Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 682
Filter
1.
Hum Genet ; 143(8): 965-978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39028335

ABSTRACT

ARID1B is the most frequently mutated gene in Coffin-Siris syndrome (CSS). To date, the vast majority of causative variants reported in ARID1B are truncating, leading to nonsense-mediated mRNA decay. In the absence of experimental data, only few ARID1B amino acid substitutions have been classified as pathogenic, mainly based on clinical data and their de novo occurrence, while most others are currently interpreted as variants of unknown significance. The present study substantiates the pathogenesis of ARID1B non-truncating/NMD-escaping variants located in the SMARCA4-interacting EHD2 and DNA-binding ARID domains. Overexpression assays in cell lines revealed that the majority of EHD2 variants lead to protein misfolding and formation of cytoplasmic aggresomes surrounded by vimentin cage-like structures and co-localizing with the microtubule organisation center. ARID domain variants exhibited not only aggresomes, but also nuclear aggregates, demonstrating robust pathological effects. Protein levels were not compromised, as shown by quantitative western blot analysis. In silico structural analysis predicted the exposure of amylogenic segments in both domains due to the nearby variants, likely causing this aggregation. Genome-wide transcriptome and methylation analysis in affected individuals revealed expression and methylome patterns consistent with those of the pathogenic haploinsufficiency ARID1B alterations in CSS cases. These results further support pathogenicity and indicate two approaches for disambiguation of such variants in everyday practice. The few affected individuals harbouring EHD2 non-truncating variants described to date exhibit mild CSS clinical traits. In summary, this study paves the way for the re-evaluation of previously unclear ARID1B non-truncating variants and opens a new era in CSS genetic diagnosis.


Subject(s)
DNA-Binding Proteins , Face , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Transcription Factors , Humans , Intellectual Disability/genetics , Micrognathism/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hand Deformities, Congenital/genetics , Neck/abnormalities , Face/abnormalities , Abnormalities, Multiple/genetics , Mutation , Male , Protein Aggregates
3.
Res Dev Disabil ; 151: 104769, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865789

ABSTRACT

ARID1B-related disorders constitute a clinical continuum, from classic Coffin-Siris syndrome to intellectual disability (ID) with or without nonspecific dysmorphic features. Here, we describe an 11-year-old boy with an ARID1B mutation whose phenotype changed from severe developmental delay and ID to a complex neurodevelopmental disorder with multidimensional impairments, including normal intelligence despite heterogeneous IQ scores, severe motor coordination disorder, oral language disorder and attention-deficit/hyperactivity disorder. Phenotypic changes occurred after early intensive remediation and paralleled the normalization of myelination impairments, as evidenced by early brain imaging. WHAT THIS PAPER ADDS?: This report describes a 10-year multidisciplinary follow-up of a child with an ARID1B mutation who received early intensive remediation and whose phenotype changed during development. Clinical improvement paralleled the normalization of myelination impairments. This case supports a dimensional approach for complex neurodevelopmental disorders.


Subject(s)
DNA-Binding Proteins , Intellectual Disability , Micrognathism , Phenotype , Transcription Factors , Humans , Male , Child , Intellectual Disability/genetics , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Micrognathism/genetics , Micrognathism/diagnostic imaging , Follow-Up Studies , Face/abnormalities , Face/diagnostic imaging , Brain/diagnostic imaging , Brain/abnormalities , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnostic imaging , Neck/abnormalities , Neck/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Magnetic Resonance Imaging , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnostic imaging , Developmental Disabilities/genetics , Motor Skills Disorders/genetics , Mutation , Foot Deformities, Congenital/genetics , Foot Deformities, Congenital/diagnostic imaging , Joint Instability/diagnostic imaging , Joint Instability/genetics
4.
Eur J Med Genet ; 69: 104948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735569

ABSTRACT

Anorectal malformations (ARMs) represent a wide spectrum of congenital anomalies of the anus and rectum, of which more than half are syndromic. Their etiology is highly heterogeneous and still poorly understood. We report a 4-year-old girl who initially presented with an isolated ARM, and subsequently developed a global developmental delay as part of an ARID1B-related Coffin-Siris syndrome (CSS). A co-occurrence of ARMs and CSS in an individual by chance is unexpected since both diseases are very rare. A review of the literature enabled us to identify 10 other individuals with both CSS and ARMs. Among the ten individuals reported in this study, 8 had a variant in ARID1A, 2 in ARID1B, and 1 in SMARCA4. This more frequent than expected association between CSS and ARM indicates that some ARMs are most likely part of the CSS spectrum, especially for ARID1A-related CSS.


