Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Basic Microbiol ; 63(3-4): 377-388, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36102627

ABSTRACT

This study shows the morphological identification of anaerobic fungal strains isolated from fecal samples of goats inhabiting Turkey and the effects of various metal ions and chemicals on extracellular xylanase production. Three different anaerobic gut fungi isolated from wild goats in Turkey were identified as Neocallimastix spp. xylanase, cellulase, and lichenase production were tested in culture supernatants, and the maximum-specific activities were found as 560.42 ± 9.39, 159.70 ± 3.88, and 157.36 ± 3.83 (µmol/min/mg protein), respectively. While the optimum temperature range of exo-xylanases was found as 40-50°C, their optimum pH range was determined as 6.0-6.5. Xylanase activity decreased in metal ions and other chemical reactants based on dose. The metal ion that significantly inhibited xylanase activity was Fe+3 . It was found that the ferric ions inhibited xylanase activity in all three anaerobic gut fungi by 30%-90% depending on molarity. On the contrary, the 1 mM concentrations of the Mn+2 , Ba+2 , Co+2 , Cu+2 , Sn+2 , and Mg+2 metal ions and the ethylenediaminetetraacetic acid and ß-mercaptoethanol reagents had a positive effect at rates in the range of 3%-92%. In conclusion, these findings demonstrate that anaerobic gut fungus has very stable fibrolytic enzymes that need to be separated, as well and the existence of a unique resource for industrial applications.


Subject(s)
Neocallimastix , Animals , Neocallimastix/metabolism , Anaerobiosis , Fungi/metabolism , Goats/metabolism , Feces/microbiology , Hydrogen-Ion Concentration , Endo-1,4-beta Xylanases/metabolism , Temperature
2.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008888

ABSTRACT

Xylanases have been applied in many industrial fields. To improve the activity and thermostability of the xylanase CDBFV from Neocallimastix patriciarum (GenBank accession no. KP691331), submodule C2 from hyperthermophilic CBM9_1-2 was inserted into the N- and/or C-terminal regions of the CDBFV protein (producing C2-CDBFV, CDBFV-C2, and C2-CDBFV-C2) by genetic engineering. CDBFV and the hybrid proteins were successfully expressed in Escherichia coli BL21 (DE3). Enzymatic property analysis indicates that the C2 submodule had a significant effect on enhancing the thermostability of the CDBFV. At the optimal temperature (60.0 °C), the half-lives of the three chimeras C2-CDBFV, CDBFV-C2, and C2-CDBFV-C2 are 1.5 times (37.5 min), 4.9 times (122.2 min), and 3.8 times (93.1 min) longer than that of wild-type CDBFV (24.8 min), respectively. More importantly, structural analysis and molecular dynamics (MD) simulation revealed that the improved thermal stability of the chimera CDBFV-C2 was on account of the formation of four relatively stable additional hydrogen bonds (S42-S462, T59-E277, S41-K463, and S44-G371), which increased the protein structure's stability. The thermostability characteristics of CDBFV-C2 make it a viable enzyme for industrial applications.


Subject(s)
Fungal Proteins/metabolism , Neocallimastix/metabolism , Xylosidases/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Temperature
3.
Anaerobe ; 39: 158-64, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26979345

ABSTRACT

Several natural anaerobic fungus-methanogen co-cultures have been isolated from rumen and feces source of herbivores with strong fiber degrading ability. In this study, we isolated 7 Neocallimastix with methanogen co-cultures from the rumen of yaks grazing on the Qinghai Tibetan Plateau. Based on morphological characteristics and internal transcribed spacer 1 sequences (ITS1), all the fungi were identified as Neocallimastix frontalis. The co-cultures were confirmed as the one fungus - one methanogen pattern by the PCR-denatured gradient gel electrophoresis (DGGE) assay. All the methanogens were identified as Methanobrevibacter ruminantium by 16s rRNA gene sequencing. We investigated the biodegrading capacity of the co-culture (N. frontalis + M. ruminantium) Yaktz1 on wheat straw, corn stalk and rice straw in a 7 days-incubation. The in vitro dry matter digestibility (IVDMD), acid detergent fiber digestibility (ADFD) and neural detergent fiber digestibility (NDFD) values of the substrates in the co-culture were significantly higher than those in the mono-culture N. frontalis Yaktz1. The co-culture exhibited high polysaccharide hydrolase (xylanase and FPase) and esterase activities. The xylanase in the co-culture reached the highest activity of 12500 mU/ml on wheat straw at the day 3 of the incubation. At the end of the incubation, 3.00 mmol-3.29 mmol/g dry matter of methane were produced by the co-culture. The co-culture also produced high level of acetate (40.00 mM-45.98 mM) as the end-product during the biodegradation. Interestingly, the N. frontalis Yaktz1 mono-culture produced large amount of lactate (8.27 mM-11.60 mM) and ethanol (163.11 mM-242.14 mM), many times more than those recorded in the previously reported anaerobic fungi. Our data suggests that the (N. frontalis + M. ruminantium) Yaktz1 co-culture and the N. frontalis Yaktz1 mono-culture both have great potentials for different industrial use.


