Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.985
Filter
1.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
2.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658571

ABSTRACT

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Subject(s)
GTPase-Activating Proteins , Glutamate Dehydrogenase , Neocortex , Neocortex/metabolism , Neocortex/embryology , Neocortex/growth & development , Neocortex/cytology , Humans , Animals , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Ketoglutaric Acids/metabolism , Neuroglia/metabolism , Glutamic Acid/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mice , Citric Acid Cycle/genetics , Female
3.
Nature ; 629(8011): 402-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38632412

ABSTRACT

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Subject(s)
Bone Morphogenetic Protein 2 , Interneurons , Neocortex , Parvalbumins , Signal Transduction , Smad1 Protein , Animals , Smad1 Protein/metabolism , Mice , Interneurons/metabolism , Neocortex/metabolism , Neocortex/cytology , Parvalbumins/metabolism , Bone Morphogenetic Protein 2/metabolism , Male , Female , Neurons/metabolism , Neural Inhibition , Epilepsy/metabolism , Epilepsy/physiopathology , Synapses/metabolism , Nerve Net/metabolism
4.
EMBO J ; 43(8): 1388-1419, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514807

ABSTRACT

Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.


Subject(s)
Epiregulin , Neocortex , Animals , Humans , Mice , Cell Proliferation , Epiregulin/genetics , Epiregulin/metabolism , Gorilla gorilla/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neocortex/cytology , Neocortex/metabolism , Primates/physiology
5.
Nature ; 624(7991): 390-402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092918

ABSTRACT

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Subject(s)
Conserved Sequence , Evolution, Molecular , Gene Expression Regulation , Gene Regulatory Networks , Mammals , Neocortex , Animals , Humans , Mice , Callithrix/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Methylation , DNA Transposable Elements/genetics , Epigenome , Gene Expression Regulation/genetics , Macaca/genetics , Mammals/genetics , Motor Cortex/cytology , Motor Cortex/metabolism , Multiomics , Neocortex/cytology , Neocortex/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis , Transcription Factors/metabolism , Genetic Variation/genetics
6.
Science ; 382(6669): 388-394, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37883552

ABSTRACT

The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.


Subject(s)
Hypothalamus , Neurogenesis , Animals , Hypothalamus/physiology , Hypothalamus/ultrastructure , Mammals , Neocortex/cytology , Neocortex/physiology , Neurons/physiology , Thalamus/physiology , Single-Cell Gene Expression Analysis
7.
Science ; 382(6667): eadf0805, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824667

ABSTRACT

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.


Subject(s)
Neocortex , Animals , Humans , Mice , Axons/metabolism , Interneurons/metabolism , Neocortex/cytology , Neocortex/metabolism , Pyramidal Cells/metabolism , Transcriptome
8.
Science ; 382(6667): eadf6484, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824669

ABSTRACT

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.


Subject(s)
GABAergic Neurons , Interneurons , Neocortex , Animals , Humans , Mice , Electrophysiological Phenomena , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Interneurons/metabolism , Neocortex/cytology , Neocortex/metabolism , Patch-Clamp Techniques
9.
Science ; 379(6636): eadf2212, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893240

ABSTRACT

Herai et al. discuss the known fact that a low percentage of modern humans who lack any overt phenotypes carry the ancestral TKTL1 allele. Our paper demonstrates that the amino acid substitution in TKTL1 increases neural progenitor cells and neurogenesis in the developing brain. It is another question if, and to what extent, this has consequences for the adult brain.


Subject(s)
Neanderthals , Neocortex , Neural Stem Cells , Neurogenesis , Transketolase , Animals , Humans , Neanderthals/genetics , Neocortex/cytology , Neocortex/growth & development , Neurogenesis/genetics , Transketolase/genetics
10.
Biosystems ; 225: 104867, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36792004

ABSTRACT

Perception of color by humans and other primates is a complex problem, studied by neurophysiology, psychophysiology, psycholinguistics, and even philosophy. Being mostly trichromats, simian primates have three types of opsin proteins, expressed in cone neurons in the eye, which allow for the sensing of color as the physical wavelength of light. Further, in neural networks of the retina, the coding principle changes from three types of sensor proteins to two opponent channels: activity of one type of neuron encode the evolutionarily ancient blue-yellow axis of color stimuli, and another more recent evolutionary channel, encoding the axis of red-green color stimuli. Both color channels are distinctive in neural organization at all levels from the eye to the neocortex, where it is thought that the perception of color (as philosophical qualia) emerges from the activity of some neuron ensembles. Here, using data from neurophysiology as a starting point, we propose a hypothesis on how the perception of color can be encoded in the activity of certain neurons in the neocortex. These conceptual neurons, herein referred to as 'color neurons', code only the hue of the color of visual stimulus, similar to place cells and number neurons, already described in primate brains. A case study with preliminary, but direct, evidence for existing conceptual color neurons in the human brain was published in 2008. We predict that the upcoming studies in non-human primates will be more extensive and provide a more detailed description of conceptual color neurons.