Subject(s)
Abnormalities, Multiple , Anorectal Malformations , DNA-Binding Proteins , Face , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Transcription Factors , Humans , Female , Micrognathism/genetics , Micrognathism/pathology , Child, Preschool , Intellectual Disability/genetics , Intellectual Disability/pathology , Transcription Factors/genetics , Neck/abnormalities , Neck/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , DNA-Binding Proteins/genetics , Anorectal Malformations/genetics , Face/abnormalities , Face/pathology , DNA Helicases/genetics , Nuclear Proteins/genetics , Anal Canal/abnormalities , Anal Canal/pathology , Phenotype
5.
Eur J Med Genet ; 69: 104945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697389

ABSTRACT

To date 11 patients with Coffin-Siris syndrome type 7 (OMIM 618027) have been described since the first literature report. All reported patients carried de novo variants with presumed dominant negative effect, which localized in the PHD1/PHD2 domains of DPF2. Here we report on the first familial case of Coffin-Siris syndrome type 7. The index patient presented during the 1st year of life with failure to thrive and ectodermal anomalies. The genetic analysis using whole exome sequencing showed a likely pathogenic missense variant in the PHD1 region. The family analysis showed that the mother as well as the older brother of the index patient also carried the detected DPF2 variant in heterozygous state. The mother had a history of school difficulties but no history of failure to thrive and was overall mildly affected. The brother showed developmental delay with autistic features, ectodermal anomalies and overlapping morphologic features but did not have a history of growth failure problems. To our knowledge this is the first report of an inherited likely pathogenic variant in DPF2, underlining the variability of the associated phenotype as well as the importance of considering inherited DPF2 variants during the variant filtering strategy of whole exome data.


Subject(s)
Abnormalities, Multiple , Face , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Pedigree , Transcription Factors , Adult , Female , Humans , Infant , Male , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , DNA-Binding Proteins/genetics , Face/abnormalities , Face/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Micrognathism/pathology , Mutation, Missense , Neck/abnormalities , Neck/pathology , Phenotype , Transcription Factors/genetics
7.
BMC Med Genomics ; 17(1): 142, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790056

ABSTRACT

Coffin-Siris syndrome (CSS) is a rare autosomal dominant inheritance disorder characterized by distinctive facial features, hypoplasia of the distal phalanx or nail of the fifth and additional digits, developmental or cognitive delay of varying degree, hypotonia, hirsutism/hypertrichosis, sparse scalp hair and varying kind of congenital anomalies. CSS can easily be misdiagnosed as other syndromes or disorders with a similar clinical picture because of their genetic and phenotypic heterogeneity. We describde the genotype-phenotype correlation of one patient from a healthy Chinese family with a novel genotype underlying CSS, who was first diagnosed in the ophthalmology department as early-onset high myopia (eoHM). Comprehensive ophthalmic tests as well as other systemic examinations were performed on participants to confirm the phenotype. The genotype was identified using whole exome sequencing, and further verified the results among other family members by Sanger sequencing. Real-time quantitative PCR (RT-qPCR) technology was used to detect the relative mRNA expression levels of candidate genes between proband and normal family members. The pathogenicity of the identified variant was determined by The American College of Medical Genetics and Genomics (ACMG) guidelines. STRING protein-protein interactions (PPIs) network analysis was used to detect the interaction of candidate gene-related proteins with high myopia gene-related proteins. The patient had excessive eoHM, cone-rod dystrophy, coarse face, excessive hair growth on the face, sparse scalp hair, developmental delay, intellectual disability, moderate hearing loss, dental hypoplasia, patent foramen ovale, chronic non-atrophic gastritis, bilateral renal cysts, cisterna magna, and emotional outbursts with aggression. The genetic assessment revealed that the patient carries a de novo heterozygous frameshift insertion variant in the ARID1B c.3981dup (p.Glu1328ArgfsTer5), which are strongly associated with the typical clinical features of CSS patients. The test results of RT-qPCR showed that mRNA expression of the ARID1B gene in the proband was approximately 30% lower than that of the normal control in the family, suggesting that the variant had an impact on the gene function at the level of mRNA expression. The variant was pathogenic as assessed by ACMG guidelines. Analysis of protein interactions in the STRING online database revealed that the ARID1A protein interacts with the high myopia gene-related proteins FGFR3, ASXL1, ERBB3, and SOX4, whereas the ARID1A protein antagonizes the ARID1B protein. Therefore, in this paper, we are the first to report a de novo heterozygous frameshift insertion variant in the ARID1B gene causing CSS with excessive eoHM. Our study extends the genotypic and phenotypic spectrums for ARID1B-CSS and supplies evidence of significant association of eoHM with variant in ARID1B gene. As CSS has high genetic and phenotypic heterogeneity, our findings highlight the importance of molecular genetic testing and an interdisciplinary clinical diagnostic workup to avoid misdiagnosis as some disorders with similar manifestations of CSS.