Subject(s)
Dietary Fiber/metabolism , Gastrointestinal Microbiome/physiology , Methanobrevibacter/metabolism , Neocallimastix/metabolism , RNA, Ribosomal, 16S/genetics , Rumen/microbiology , Acetic Acid/metabolism , Anaerobiosis , Animals , Cattle , Coculture Techniques , Endo-1,4-beta Xylanases/metabolism , Esterases/metabolism , Ethanol/metabolism , Lactic Acid/metabolism , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Neocallimastix/genetics , Neocallimastix/isolation & purification , Poaceae/metabolism , Sequence Analysis, DNA
4.
J Anim Physiol Anim Nutr (Berl) ; 96(4): 554-62, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21635576

ABSTRACT

Cleavage of plant cell wall arabinoxylans occurs by the action of ferulic acid esterase (FAE) and acetyl esterase (AE), which cleave feruloyl groups substituted at the 5'-OH group of arabinosyl residues and acetyl groups substituted at O-2/O-3 of the xylan backbone, respectively. In this study, we examined the enzyme profiles of the anaerobic rumen fungus Neocallimastix sp. YQ1 for FAE, AE and polysaccharide hydrolases when grown on corn stover, a lignin-rich waste biomaterial. A 2 × 4 factorial experiment in 10-days pure cultures was used to test glucose addition (G(+) : glucose at 1.0 g/l, G(-) : no glucose) and four N sources (N1: 1.0 g/l yeast extract, 1.0 g/l tryptone and 0.5 g/l (NH(4))(2) SO(4); N2: 2.8 g/l yeast extract and 0.5 g/l (NH(4))(2) SO(4) ; N3: 1.6 g/l tryptone and 0.5 g/l (NH(4))(2) SO(4); N4: 1.4 g/l tryptone and 1.7 g/l yeast extract) in defined media. The optimal combinations of glucose and N sources to promote FAE and AE activity were G(+) N2 and G(+) N4, respectively. The peak activities of FAE and AE occurred on days 9 and 10, respectively. Addition of glucose and an increase in yeast extract and/or tryptone to a Hungate's medium favoured fungal production of volatile fatty acids, which could be just a consequence of more organic matter available to digest. This suggests that enzymatic release of ferulic acid by a synergistic action of lignin hydrolytic esterase and polysaccharide hydrolases may be essential for plant cell wall biodegradation in the rumen.


Subject(s)
Glucose/pharmacology , Neocallimastix/drug effects , Neocallimastix/metabolism , Nitrogen/pharmacology , Zea mays/microbiology , Animals , Fatty Acids, Volatile/metabolism , Glucose/chemistry , Nitrogen/chemistry
5.
Appl Microbiol Biotechnol ; 85(5): 1451-62, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19690850

ABSTRACT

A cDNA encoding a bifunctional acetylxylan esterase/xylanase, XynS20E, was cloned from the ruminal fungus Neocallimastix patriciarum. A putative conserved domain of carbohydrate esterase family 1 was observed at the N-terminus and a putative conserved domain of glycosyl hydrolase family 11 was detected at the C-terminus of XynS20E. To examine the enzyme activities, XynS20E was expressed in Escherichia coli as a recombinant His(6) fusion protein and purified by immobilized metal ion-affinity chromatography. Response surface modeling combined with central composite design and regression analysis was then applied to determine the optimal temperature and pH conditions of the recombinant XynS20E. The optimal conditions for the highest xylanase activity of the recombinant XynS20E were observed at a temperature of 49 degrees C and a pH of 5.8, while those for the highest carbohydrate esterase activity were observed at a temperature of 58 degrees C and a pH of 8.2. Under the optimal conditions for the enzyme activity, the xylanase and acetylxylan esterase specific activities of the recombinant XynS20E toward birchwood xylan were 128.7 and 873.1 U mg(-1), respectively. To our knowledge, this is the first report of a bifunctional xylanolytic enzyme with acetylxylan esterase and xylanase activities from rumen fungus.


