Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 941
Filter
1.
J Transl Med ; 22(1): 465, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755664

ABSTRACT

Disturbance in mitochondrial homeostasis within proximal tubules is a critical characteristic associated with diabetic kidney disease (DKD). CaMKKß/AMPK signaling plays an important role in regulating mitochondrial homeostasis. Despite the downregulation of CaMKKß in DKD pathology, the underlying mechanism remains elusive. The expression of NEDD4L, which is primarily localized to renal proximal tubules, is significantly upregulated in the renal tubules of mice with DKD. Coimmunoprecipitation (Co-IP) assays revealed a physical interaction between NEDD4L and CaMKKß. Moreover, deletion of NEDD4L under high glucose conditions prevented rapid CaMKKß protein degradation. In vitro studies revealed that the aberrant expression of NEDD4L negatively influences the protein stability of CaMKKß. This study also explored the role of NEDD4L in DKD by using AAV-shNedd4L in db/db mice. These findings confirmed that NEDD4L inhibition leads to a decrease in urine protein excretion, tubulointerstitial fibrosis, and oxidative stress, and mitochondrial dysfunction. Further in vitro studies demonstrated that si-Nedd4L suppressed mitochondrial fission and reactive oxygen species (ROS) production, effects antagonized by si-CaMKKß. In summary, the findings provided herein provide strong evidence that dysregulated NEDD4L disturbs mitochondrial homeostasis by negatively modulating CaMKKß in the context of DKD. This evidence underscores the potential of therapeutic interventions targeting NEDD4L and CaMKKß to safeguard renal tubular function in the management of DKD.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Diabetic Nephropathies , Down-Regulation , Homeostasis , Mitochondria , Nedd4 Ubiquitin Protein Ligases , Animals , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mitochondria/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Mice, Inbred C57BL , Mice , Humans , Reactive Oxygen Species/metabolism , Male , Oxidative Stress , Mitochondrial Dynamics , Protein Stability , Proteolysis
2.
Mol Med ; 30(1): 69, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783226

ABSTRACT

BACKGROUND: The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS: We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS: Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS: These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.


Subject(s)
Cell Proliferation , Nedd4 Ubiquitin Protein Ligases , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Animals , Cell Line, Tumor , Mice , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Protein Binding , Glycolysis , Proteolysis , Female , Enoyl-CoA Hydratase/metabolism , Enoyl-CoA Hydratase/genetics , Male , Ubiquitination , Warburg Effect, Oncologic
3.
Biomolecules ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785984

ABSTRACT

Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.


Subject(s)
Nedd4 Ubiquitin Protein Ligases , Ubiquitination , Humans , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Digestive System Diseases/metabolism , Digestive System Diseases/pathology , Animals , Signal Transduction , Cell Proliferation , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
4.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article in English | MEDLINE | ID: mdl-38634270

ABSTRACT

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Subject(s)
Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
5.
Virology ; 595: 110056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552409

ABSTRACT

The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.


Subject(s)
Nucleocapsid Proteins , Peste-des-petits-ruminants virus , Vimentin , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Vimentin/metabolism , Vimentin/genetics , Animals , Peste-des-petits-ruminants virus/physiology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/metabolism , Humans , Ubiquitination , Host-Pathogen Interactions , HEK293 Cells , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Cell Line , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/metabolism , Protein Binding
6.
Mol Carcinog ; 63(5): 803-816, 2024 May.
Article in English | MEDLINE | ID: mdl-38411267

ABSTRACT

Ovarian cancer is a major cause of death among cancer patients. Recent research has shown that the transmembrane emp24 domain (TMED) protein family plays a role in the progression of various types of cancer. In this study, we investigated the expression of TMED3 in ovarian cancer tumors compared to nontumor tissues using immunohistochemical staining. We found that TMED3 was overexpressed in ovarian cancer tumors, and its high expression was associated with poor disease-free and overall survival. To understand the functional implications of TMED3 overexpression in ovarian cancer, we conducted experiments to knockdown TMED3 using short hairpin RNA (shRNA). We observed that TMED3 knockdown resulted in reduced cell viability and migration, as well as increased cell apoptosis. Additionally, in subcutaneous xenograft models in BALB-c nude mice, TMED3 knockdown inhibited tumor growth. Further investigation revealed that SMAD family member 2 (SMAD2) was a downstream target of TMED3, driving ovarian cancer progression. TMED3 stabilized SMAD2 by inhibiting the E3 ligase NEDD4-mediated ubiquitination of SMAD2. To confirm the importance of SMAD2 in TMED3-mediated ovarian cancer, we performed functional rescue experiments and found that SMAD2 played a critical role in this process. Moreover, we discovered that the PI3K-AKT pathway was involved in the promoting effects of TMED3 overexpression on ovarian cancer cells. Overall, our study identifies TMED3 as a prognostic indicator and tumor promoter in ovarian cancer. Its function is likely mediated through the regulation of the SMAD2 and PI3K-AKT signaling pathway. These findings contribute to our understanding of the molecular mechanisms underlying ovarian cancer progression and provide potential targets for therapeutic intervention.