Subject(s)
DNA-Binding Proteins , Face , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Myopia , Neck , Pedigree , Transcription Factors , Humans , Intellectual Disability/genetics , Transcription Factors/genetics , Face/abnormalities , Male , Micrognathism/genetics , Female , Hand Deformities, Congenital/genetics , Myopia/genetics , DNA-Binding Proteins/genetics , Neck/abnormalities , Neck/pathology , Abnormalities, Multiple/genetics , Adult , Asian People/genetics , Genetic Association Studies , China , Phenotype , Exome Sequencing , Mutation , East Asian People
9.
J Plast Reconstr Aesthet Surg ; 93: 117-126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688177

ABSTRACT

Congenital midline cervical cleft is a rare anomaly classified as a malformation of the branchial arches and represents less than 2% of congenital cervical malformations. Its clinical presentation involves cervical midline deformities: cephalic nodular lesion, linear groove with atrophic surface, and/or caudal sinus. Other midline alterations of variable complexity may also be present. Early treatment allows for avoiding long-term complications. Based on our experience in four clinical cases, a performed literature search on the topic in the last twenty years, and subsequent discussion of the employed surgical approaches, we included 150 reported cases in our review. Correct diagnosis and early treatment with complete removal of the fibrous midline band is paramount to avoid patient complaints until adolescence or adulthood.


Subject(s)
Branchial Region , Humans , Branchial Region/abnormalities , Branchial Region/surgery , Female , Male , Plastic Surgery Procedures/methods , Neck/abnormalities , Neck/surgery , Adolescent , Pharyngeal Diseases , Craniofacial Abnormalities
10.
Clin Oral Investig ; 28(5): 287, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684576

ABSTRACT

OBJECTIVES: Coffin-Siris Syndrome (CSS) is a congenital disorder characterized by delayed growth, dysmorphic facial features, hypoplastic nails and phalanges of the fifth digit, and dental abnormalities. Tooth agenesis has been reported in CSS patients, but the mechanisms regulating this syndromic tooth agenesis remain largely unknown. This study aims to identify the pathogenic mutation of CSS presenting tooth genesis and explore potential regulatory mechanisms. MATERIALS AND METHODS: We utilized whole-exome sequencing to identify variants in a CSS patient, followed by Sanger validation. In silico analysis including conservation analysis, pathogenicity predictions, and 3D structural assessments were carried out. Additionally, single-cell RNA sequencing and fluorescence in situ hybridization (FISH) were applied to explore the spatio-temporal expression of Sox4 expression during murine tooth development. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to examine the functional role of SOX4. RESULTS: A novel de novo SOX4 missense mutation (c.1255C > G, p.Leu419Val) was identified in a Chinese CSS patient exhibiting tooth agenesis. Single-cell RNA sequencing and FISH further verified high expression of Sox4 during murine tooth development, and WGCNA confirmed its central role in tooth development pathways. Enriched functions included cell-substrate junctions, focal adhesion, and RNA splicing. CONCLUSIONS: Our findings link a novel SOX4 mutation to syndromic tooth agenesis in CSS. This is the first report of SOX4 missense mutation causing syndromic tooth agenesis. CLINICAL RELEVANCE: This study not only enhances our understanding of the pathogenic mutation for syndromic tooth agenesis but also provides genetic diagnosis and potential therapeutic insights for syndromic tooth agenesis.