Subject(s)
Acetylesterase/metabolism , Cloning, Molecular , Neocallimastix/enzymology , Neocallimastix/genetics , Xylans/metabolism , Xylosidases/metabolism , Acetylesterase/chemistry , Acetylesterase/genetics , Acetylesterase/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Buffaloes/microbiology , Chromatography, Affinity , DNA, Complementary , DNA, Fungal/genetics , Escherichia coli/genetics , Kinetics , Molecular Sequence Data , Neocallimastix/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Rumen/microbiology , Sequence Alignment , Substrate Specificity , Temperature , Xylosidases/chemistry , Xylosidases/genetics , Xylosidases/isolation & purification
6.
Anaerobe ; 14(2): 118-22, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18083606

ABSTRACT

The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.


Subject(s)
Antifungal Agents/pharmacology , Fatty Acids, Volatile/biosynthesis , Neocallimastix/drug effects , Neocallimastix/metabolism , Phenols/pharmacology , Acetic Acid/metabolism , Butyrates/metabolism , Cellulase/metabolism , Hemiterpenes , Pentanoic Acids/metabolism , Propionates/metabolism , Xylosidases/metabolism , beta-Glucosidase/metabolism
7.
J Mol Biol ; 375(5): 1293-305, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18078955

ABSTRACT

Endo-beta1,4-xylanases (xylanases) hydrolyse the beta1,4 glycosidic bonds in the backbone of xylan. Although xylanases from glycoside hydrolase family 11 (GH11) have been extensively studied, several issues remain unresolved. Thus, the mechanism by which these enzymes hydrolyse decorated xylans is unclear and the structural basis for the variation in catalytic activity within this family is unknown. Furthermore, the mechanism for the differences in the inhibition of fungal GH11 enzymes by the wheat protein XIP-I remains opaque. To address these issues we report the crystal structure and biochemical properties of the Neocallimastix patriciarum xylanase NpXyn11A, which displays unusually high catalytic activity and is one of the few fungal GH11 proteins not inhibited by XIP-I. Although the structure of NpXyn11A could not be determined in complex with substrates, we have been able to investigate how GH11 enzymes hydrolyse decorated substrates by solving the crystal structure of a second GH11 xylanase, EnXyn11A (encoded by an environmental DNA sample), bound to ferulic acid-1,5-arabinofuranose-alpha1,3-xylotriose (FAX(3)). The crystal structure of the EnXyn11A-FAX(3) complex shows that solvent exposure of the backbone xylose O2 and O3 groups at subsites -3 and +2 allow accommodation of alpha1,2-linked 4-methyl-D-glucuronic acid and L-arabinofuranose side chains. Furthermore, the ferulated arabinofuranose side chain makes hydrogen bonds and hydrophobic interactions at the +2 subsite, indicating that the decoration may represent a specificity determinant at this aglycone subsite. The structure of NpXyn11A reveals potential -3 and +3 subsites that are kinetically significant. The extended substrate-binding cleft of NpXyn11A, compared to other GH11 xylanases, may explain why the Neocallimastix enzyme displays unusually high catalytic activity. Finally, the crystal structure of NpXyn11A shows that the resistance of the enzyme to XIP-I is not due solely to insertions in the loop connecting beta strands 11 and 12, as suggested previously, but is highly complex.