Subject(s)
Ovarian Neoplasms , Vesicular Transport Proteins , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad2 Protein/pharmacology , Ubiquitination , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism
7.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309503

ABSTRACT

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Subject(s)
Endosomal Sorting Complexes Required for Transport , NAV1.5 Voltage-Gated Sodium Channel , Nedd4 Ubiquitin Protein Ligases , Ubiquitination , Endosomal Sorting Complexes Required for Transport/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitin/metabolism , Humans , NAV1.5 Voltage-Gated Sodium Channel/metabolism , HEK293 Cells
8.
Acta Pharmacol Sin ; 45(4): 831-843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38052867

ABSTRACT

Chronic rhinosinusitis with nasal polyp (CRSwNP) is a refractory inflammatory disease with epithelial-mesenchymal transition (EMT) as one of the key features. Since ubiquitin modification has been shown to regulate the EMT process in other diseases, targeting ubiquitin ligases may be a potential strategy for the treatment of CRSwNP. In this study we investigated whether certain E3 ubiquitin ligases could regulate the EMT process in CRSwNP, and whether these regulations could be the potential drug targets as well as the underlying mechanisms. After screening the potential drug target by bioinformatic analyses, the expression levels of three potential E3 ubiquitin ligases were compared among the control, eosinophilic nasal polyp (ENP) and non-eosinophilic nasal polyp (NENP) group in clinical samples, and the significant decrement of the expression level of NEDD4L was found. Then, IP-MS, bioinformatics and immunohistochemistry studies suggested that low NEDD4L expression may be associated with the EMT process. In human nasal epithelial cells (hNECs) and human nasal epithelial cell line RPMI 2650, knockdown of NEDD4L promoted EMT, while upregulating NEDD4L reversed this effect, suggesting that NEDD4L inhibited EMT in nasal epithelial cells. IP-MS and Co-IP studies revealed that NEDD4L mediated the degradation of DDR1. We demonstrated that NEDD4L inhibited the ß-catenin/HIF-1α positive feedback loop either directly (degrading ß-catenin and HIF-1α) or indirectly (mediating DDR1 degradation). These results were confirmed in a murine NP model in vivo. This study for the first time reveals the regulatory role of ubiquitin in the EMT process of nasal epithelial cells, and identifies a novel drug target NEDD4L, which has promising efficacy against both ENP and NENP by suppressing ß-catenin/HIF-1α positive feedback loop.


Subject(s)
Epithelial-Mesenchymal Transition , Molecular Targeted Therapy , Nasal Polyps , Nedd4 Ubiquitin Protein Ligases , Rhinosinusitis , Animals , Humans , Mice , beta Catenin/metabolism , Chronic Disease , Feedback , Nasal Polyps/drug therapy , Nasal Polyps/enzymology , Rhinosinusitis/drug therapy , Rhinosinusitis/enzymology , Ubiquitins/metabolism , Nedd4 Ubiquitin Protein Ligases/antagonists & inhibitors , Nedd4 Ubiquitin Protein Ligases/metabolism
9.
J Cell Biol ; 223(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38032389

ABSTRACT

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Subject(s)
Astrocytes , Cell Membrane Permeability , Connexin 43 , Nedd4 Ubiquitin Protein Ligases , Potassium Channels, Inwardly Rectifying , Animals , Humans , Mice , Connexin 43/genetics , Mutation, Missense , Proteostasis , Potassium Channels, Inwardly Rectifying/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Epilepsy
10.
Physiology (Bethesda) ; 39(1): 18-29, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37962894

ABSTRACT

The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Ubiquitin , Humans , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
11.
J Biol Chem ; 300(1): 105593, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38145746