Subject(s)
Anodontia , Exome Sequencing , Face , Intellectual Disability , Micrognathism , Mutation, Missense , Neck , SOXC Transcription Factors , Animals , Female , Humans , Male , Mice , Abnormalities, Multiple/genetics , Anodontia/genetics , Face/abnormalities , Hand Deformities, Congenital/genetics , In Situ Hybridization, Fluorescence , Micrognathism/genetics , Neck/abnormalities , SOXC Transcription Factors/genetics
11.
Am J Med Genet A ; 194(8): e63626, 2024 08.
Article in English | MEDLINE | ID: mdl-38591849

ABSTRACT

De novo germline variants of the SRY-related HMG-box 11 gene (SOX11) have been reported to cause Coffin-Siris syndrome-9 (CSS-9), a rare congenital disorder associated with multiple organ malformations, including ear anomalies. Previous clinical and animal studies have found that intragenic pathogenic variant or haploinsufficiency in the SOX11 gene could cause inner ear malformation, but no studies to date have documented the external ear malformation caused by SOX11 deficiency. Here, we reported a Chinese male with unilateral microtia and bilateral sensorineural deafness who showed CSS-like manifestations, including dysmorphic facial features, impaired neurodevelopment, and fingers/toes malformations. Using trio-based whole-exome sequencing, a de novo missense variant in SOX11 (NM_003108.4: c.347A>G, p.Y116C) was identified and classified as pathogenic variant as per American College of Medical Genetics guidelines. Moreover, a systematic search of the literature yielded 12 publications that provided data of 55 SOX11 intragenic variants affecting various protein-coding regions of SOX11 protein. By quantitatively analyzing phenotypic spectrum information related to these 56 SOX11 variants (including our case), we found variants affecting different regions of SOX11 protein (high-mobility group [HMG] domain and non-HMG regions) appear to influence the phenotypic spectrum of organ malformations in CSS-9; variants altering the HMG domain were more likely to cause the widest range of organ anomalies. In summary, this is the first report of CSS with external ear malformation caused by pathogenic variant in SOX11, indicating that the SOX11 gene may be not only essential for the development of the inner ear but also critical for the morphogenesis of the external ear. In addition, thorough clinical examination is recommended for patients who carry pathogenic SOX11 variants that affect the HMG domain, as these variants may cause the widest range of organ anomalies underlying this condition.


Subject(s)
Abnormalities, Multiple , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , SOXC Transcription Factors , Humans , Male , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Ear, External/abnormalities , Ear, External/pathology , Exome Sequencing , Face/abnormalities , Face/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Micrognathism/pathology , Micrognathism/diagnosis , Mutation, Missense/genetics , Neck/abnormalities , Neck/pathology , Phenotype , SOXC Transcription Factors/genetics
12.
Nat Struct Mol Biol ; 31(7): 1018-1022, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38347147

ABSTRACT

ARID1B is a SWI/SNF subunit frequently mutated in human Coffin-Siris syndrome (CSS) and it is necessary for proliferation of ARID1A mutant cancers. While most CSS ARID1B aberrations introduce frameshifts or stop codons, the functional consequence of missense mutations found in ARID1B is unclear. We here perform saturated mutagenesis screens on ARID1B and demonstrate that protein destabilization is the main mechanism associated with pathogenic missense mutations in patients with Coffin-Siris Syndrome.


Subject(s)
DNA-Binding Proteins , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Mutation, Missense , Protein Stability , Transcription Factors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Micrognathism/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Abnormalities, Multiple/genetics , Face/abnormalities , Neck/abnormalities
13.
Z Geburtshilfe Neonatol ; 228(3): 303-308, 2024 Jun.
Article in German | MEDLINE | ID: mdl-38346704

ABSTRACT

We report on two neonates born the same day, both with an isolated cervical lymphatic malformation. Cervical masses were detected by ultrasound late in the third trimester. Following interdisciplinary case conferences, a caesarean section in the presence of a neonatal team was the chosen delivery mode in both cases. Delivery and transition of the newborns were uneventful. The suspected diagnosis was confirmed by postnatal MRIs, which demonstrated neither associated malformations nor compression of vital structures. Therefore, an expectant approach was chosen for the newborn with the smaller lesion. The other newborn featured a sizeable lymphatic malformation, and due to consecutive head tilt, sclerotherapy was initiated in its second week of life. Our case report outlines the challenges of a rare connatal malformation. Guidelines are often missing. Individual decisions regarding delivery mode, diagnostics and therapy have to be made on an interdisciplinary basis and patients as well as parents need counseling and support over a long period. All the more significant is good, interdisciplinary collaboration between the involved disciplines.