Subject(s)
Comprehension/physiology , Endo-1,4-beta Xylanases/chemistry , Eukaryotic Cells/enzymology , Glycoside Hydrolases/chemistry , Apoenzymes/chemistry , Apoenzymes/isolation & purification , Avena/chemistry , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Catalysis , Crystallography, X-Ray , Endo-1,4-beta Xylanases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Glycoside Hydrolases/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrolysis , Intracellular Signaling Peptides and Proteins , Kinetics , Models, Chemical , Models, Molecular , Mutation , Neocallimastix/enzymology , Neocallimastix/genetics , Neocallimastix/metabolism , Penicillium/enzymology , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Protein Conformation , Protein Folding , Protein Structure, Secondary , Structure-Activity Relationship , Substrate Specificity , Triticum/enzymology , X-Ray Diffraction
8.
J Appl Microbiol ; 103(5): 1757-65, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17953586

ABSTRACT

AIM: To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. METHODS AND RESULTS: The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. CONCLUSIONS: Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. SIGNIFICANCE AND IMPACT OF THE STUDY: Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.


Subject(s)
3-Mercaptopropionic Acid/administration & dosage , Animal Feed , Dietary Fiber/administration & dosage , Protein Biosynthesis , Rumen/microbiology , Ammonia/metabolism , Animals , Bacteria, Anaerobic/metabolism , Bacteriological Techniques , Cattle , Cellulose/metabolism , Dietary Supplements , Digestion , Fatty Acids, Volatile/metabolism , Neocallimastix/metabolism , Poaceae , Reverse Transcriptase Polymerase Chain Reaction
9.
J Eukaryot Microbiol ; 54(1): 42-4, 2007.
Article in English | MEDLINE | ID: mdl-17300518

ABSTRACT

Arginine biosynthesis in eukaryotes is divided between the mitochondria and the cytosol. The anaerobic chytridiomycete Neocallimastix frontalis contains highly reduced, anaerobic modifications of mitochondria, the hydrogenosomes. Hydrogenosomes also occur in the microaerophilic flagellate Trichomonas vaginalis, which does not produce arginine but uses one of the mitochondrial enzymes, ornithine transcarbamoylase, in a cytosolic arginine dihydrolase pathway for ATP generation. EST sequencing and analysis of the hydrogenosomal proteome of N. frontalis provided evidence for two mitochondrial enzymes of arginine biosynthesis, carbamoylphosphate synthase and ornithine transcarbamoylase, while activities of the arginine dehydrolase pathway enzymes were not detectable in this fungus.


Subject(s)
Arginine/biosynthesis , Neocallimastix/metabolism , Organelles/metabolism , Amino Acid Sequence , Carbamoyl-Phosphate Synthase (Ammonia)/analysis , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , DNA, Complementary , Expressed Sequence Tags , Fungal Proteins , Gene Library , Molecular Sequence Data , Neocallimastix/enzymology , Organelles/chemistry , Ornithine Carbamoyltransferase/analysis , Ornithine Carbamoyltransferase/chemistry , Proteome , Sequence Alignment
10.
Appl Microbiol Biotechnol ; 63(4): 431-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-12690418

ABSTRACT

The effect of a commercial Aspergillus oryzae fermentation extract on the utilization of carbon source and zoospore production by the rumen fungus Neocallimastix frontalis EB 188 was determined. In addition, the composition of a soluble extract prepared from the commercial product was analyzed. This extract was added to N. frontalis EB 188 cultures grown on a variety of substrates and periodically assayed for protein, enzymes, zoospore production, and carbon source utilization. The powdered product contained 93% dry matter, more than 3,000 A. oryzaespores per gram, and did not contain strong buffers or high concentrations of salt. Measurable concentrations of DNA, protein, carbohydrate and several enzymes including cellulase and amylase were also found. Soluble extract increased fungal physiology and treated cultures produced significantly higher levels of supernatant protein and enzymes including amylase, cellulase and beta-glucosidase. The fungal response depended on culture carbon source. However, culture zoospore production was increased regardless of substrate provided. Culture utilization of glucose was more rapid in treated cultures, yet high levels of the extract greatly inhibited glucose utilization.


