamine-based NIR fluorescent ROS probe PSiR3 developed in this work with average tumor-to-normal (T/N) ratios up to 15 in cell level and 24 in tissue level, far exceeding the clinically acceptable threshold of 2.0. What's more, the strategy allowed the fluorescence discrimination of tumor tissues from inflammatory ones based on whether a marked fluorescence enhancement could be induced when treated with PSiR3 and ß-Lap/PSiR3 combination, respectively.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar/diagnostic imaging , Fluorescent Dyes/chemistry , Naphthoquinones/chemistry , Optical Imaging , A549 Cells , Fluorescent Dyes/chemical synthesis , Humans , Microscopy, Confocal , Naphthoquinones/chemical synthesis
19.
Bioorg Med Chem Lett ; 37: 127841, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33556568

ABSTRACT

A series of novel podophyllotoxin-naphthoquinone compounds 5a-p were synthesized in good yields using microwave-assisted four-component reactions of 2-hydroxy-1,4-naphthoquinone, aromatic benzaldehydes, tetronic acid and ammonium acetate. All the synthesized compounds were fully characterized by spectral data and evaluated for their cytotoxicity activities against KB, HepG2, Lu1, MCF7, and non-cancerous Hek-293 cell lines. Among 16 new compounds screened, compounds 5a, 5d, 5h, and 5k displayed high potent inhibitory activities with IC50 < 40 nM against HepG2 and SK-Lu-1 cell lines, and showed lower toxicity for non-cancerous Hek-293 cell line, demonstrating the potential importance of these compounds in the development of potential anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Microwaves , Naphthoquinones/pharmacology , Podophyllotoxin/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Podophyllotoxin/chemical synthesis , Podophyllotoxin/chemistry , Structure-Activity Relationship
20.
Chem Pharm Bull (Tokyo) ; 69(3): 253-257, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33431728

ABSTRACT

A series of 3-substituted-2-hydroxy-1,4-naphthoquinone derivatives with a variety of side chains were successfully synthesized by Mannich reaction of 2-hydroxy-1,4-naphthoquinone (lawsone) with selected amines and aldehydes. All substances (1-16) were evaluated for in-vitro antimalarial activity against strains of Plasmodium falciparum by microculture radioisotope technique. Bioassay data revealed that ten derivatives (1-8, 11 and 13) displayed significantly good activity with values of IC50 ranging from 0.77 to 4.05 µg/mL. The best biological profile (IC50 = 0.77 µg/mL) was observed in compound 1, possessing a n-butyl substituted aminomethyl group. Experimental results support the potential use of our active Mannich components as promising antimalarial agents in the fight against malaria infections and multidrug resistance problems.


Subject(s)
Antimalarials/chemical synthesis , Malaria/drug therapy , Naphthoquinones/chemical synthesis , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Multiple , Humans , Naphthoquinones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...