Subject(s)
Lymphatic Abnormalities , Humans , Infant, Newborn , Female , Lymphatic Abnormalities/therapy , Lymphatic Abnormalities/diagnostic imaging , Sclerotherapy , Male , Diagnosis, Differential , Pregnancy , Neck/diagnostic imaging , Neck/abnormalities , Magnetic Resonance Imaging , Ultrasonography, Prenatal , Cesarean Section , Treatment Outcome
14.
Am J Med Genet A ; 194(7): e63567, 2024 07.
Article in English | MEDLINE | ID: mdl-38389298

ABSTRACT

Biallelic variants in the OTUD6B gene have been reported in the literature in association with an intellectual developmental disorder featuring dysmorphic facies, seizures, and distal limb abnormalities. Physical differences described for affected individuals suggest that the disorder may be clinically recognizable, but previous publications have reported an initial clinical suspicion for Kabuki syndrome (KS) in some affected individuals. Here, we report on three siblings with biallelic variants in OTUD6B co-segregating with neurodevelopmental delay, shared physical differences, and other clinical findings similar to those of previously reported individuals. However, clinical manifestations such as long palpebral fissures, prominent and cupped ears, developmental delay, growth deficiency, persistent fetal fingertip pads, vertebral anomaly, and seizures in the proband were initially suggestive of KS. In addition, previously unreported clinical manifestations such as delayed eruption of primary dentition, soft doughy skin with reduced sweating, and mirror movements present in our patients suggest an expansion of the phenotype, and we perform a literature review to update on current information related to OTUD6B and human gene-disease association.


Subject(s)
Abnormalities, Multiple , Face , Hematologic Diseases , Phenotype , Siblings , Vestibular Diseases , Child , Child, Preschool , Humans , Male , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Alleles , Endopeptidases/genetics , Face/abnormalities , Face/pathology , Genetic Association Studies , Genetic Predisposition to Disease , Hematologic Diseases/genetics , Hematologic Diseases/pathology , Hematologic Diseases/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation/genetics , Neck/abnormalities , Neck/pathology , Vestibular Diseases/genetics , Vestibular Diseases/pathology , Vestibular Diseases/diagnosis
15.
Am J Med Genet A ; 194(6): e63540, 2024 06.
Article in English | MEDLINE | ID: mdl-38243407

ABSTRACT

Coffin-Siris Syndrome (CSS, MIM 135900) is now a well-described genetic condition caused by pathogenic variants in the Bromocriptine activating factor (BAF) complex, including ARID1B, ARID1A, ARID2, SMARCA4, SMARCE1, SMARCB1, SOX11, SMARCC2, DPF2, and more recently, BICRA. Individuals with CSS have a spectrum of various medical challenges, most often evident at birth, including feeding difficulties, hypotonia, organ-system anomalies, and learning and developmental differences. The classic finding of fifth digit hypo- or aplasia is seen variably. ARID2, previously described, is one of the less frequently observed gene changes in CSS. Although individuals with ARID2 have been reported to have classic features of CSS including hypertrichosis, coarse facial features, short stature, and fifth digit anomalies, as with many of the other CSS genes, there appears to be a spectrum of phenotypes. We report here a cohort of 17 individuals with ARID2 variants from the Coffin-Siris/BAF clinical registry and detail their medical challenges as well as developmental progress. Feeding difficulties, hypotonia, and short stature occur often, and hip dysplasia appears to occur more often than with other genes, however more severe medical challenges such as significant brain and cardiac malformations are rarer. Individuals appear to have mild to moderate intellectual impairment and may carry additional diagnoses such as ADHD. Further phenotypic description of this gene will aid clinicians caring for individuals with this rarer form of CSS.