Subject(s)
Neocortex , Primates , Visual Perception , Animals , Neocortex/cytology , Neocortex/physiology , Primates/physiology , Color , Retina/cytology , Retina/physiology , Biological Evolution
11.
Nature ; 612(7940): 503-511, 2022 12.
Article in English | MEDLINE | ID: mdl-36477535

ABSTRACT

The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.


Subject(s)
Gene Expression Regulation , Neocortex , Protocadherins , Animals , Mice , Interneurons/metabolism , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Neurons/metabolism , Protocadherins/genetics , Protocadherins/metabolism , Synapses/metabolism , Synaptic Transmission
12.
Science ; 377(6610): eabp9186, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048957

ABSTRACT

The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.


Subject(s)
Biological Evolution , Neurons , Pleurodeles , Telencephalon , Animals , Atlases as Topic , Neocortex/cytology , Neocortex/physiology , Neurons/metabolism , Pleurodeles/physiology , Telencephalon/cytology , Telencephalon/physiology , Transcriptome
13.
Science ; 377(6611): 1155-1156, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36074827

ABSTRACT

A genetic change could explain increased cortical neurogenesis in modern humans.


Subject(s)
Biological Evolution , Neocortex , Neurogenesis , Neurons , Animals , Humans , Neocortex/cytology , Neocortex/embryology , Neurogenesis/genetics , Neurons/cytology
14.
Nature ; 608(7924): 750-756, 2022 08.
Article in English | MEDLINE | ID: mdl-35948630

ABSTRACT

Microglia are specialized macrophages in the brain parenchyma that exist in multiple transcriptional states and reside within a wide range of neuronal environments1-4. However, how and where these states are generated remains poorly understood. Here, using the mouse somatosensory cortex, we demonstrate that microglia density and molecular state acquisition are determined by the local composition of pyramidal neuron classes. Using single-cell and spatial transcriptomic profiling, we unveil the molecular signatures and spatial distributions of diverse microglia populations and show that certain states are enriched in specific cortical layers, whereas others are broadly distributed throughout the cortex. Notably, conversion of deep-layer pyramidal neurons to an alternate class identity reconfigures the distribution of local, layer-enriched homeostatic microglia to match the new neuronal niche. Leveraging the transcriptional diversity of pyramidal neurons in the neocortex, we construct a ligand-receptor atlas describing interactions between individual pyramidal neuron subtypes and microglia states, revealing rules of neuron-microglia communication. Our findings uncover a fundamental role for neuronal diversity in instructing the acquisition of microglia states as a potential mechanism for fine-tuning neuroimmune interactions within the cortical local circuitry.


Subject(s)
Microglia , Neocortex , Pyramidal Cells , Somatosensory Cortex , Animals , Cell Count , Mice , Microglia/classification , Microglia/physiology , Neocortex/cytology , Neocortex/physiology , Pyramidal Cells/classification , Pyramidal Cells/physiology , Single-Cell Analysis , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Transcriptome
15.
Nature ; 608(7922): 381-389, 2022 08.
Article in English | MEDLINE | ID: mdl-35896749

ABSTRACT

Working memory-the brain's ability to internalize information and use it flexibly to guide behaviour-is an essential component of cognition. Although activity related to working memory has been observed in several brain regions1-3, how neural populations actually represent working memory4-7 and the mechanisms by which this activity is maintained8-12 remain unclear13-15. Here we describe the neural implementation of visual working memory in mice alternating between a delayed non-match-to-sample task and a simple discrimination task that does not require working memory but has identical stimulus, movement and reward statistics. Transient optogenetic inactivations revealed that distributed areas of the neocortex were required selectively for the maintenance of working memory. Population activity in visual area AM and premotor area M2 during the delay period was dominated by orderly low-dimensional dynamics16,17 that were, however, independent of working memory. Instead, working memory representations were embedded in high-dimensional population activity, present in both cortical areas, persisted throughout the inter-stimulus delay period, and predicted behavioural responses during the working memory task. To test whether the distributed nature of working memory was dependent on reciprocal interactions between cortical regions18-20, we silenced one cortical area (AM or M2) while recording the feedback it received from the other. Transient inactivation of either area led to the selective disruption of inter-areal communication of working memory. Therefore, reciprocally interconnected cortical areas maintain bound high-dimensional representations of working memory.


Subject(s)
Cerebral Cortex , Feedback, Physiological , Memory, Short-Term , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Cognition/physiology , Frontal Lobe/cytology , Frontal Lobe/physiology , Memory, Short-Term/physiology , Mice , Neocortex/cytology , Neocortex/physiology , Optogenetics , Reward , Visual Cortex/cytology , Visual Cortex/physiology , Visual Perception
16.
Science ; 376(6600): 1441-1446, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35587512

ABSTRACT

Progenitors of the developing human neocortex reside in the ventricular and outer subventricular zones (VZ and OSVZ, respectively). However, whether cells derived from these niches have similar developmental fates is unknown. By performing fate mapping in primary human tissue, we demonstrate that astrocytes derived from these niches populate anatomically distinct layers. Cortical plate astrocytes emerge from VZ progenitors and proliferate locally, while putative white matter astrocytes are morphologically heterogeneous and emerge from both VZ and OSVZ progenitors. Furthermore, via single-cell sequencing of morphologically defined astrocyte subtypes using Patch-seq, we identify molecular distinctions between VZ-derived cortical plate astrocytes and OSVZ-derived white matter astrocytes that persist into adulthood. Together, our study highlights a complex role for cell lineage in the diversification of human neocortical astrocytes.