ABSTRACT

Neural precursor cell expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, is commonly upregulated in human hepatocellular carcinoma (HCC) and functions as an oncogenic factor in the progression of HCC, but the molecular mechanism needs be further explored. In this study, we found that NEDD4 could facilitate the proliferation of HCC cells, which was associated with regulating the ERK signaling. Further investigation showed that protocadherin 17 (PCDH17) was a potential substrate of NEDD4, and restoration of PCDH17 could block the facilitation of ERK signaling and HCC cells proliferation induced by NEDD4 overexpression. Whereafter, we confirmed that NEDD4 interacted with PCDH17 and promoted the Lys33-linked polyubiquitination and degradation of it via the proteasome pathway. Finally, NEDD4 protein level was found to be inversely correlated with that of PCDH17 in human HCC tissues. In conclusion, these results suggest that NEDD4 acts as an E3 ubiquitin ligase for PCDH17 ubiquitination and degradation thereby promoting the proliferation of HCC cells through regulating the ERK signaling, which may provide novel evidence for NEDD4 to be a promising therapeutic target for HCC.


Subject(s)
Cadherins , Carcinoma, Hepatocellular , Liver Neoplasms , Nedd4 Ubiquitin Protein Ligases , Humans , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Liver Neoplasms/pathology , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitination , Cadherins/metabolism
12.
Cell Biol Int ; 48(3): 325-333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108119

ABSTRACT

Deoxyribonuclease 1-like 3 (DNASE1L3) has been shown to play nonnegligible roles in several types of carcinomas. Nevertheless, the biological function, clinical relevance, and influence of DNASE1L3 in colorectal cancer (CRC) remain obscure. Immunohistochemistry was adopted to examine DNASE1L3 and CDKN1A expression in CRC tissue, and the clinical significance of DNASE1L3 was assessed. Cell counting kit-8, colony formation, and transwell assays were employed for assessing tumor proliferation and migration. The mechanisms underlying the impact of DNASE1L3 were explored via western blot analysis, co-immunoprecipitation, and ubiquitination assay. It was observed that DNASE1L3 was downregulated in CRC tissues and was tightly associated with patient prognosis. DNASE1L3 impaired CRC cell proliferation and migration through elevating CDKN1A via suppressing CDKN1A ubiquitination. Meanwhile, DNASE1L3 was positively related to CDKN1A. In mechanism, DNASE1L3 and CDKN1A interacted with the E3 ubiquitin ligase NEDD4. Moreover, DNASE1L3 was competitively bound to NEDD4, thus repressing NEDD4-mediated CDKN1A ubiquitination and degradation. These discoveries implied the potential mechanisms of DNASE1L3 during tumorigenesis, suggesting that DNASE1L3 may serve as a new potential therapeutic agent for CRC.


Subject(s)
Colorectal Neoplasms , Ubiquitin-Protein Ligases , Humans , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Deoxyribonucleases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
13.
Immunol Lett ; 264: 36-45, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37940007

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) is a serious medical problem, and promising strategy is limited. Macrophage initiated brain inflammatory injury following ICH, but the molecular mechanism had not been well identified. E3 ligase Nedd4L is implicated in the pathogenesis of the inflammatory immune response. METHODS: In the present study, we detected the levels of Nedd4L in macrophages following ICH. Furthermore, Macrophage M1 polarization, pro-inflammatory cytokine production, BBB disruption, brain water content and neurological function were examined in ICH mice. RESULTS: Here, we demonstrated that E3 ligase Nedd4L levels of macrophage increased following ICH, promoted M1 polarization inflammation by TRAF3. Nedd4L promoted BBB disruption, as well as neurological deficits. Inhibition of Nedd4L significantly attenuated M1 polarization in vivo. Inhibition of Nedd4L decreased TRAF3 and TBK1 levels, and subsequent phosphorylation of p38 and NF-κB p65 subunit following ICH. CONCLUSIONS: Our data demonstrated that Nedd4L was involved in the pathogenesis of ICH, which promoted inflammatory responses and exacerbated brain damage by TRAF3 following ICH.