Subject(s)
Aspergillus oryzae/metabolism , Dietary Supplements , Neocallimastix/growth & development , Neocallimastix/metabolism , Spores, Fungal/growth & development , Amylases/metabolism , Amylases/physiology , Animals , Carbohydrate Metabolism , Cattle , Cellulase/biosynthesis , Cellulose/metabolism , Enzymes/metabolism , Fungal Proteins/metabolism , Glucose/metabolism , Neocallimastix/enzymology , Rumen/microbiology , Starch/metabolism , beta-Glucosidase/metabolism
11.
FEMS Microbiol Lett ; 212(2): 243-7, 2002 Jul 02.
Article in English | MEDLINE | ID: mdl-12113941

ABSTRACT

Anaerobic fungi are an important component of the cellulolytic ruminal microflora. Ammonia alone as N source supports growth, but amino acid mixtures are stimulatory. In order to evaluate the extent of de novo synthesis of individual amino acids in Piromyces communis and Neocallimastix frontalis, isotope enrichment in amino acids was determined during growth on (15)NH(4)Cl in different media. Most cell N (0.78 and 0.63 for P. communis and N. frontalis, respectively) and amino acid N (0.73 and 0.59) continued to be formed de novo from ammonia when 1 g l(-1) trypticase was added to the medium; this concentration approximates the peak concentration of peptides in the rumen after feeding. Higher peptide/amino acid concentrations decreased de novo synthesis. Lysine was exceptional, in that its synthesis decreased much more than other amino acids when Trypticase or amino acids were added to the medium, suggesting that lysine synthesis might limit fungal growth in the rumen.


Subject(s)
Amino Acids/biosynthesis , Neocallimastix/metabolism , Piromyces/metabolism , Rumen/microbiology , Ammonia/metabolism , Anaerobiosis , Animals , Nitrogen/metabolism
12.
Mol Microbiol ; 44(6): 1441-54, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12067335

ABSTRACT

A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the corresponding cDNA in Escherichia coli confers the ability on the bacterial host to incorporate ADP at significantly higher rates than ATP--similar to isolated mitochondria of yeast and animals. Phylogenetic analysis of this AAC gene (hdgaac) confirmed with high statistical support that the hydrogenosomal ADP/ATP carrier of Neocallimastix sp. L2 belongs to the family of veritable mitochondrial-type AACs. Hydrogenosome-bearing anaerobic ciliates possess clearly distinct mitochondrial-type AACs, whereas the potential hydrogenosomal carrier Hmp31 of the anaerobic flagellate Trichomonas vaginalis and its homologue from Trichomonas gallinae do not belong to this family of proteins. Also, phylogenetic analysis of genes encoding mitochondrial-type chaperonin 60 proteins (HSP 60) supports the conclusion that the hydrogenosomes of anaerobic chytrids and anaerobic ciliates had independent origins, although both of them arose from mitochondria.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Hydrogen/metabolism , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Neocallimastix/enzymology , Amino Acid Sequence , Animals , Blotting, Western , Escherichia coli/genetics , Immunohistochemistry , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/classification , Mitochondrial ADP, ATP Translocases/genetics , Molecular Sequence Data , Neocallimastix/classification , Neocallimastix/genetics , Neocallimastix/metabolism , Phylogeny , Sequence Homology, Amino Acid , Trichomonas/genetics
13.
Folia Microbiol (Praha) ; 45(5): 465-8, 2000.
Article in English | MEDLINE | ID: mdl-11347275

ABSTRACT

Two strains of clostridia, isolated from the rumen fluid of sheep as potential antagonists toward anaerobic fungi showed a complete array of chitinolytic enzymes. Enzyme tests in cultures demonstrated endochitinase, exochitinase, N-acetyl-glucosaminidase, chitosanase and chitin deacetylase activities mainly in the extracellular fractions. In all samples, the highest was the activity of exochitinase (600-1100 nmol mL-1 h-1); the activity of endochitinase (280-500 nmol mL-1 h-1) was also significant. Chitinases were stimulated in the presence of reducing compounds and no dependence on cations was observed. In both strains different isoforms of chitinases of molar mass 36-96 kDa were detected. The chitinases from our isolates lyzed cell walls of anaerobic fungi in vitro and inhibited the activity of fungal beta-1,4-endoglucanases. Of the two bacteria examined, one was more effective in both antifungal effects.


Subject(s)
Chitinases/metabolism , Clostridium/enzymology , Rumen/microbiology , Sheep/microbiology , Anaerobiosis , Animals , Antibiosis , Cell Wall/metabolism , Cellulase/antagonists & inhibitors , Culture Media , Neocallimastix/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...