Subject(s)
Astrocytes , Neocortex , Neural Stem Cells , Neurogenesis , Stem Cell Niche , Astrocytes/cytology , Cell Lineage , Humans , Neocortex/cytology , Neocortex/embryology , Neural Stem Cells/cytology , Primary Cell Culture
17.
Nature ; 604(7907): 689-696, 2022 04.
Article in English | MEDLINE | ID: mdl-35444276

ABSTRACT

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Subject(s)
Clone Cells , Mosaicism , Neocortex , Cell Lineage , Cells, Cultured , Humans , Microglia , Neocortex/cytology , Neocortex/growth & development
18.
Science ; 375(6585): eabj5861, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271334

ABSTRACT

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Subject(s)
Neocortex/physiology , Neural Pathways , Neurons/physiology , Synapses/physiology , Synaptic Transmission , Adult , Animals , Datasets as Topic , Excitatory Postsynaptic Potentials , Female , Humans , Inhibitory Postsynaptic Potentials , Male , Mice , Mice, Transgenic , Models, Neurological , Neocortex/cytology , Temporal Lobe/cytology , Temporal Lobe/physiology , Visual Cortex/cytology , Visual Cortex/physiology
19.
Nat Commun ; 13(1): 925, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177622

ABSTRACT

Despite recent advances in cancer immunotherapy, certain tumor types, such as Glioblastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor immune response. Here we show, by applying an in-silico multidimensional model integrating spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor samples, that a subset of Interleukin-10-releasing HMOX1+ myeloid cells, spatially localizing to mesenchymal-like tumor regions, drive T-cell exhaustion and thus contribute to the immunosuppressive tumor microenvironment. These findings are validated using a human ex-vivo neocortical glioblastoma model inoculated with patient derived peripheral T-cells to simulate the immune compartment. This model recapitulates the dysfunctional transformation of tumor infiltrating T-cells. Inhibition of the JAK/STAT pathway rescues T-cell functionality both in our model and in-vivo, providing further evidence of IL-10 release being an important driving force of tumor immune escape. Our results thus show that integrative modelling of single cell and spatial transcriptomics data is a valuable tool to interrogate the tumor immune microenvironment and might contribute to the development of successful immunotherapies.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Interleukin-10/metabolism , Myeloid Cells/metabolism , T-Lymphocytes/immunology , Adult , Aged , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Communication/immunology , Cell Line, Tumor , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Healthy Volunteers , Heme Oxygenase-1/metabolism , Humans , Immunotherapy/methods , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Male , Middle Aged , Neocortex/cytology , Neocortex/immunology , Neocortex/pathology , Primary Cell Culture , RNA-Seq , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Single-Cell Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Tissue Culture Techniques , Tumor Escape , Tumor Microenvironment/immunology
20.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35165147

ABSTRACT

Dravet syndrome (DS) is one of the most severe childhood epilepsies, characterized by intractable seizures and comorbidities including cognitive and social dysfunction and high premature mortality. DS is mainly caused by loss-of-function mutations in the Scn1a gene encoding Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, contributing to DS phenotypes. Effective pharmacological therapy that targets defective PV interneurons is not available. The known role of brain-derived neurotrophic factor (BDNF) in the development and maintenance of interneurons, together with our previous results showing improved PV interneuronal function and antiepileptogenic effects of a TrkB receptor agonist in a posttraumatic epilepsy model, led to the hypothesis that early treatment with a TrkB receptor agonist might prevent or reduce seizure activity in DS mice. To test this hypothesis, we treated DS mice with LM22A-4 (LM), a partial agonist at the BDNF TrkB receptor, for 7 d starting at postnatal day 13 (P13), before the onset of spontaneous seizures. Results from immunohistochemistry, Western blot, whole-cell patch-clamp recording, and in vivo seizure monitoring showed that LM treatment increased the number of perisomatic PV interneuronal synapses around cortical pyramidal cells in layer V, upregulated Nav1.1 in PV neurons, increased inhibitory synaptic transmission, and decreased seizures and the mortality rate in DS mice. The results suggest that early treatment with a partial TrkB receptor agonist may be a promising therapeutic approach to enhance PV interneuron function and reduce epileptogenesis and premature death in DS.


Subject(s)
Benzamides/therapeutic use , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/mortality , Receptor, trkB/agonists , Receptor, trkB/metabolism , Seizures/etiology , Seizures/genetics , Animals , Epilepsies, Myoclonic/metabolism , Gene Expression Regulation/drug effects , Mice , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Neocortex/cytology , Pyramidal Cells/metabolism , Receptor, trkB/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...