Subject(s)
Brain , Cerebral Hemorrhage , Nedd4 Ubiquitin Protein Ligases , TNF Receptor-Associated Factor 3 , Animals , Mice , Brain/immunology , Brain/pathology , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/pathology , Macrophages/enzymology , Macrophages/immunology , Signal Transduction/physiology , TNF Receptor-Associated Factor 3/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism
14.
Sci Rep ; 13(1): 17903, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863970

ABSTRACT

Nedd4 (Nedd4-1) is an E3 ubiquitin ligase involved in crucial biological processes such as growth factor receptor signaling. While canonical Nedd4-1 comprises a C2-WW(4)-HECT domain architecture, alternative splicing produces non-canonical isoforms that are poorly characterized. Here we characterized Nedd4-1(NE), a primate-specific isoform of Nedd4-1 that contains a large N-terminal Extension (NE) that replaces most of the C2 domain. We show that Nedd4-1(NE) mRNA is ubiquitously expressed in human tissues and cell lines. Moreover, we found that Nedd4-1(NE) is more active than the canonical Nedd4-1 isoform, likely due to the absence of a C2 domain-mediated autoinhibitory mechanism. Additionally, we identified two Thr/Ser phosphoresidues in the NE region that act as binding sites for 14-3-3 proteins, and show that phosphorylation on these sites reduces substrate binding. Finally, we show that the NE region can act as a binding site for the RPB2 subunit of RNA polymerase II, a unique substrate of Nedd4-1(NE) but not the canonical Nedd4-1. Taken together, our results demonstrate that alternative splicing of the ubiquitin ligase Nedd4-1 can produce isoforms that differ in their catalytic activity, binding partners and substrates, and mechanisms of regulation.


Subject(s)
14-3-3 Proteins , Alternative Splicing , Animals , Humans , 14-3-3 Proteins/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Phosphorylation , Primates , Protein Binding , Protein Isoforms/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
15.
J Nutr Biochem ; 120: 109413, 2023 10.
Article in English | MEDLINE | ID: mdl-37423323

ABSTRACT

The ubiquitin-proteasomal pathway regulates the functional expression of many membrane transporters in a variety of cellular systems. Nothing is currently known about the role of ubiquitin E3 ligase, neural precursor cell-expressed developmentally down-regulated gene 4 (Nedd4-1) and the proteasomal degradation pathway in regulating human vitamin C transporter-2 (hSVCT2) in neuronal cells. hSVCT2 mediates the uptake of ascorbic acid (AA) and is the predominantly expressed vitamin C transporter isoform in neuronal systems. Therefore, we addressed this knowledge gap in our study. Analysis of mRNA revealed markedly higher expression of Nedd4-1 in neuronal samples than that of Nedd4-2. Interestingly, Nedd4-1 expression in the hippocampus was higher in patients with Alzheimer's disease (AD) and age-dependently increased in the J20 mouse model of AD. The interaction of Nedd4-1 and hSVCT2 was confirmed by coimmunoprecipitation and colocalization. While the coexpression of Nedd4-1 with hSVCT2 displayed a significant decrease in AA uptake, siRNA-mediated knockdown of Nedd4-1 expression up-regulated the AA uptake. Further, we mutated a classical Nedd4 protein interacting motif ("PPXY") within the hSVCT2 polypeptide and observed markedly decreased AA uptake due to the intracellular localization of the mutated hSVCT2. Also, we determined the role of the proteasomal degradation pathway in hSVCT2 functional expression in SH-SY5Y cells and the results indicated that the proteasomal inhibitor (MG132) significantly up-regulated the AA uptake and hSVCT2 protein expression level. Taken together, our findings show that the regulation of hSVCT2 functional expression is at least partly mediated by the Nedd4-1 dependent ubiquitination and proteasomal pathways.


Subject(s)
Neuroblastoma , Sodium-Coupled Vitamin C Transporters , Animals , Humans , Mice , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Epithelial Cells/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Sodium-Coupled Vitamin C Transporters/genetics , Sodium-Coupled Vitamin C Transporters/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
Cell Biol Int ; 47(10): 1688-1701, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37415495

ABSTRACT

Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) is an E3 ubiquitin ligase that recognizes substrates via protein-protein interactions and takes part in tumor development. This study aims to clarify NEDD4's functions in diffuse large B-cell lymphoma (DLBCL) and its downstream mechanisms. Collection of 53 DLBCL tissues and adjacent normal lymphoid tissues, and detection of NEDD4 and Forkhead box protein A1 (FOXA1) in the tissues were conducted. The selection of DLBCL cells was for FARAGE, and test of cells' advancement was after transfection. Analysis of NEDD4 and FOXA1's link, and test of Wnt/ß-catenin pathway were implemented. In vivo tumor xenograft experiments were put into effect. Detection of the pathological conditions of tumor tissues and the positive Ki67 in the family was implemented. It came out NEDD4 was reduced in DLBCL tissues and cell lines, and FOXA1 was elevated; Enhancing NEDD4 or repressing FOXA1 refrained DLBCL cells' advancement; NEDD4 could combine with FOXA1 and trigger its ubiquitination and degradation; NEDD4 inactivates the Wnt/ß-catenin pathway by motivating FOXA1 ubiquitination; NEDD4 enhancement refrained DLBCL growth in vivo. In conclusion, the E3 ubiquitin ligase NEDD4 accelerates FOXA1 ubiquitination but refrains DLBCL cell proliferation via the Wnt/ß-Catenin pathway.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Ubiquitin-Protein Ligases , Humans , beta Catenin/metabolism , Cell Proliferation , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
17.
Hypertens Pregnancy ; 42(1): 2232029, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37417251

ABSTRACT

OBJECTIVE: To assess changes in expression of renal epithelial sodium channel (ENaC) and NEDD4L, a ubiquitin ligase, in urinary extracellular vesicles (UEV) of pre-eclamptic women compared to normal pregnant controls. METHODS: Urine was collected from pre-eclamptic women (PE, n = 20) or during normal pregnancy (NP, n = 20). UEV were separated by differential ultracentrifugation. NEDD4L, α-ENaC and γ-ENaC were identified by immunoblotting. RESULTS: There was no difference in the expression of NEDD4L (p = 0.17) and α-ENaC (p = 0.10). PE subjects showed increased expression of γ-ENaC by 6.9-fold compared to NP (p < 0.0001). CONCLUSION: ENaC expression is upregulated in UEV of pre-eclamptic subjects but was not associated with changes in NEDD4L.


Subject(s)
Extracellular Vesicles , Nedd4 Ubiquitin Protein Ligases , Pre-Eclampsia , Female , Humans , Pregnancy , Epithelial Sodium Channels/metabolism , Extracellular Vesicles/metabolism , Kidney , Pre-Eclampsia/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics
18.
Biochem Pharmacol ; 214: 115641, 2023 08.
Article in English | MEDLINE | ID: mdl-37307883

ABSTRACT

Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Neoplasms , Humans , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Neoplasms/drug therapy , Ubiquitin/metabolism
19.
BMC Cancer ; 23(1): 526, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291499

ABSTRACT

NEDD4 family represent an important group of E3 ligases, which regulate various cellular pathways of cell proliferation, cell junction and inflammation. Emerging evidence suggested that NEDD4 family members participate in the initiation and development of tumor. In this study, we systematically investigated the molecular alterations as well as the clinical relevance regarding NEDD4 family genes in 33 cancer types. Finally, we found that NEDD4 members showed increased expression in pancreas cancer and decreased expression in thyroid cancer. NEDD4 E3 ligase family genes had an average mutation frequency in the range of 0-32.1%, of which HECW1 and HECW2 demonstrated relatively high mutation rate. Breast cancer harbors large amount of NEDD4 copy number amplification. NEDD4 family members interacted proteins were enriched in various pathways including p53, Akt, apoptosis and autophagy, which were confirmed by further western blot and flow cytometric analysis in A549 and H1299 lung cancer cells. In addition, expression of NEDD4 family genes were associated with survival of cancer patients. Our findings provide novel insight into the effect of NEDD4 E3 ligase genes on cancer progression and treatment in the future.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Neoplasms/genetics , Nerve Tissue Proteins/genetics
20.
Mol Biol Cell ; 34(9): ar93, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37223976

ABSTRACT

The α-arrestin ARRDC3 is a recently discovered tumor suppressor in invasive breast cancer that functions as a multifaceted adaptor protein to control protein trafficking and cellular signaling. However, the molecular mechanisms that control ARRDC3 function are unknown. Other arrestins are known to be regulated by posttranslational modifications, suggesting that ARRDC3 may be subject to similar regulatory mechanisms. Here we report that ubiquitination is a key regulator of ARRDC3 function and is mediated primarily by two proline-rich PPXY motifs in the ARRDC3 C-tail domain. Ubiquitination and the PPXY motifs are essential for ARRDC3 function in regulating GPCR trafficking and signaling. Additionally, ubiquitination and the PPXY motifs mediate ARRDC3 protein degradation, dictate ARRDC3 subcellular localization, and are required for interaction with the NEDD4-family E3 ubiquitin ligase WWP2. These studies demonstrate a role for ubiquitination in regulating ARRDC3 function and reveal a mechanism by which ARRDC3 divergent functions are controlled.


Subject(s)
Arrestin , Arrestins , Arrestin/metabolism , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Arrestins/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...