Subject(s)
Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Neck/abnormalities , Phenotype , Transcription Factors , Humans , Micrognathism/genetics , Micrognathism/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neck/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnosis , Male , Female , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Child , Child, Preschool , Infant , Mutation/genetics , Adolescent , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease
16.
Pediatr Dev Pathol ; 27(2): 181-186, 2024.
Article in English | MEDLINE | ID: mdl-37981638

ABSTRACT

Coffin-Siris syndrome is an autosomal dominant disorder with neurological, cardiovascular, and gastrointestinal symptoms. Patients with Coffin-Siris syndrome typically have variable degree of developmental delay or intellectual disability, muscular hypotonia, dysmorphic facial features, sparse scalp hair, but otherwise hirsutism and fifth digit nail or distal phalanx hypoplasia or aplasia. Coffin-Siris syndrome is caused by pathogenic variants in 12 different genes including SMARCB1 and ARID1A. Pathogenic SMARCB1 gene variants cause Coffin-Siris syndrome 3 whereas pathogenic ARID1A gene variants cause Coffin-Siris syndrome 2. Here, we present two prenatal Coffin-Siris syndrome cases with autosomal dominant pathogenic variants: SMARCB1 gene c.1066_1067del, p.(Leu356AspfsTer4) variant, and a novel ARID1A gene c.1920+3_1920+6del variant. The prenatal phenotype in Coffin-Siris syndrome has been rarely described. This article widens the phenotypic spectrum of prenatal Coffin-Siris syndrome with severely hypoplastic right ventricle with VSD and truncus arteriosus type III, persisting left superior and inferior caval vein, bilateral olfactory nerve aplasia, and hypoplastic thymus. A detailed clinical description of the patients with ultrasound, MRI, and post mortem pictures of the affected fetuses showing the wide phenotypic spectrum of the disease is presented.


Subject(s)
Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck/abnormalities , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Face/pathology , Phenotype
17.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38117302

ABSTRACT

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Subject(s)
Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Adult , Humans , Child , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Micrognathism/genetics , Micrognathism/diagnosis , Hand Deformities, Congenital/genetics , Neck/abnormalities , Phenotype , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics
20.
Rev. Odontol. Araçatuba (Impr.) ; 44(1): 47-52, jan.-abr. 2023.
Article in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1427917

ABSTRACT

A odontologia reabilitadora tem como um dos seus ramos a especialidade de Prótese Bucomaxilofacial (PBMF), que visa restaurar ou substituir estruturas perdidas na região facial e no sistema estomatognático artificialmente, podendo ser ou não removidos pelo paciente. O presente trabalho objetiva revisar a leitura a respeito da reabilitação com PBMF e a sua aplicabilidade na clínica odontológica. Os indivíduos com alguma perda de estrutura na região de cabeça e pescoço, devido a traumas físicos e/ou químicos, defeitos congênitos, doenças autoimunes, neoplasias, infecções e parasitas, são pacientes para os quais há a indicação da reposição da parte ausente. As reconstruções podem ser perdas intraorais (área da maxila, mandíbula), extraorais (oculopalpebral, ocular, nasal, facial extensa e auricular) ou conjugadas. Esse é um trabalho multidisciplinar, com especialistas de áreas abrangentes e todos os especialistas trabalham de forma conjunta. Pode-se concluir que, embora seja uma das especialidades mais nobres da odontologia, ainda é muito desconhecida por parte dos estudantes e profissionais das áreas da saúde e são próteses absolutamente fundamentais para a reabilitação e qualidade de vida dos indivíduos que tem a necessidade do uso da prótese PBMF(AU)


Rehabilitating dentistry has as one of its branches the specialty of Oral and Maxillofacial Prosthesis (PBMF), which aims to restore or replace structures lost in the facial region and in the stomatognathic system artificially, which may or may not be removed by the patient. The present study aims to review the reading about rehabilitation with PBMF and its applicability in dental clinic. Individuals with some loss of structure in the head and neck region, due to physical and/or chemical trauma, birth defects, autoimmune diseases, neoplasms, infections and parasites, are patients in whom there is an indication for replacement of the absent part. Reconstructions can be intraoral (maximal area, mandible), extraoral (oculopalpebral, ocular, nasal, extensive facial and auricular) or conjugated losses. It is a multidisciplinary work, with specialists from the comprehensive areas and that all specialists work together. It can be concluded that although it is one of the noblest specialties of dentistry, it is still very unknown to students and health professionals, and they are absolutely fundamental prostheses for the rehabilitation and quality of life of individuals who need the use the PBMFprosthesis(AU)


Subject(s)
Head/abnormalities , Maxillofacial Prosthesis , Neck/abnormalities , Quality of Life , Rehabilitation , Autoimmune Diseases , Congenital Abnormalities , Stomatognathic System/injuries , Mandibular Reconstruction , Oral and Maxillofacial Surgeons , Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL