Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Urolithiasis ; 52(1): 126, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39237840

ABSTRACT

Kidney Stone Disease (KSD) constitutes a multifaceted disorder, emerging from a confluence of environmental and genetic determinants, and is characterized by a high frequency of occurrence and recurrence. Our objective is to elucidate potential causative proteins and identify prospective pharmacological targets within the context of KSD. This investigation harnessed the unparalleled breadth of plasma protein and KSD pooled genome-wide association study (GWAS) data, sourced from the United Kingdom Biobank Pharma Proteomics Project (UKBPPP) and the FinnGen database version R10. Through Mendelian randomization analysis, proteins exhibiting a causal influence on KSD were pinpointed. Subsequent co-localization analyses affirmed the stability of these findings, while enrichment analyses evaluated their potential for pharmacological intervention. Culminating the study, a phenome-wide association study (PheWAS) was executed, encompassing all phenotypes (2408 phenotypes) catalogued in the FinnGen database version R10. Our MR analysis identified a significant association between elevated plasma levels of proteins FKBPL, ITIH3, and SERPINC1 and increased risk of KSD based on genetic predictors. Conversely, proteins CACYBP, DAG1, ITIH1, and SEMA6C showed a protective effect against KSD, documented with statistical significance (PFDR<0.05). Co-localization analysis confirmed these seven proteins share genetic variants with KSD, signaling a shared genetic basis (PPH3 + PPH4 > 0.8). Enrichment analysis revealed key pathways including hyaluronan metabolism, collagen-rich extracellular matrix, and serine-type endopeptidase inhibition. Additionally, our PheWAS connected the associated proteins with 356 distinct diseases (PFDR<0.05), highlighting intricate disease interrelations. In conclusion, our research elucidated a causal nexus between seven plasma proteins and KSD, enriching our grasp of prospective therapeutic targets.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Proteome , Humans , Nephrolithiasis/genetics , Nephrolithiasis/blood , Nephrolithiasis/metabolism , Phenotype , Proteomics
2.
Zhonghua Yi Xue Za Zhi ; 104(34): 3256-3259, 2024 Sep 03.
Article in Chinese | MEDLINE | ID: mdl-39193613

ABSTRACT

The clinical presentation, treatment, and follow-up of two boys with type 1 Dent disease who exhibited a Bartter-like phenotype were retropectively analysed. The related literature of pediatric patients with type 1 Dent disease who had hypokalemia and metabolic alkalosis was screened through databases such as PubMed, CNKI, and Wanfang until February 1, 2024, and common features among these patients were summarized through literature review. A total of 7 literatures were included, and 9 children were included in the analysis. All patients were male, presenting with significant low molecular weight proteinuria and hypercalciuria. Other prominent characteristic phenotypes included short stature (7/8), hypophosphatemia (8/9), and rickets (6/8). Seven previously reported patients had missense or nonsense mutations, while 2 patients in this study carried possible pathogenic mutations in the CLCN5 gene, c.315+2T>A (p.?) and c.584dupT (p.I196Yfs*6), respectively. Five patients were able to maintain blood potassium levels around 3 mmol/L with oral potassium chloride solution combined with non-steroidal anti-inflammatory drugs (ibuprofen or indomethacin). The follow-up showed that 2 patients developed chronic kidney disease stage 4 and stage 3 at the age of 13 and 21 years, respectively. The phenotypic overlap between Dent disease and Batter syndrome is considerable,with the distinguishing feature being the presence of significant low molecular weight proteinuria. Patients with type 1 Dent disease presenting with the Bartter-like phenotype have a high prevalence of short stature, hypophosphatemia, and rickets. Non-steroidal anti-inflammatory drugs can be used to correct hypokalemia in patients under periodic renal function assessment.


Subject(s)
Genetic Diseases, X-Linked , Nephrolithiasis , Child , Humans , Male , Bartter Syndrome/genetics , Bartter Syndrome/diagnosis , Chloride Channels/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Hypokalemia/diagnosis , Hypokalemia/genetics , Hypophosphatemia/diagnosis , Hypophosphatemia/genetics , Mutation , Nephrolithiasis/diagnosis , Nephrolithiasis/genetics , Phenotype , Proteinuria/diagnosis , Proteinuria/genetics , Rickets/diagnosis
3.
Cell Mol Life Sci ; 81(1): 369, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39182194

ABSTRACT

Calcium-containing stones represent the most common form of kidney calculi, frequently linked to idiopathic hypercalciuria, though their precise pathogenesis remains elusive. This research aimed to elucidate the molecular mechanisms involved by employing urinary exosomal microRNAs as proxies for renal tissue analysis. Elevated miR-148b-5p levels were observed in exosomes derived from patients with kidney stones. Systemic administration of miR-148b-5p in rat models resulted in heightened urinary calcium excretion, whereas its inhibition reduced stone formation. RNA immunoprecipitation combined with deep sequencing identified miR-148b-5p as a suppressor of calcitonin receptor (Calcr) expression, thereby promoting urinary calcium excretion and stone formation. Mice deficient in Calcr in distal epithelial cells demonstrated elevated urinary calcium excretion and renal calcification. Mechanistically, miR-148b-5p regulated Calcr through the circRNA-83536/miR-24-3p signaling pathway. Human kidney tissue samples corroborated these results. In summary, miR-148b-5p regulates the formation of calcium-containing kidney stones via the circRNA-83536/miR-24-3p/Calcr axis, presenting a potential target for novel therapeutic interventions to prevent calcium nephrolithiasis.


Subject(s)
Calcium , Hypercalciuria , MicroRNAs , Nephrolithiasis , Animals , Humans , Male , Mice , Rats , Calcium/metabolism , Exosomes/metabolism , Exosomes/genetics , Hypercalciuria/genetics , Hypercalciuria/metabolism , Hypercalciuria/pathology , Kidney/metabolism , Kidney/pathology , Kidney Calculi/metabolism , Kidney Calculi/genetics , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Rats, Sprague-Dawley , Signal Transduction
4.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , China/epidemiology , Chloride Channels/genetics , Dent Disease/genetics , Dent Disease/diagnosis , East Asian People , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Testing , Glomerulosclerosis, Focal Segmental/genetics , Hypercalciuria/genetics , Kidney/pathology , Mutation , Mutation, Missense , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Phosphoric Monoester Hydrolases/genetics , Proteinuria/genetics , Retrospective Studies
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732005

ABSTRACT

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Subject(s)
Calcium Oxalate , Hypercalciuria , Kidney Calculi , Mice, Knockout , Animals , Hypercalciuria/metabolism , Hypercalciuria/genetics , Hydrogen-Ion Concentration , Mice , Calcium Oxalate/metabolism , Kidney Calculi/metabolism , Kidney Calculi/etiology , Kidney Calculi/pathology , Calcium Phosphates/metabolism , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Calcium/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Disease Models, Animal , Mice, Inbred C57BL , Acetazolamide/pharmacology
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674033

ABSTRACT

Sarcoidosis is a systemic inflammatory disorder characterized by granuloma formation in various organs. It has been associated with nephrolithiasis. The vitamin K epoxide reductase complex subunit 1 (VKORC1) gene, which plays a crucial role in vitamin K metabolism, has been implicated in the activation of proteins associated with calcification, including in the forming of nephrolithiasis. This study aimed to investigate the VKORC1 C1173T polymorphism (rs9934438) in a Dutch sarcoidosis cohort, comparing individuals with and without a history of nephrolithiasis. Retrospectively, 424 patients with sarcoidosis were divided into three groups: those with a history of nephrolithiasis (Group I: n = 23), those with hypercalcemia without nephrolithiasis (Group II: n = 38), and those without nephrolithiasis or hypercalcemia (Group III: n = 363). Of the 424 sarcoidosis patients studied, 5.4% had a history of nephrolithiasis (Group I), only two of whom possessed no VKORC1 polymorphisms (OR = 7.73; 95% CI 1.79-33.4; p = 0.001). The presence of a VKORC1 C1173T variant allele was found to be a substantial risk factor for the development of nephrolithiasis in sarcoidosis patients. This study provides novel insights into the genetic basis of nephrolithiasis in sarcoidosis patients, identifying VKORC1 C1173T as a potential contributor. Further research is warranted to elucidate the precise mechanisms and explore potential therapeutic interventions based on these genetic findings.


Subject(s)
Nephrolithiasis , Polymorphism, Single Nucleotide , Sarcoidosis , Vitamin K Epoxide Reductases , Humans , Female , Vitamin K Epoxide Reductases/genetics , Male , Sarcoidosis/genetics , Sarcoidosis/complications , Middle Aged , Nephrolithiasis/genetics , Risk Factors , Adult , Genetic Predisposition to Disease , Retrospective Studies , Aged , Alleles
8.
Nephrol Dial Transplant ; 39(9): 1426-1441, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38544324

ABSTRACT

BACKGROUND: Molecular mechanisms of kidney stone formation remain unknown in most patients. Previous studies have shown a high heritability of nephrolithiasis, but data on the prevalence and characteristics of genetic disease in unselected adults with nephrolithiasis are lacking. This study was conducted to fill this important knowledge gap. METHODS: We performed whole exome sequencing in 787 participants in the Bern Kidney Stone Registry, an unselected cohort of adults with one or more past kidney stone episodes [kidney stone formers (KSFs)] and 114 non-kidney stone formers (NKSFs). An exome-based panel of 34 established nephrolithiasis genes was analysed and variants assessed according to American College of Medical Genetics and Genomics criteria. Pathogenic (P) or likely pathogenic (LP) variants were considered diagnostic. RESULTS: The mean age of KSFs was 47 ± 15 years and 18% were first-time KSFs. A Mendelian kidney stone disease was present in 2.9% (23/787) of KSFs. The most common genetic diagnoses were cystinuria (SLC3A1, SLC7A9; n = 13), vitamin D-24 hydroxylase deficiency (CYP24A1; n = 5) and primary hyperoxaluria (AGXT, GRHPR, HOGA1; n = 3). Of the KSFs, 8.1% (64/787) were monoallelic for LP/P variants predisposing to nephrolithiasis, most frequently in SLC34A1/A3 or SLC9A3R1 (n = 37), CLDN16 (n = 8) and CYP24A1 (n = 8). KSFs with Mendelian disease had a lower age at the first stone event (30 ± 14 versus 36 ± 14 years; P = .003), were more likely to have cystine stones (23.4% versus 1.4%) and less likely to have calcium oxalate monohydrates stones (31.9% versus 52.5%) compared with KSFs without a genetic diagnosis. The phenotype of KSFs with variants predisposing to nephrolithiasis was subtle and showed significant overlap with KSFs without diagnostic variants. In NKSFs, no Mendelian disease was detected and LP/P variants were significantly less prevalent compared with KSFs (1.8% versus 8.1%). CONCLUSION: Mendelian disease is uncommon in unselected adult KSFs, yet variants predisposing to nephrolithiasis are significantly enriched in adult KSFs.


Subject(s)
Kidney Calculi , Humans , Kidney Calculi/genetics , Kidney Calculi/epidemiology , Kidney Calculi/etiology , Female , Male , Prevalence , Middle Aged , Adult , Exome Sequencing , Registries , Nephrolithiasis/genetics , Nephrolithiasis/epidemiology , Nephrolithiasis/etiology
9.
Aging (Albany NY) ; 16(7): 5987-6007, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38536018

ABSTRACT

Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.


Subject(s)
Biomarkers , Ferroptosis , Nephrolithiasis , Ferroptosis/drug effects , Animals , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Rats , Biomarkers/metabolism , Humans , Male , Calcium Oxalate/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Kidney Calculi/metabolism , Kidney Calculi/genetics , Kidney Calculi/pathology , Cyclohexylamines/pharmacology , Phenylenediamines/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Cell Line
10.
Int Urol Nephrol ; 56(7): 2165-2177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372840

ABSTRACT

PURPOSE: Calcium-sensing receptor (CASR) influences the expression pattern of multiple genes in renal tubular epithelial cells. The objective of this inquiry was to explore the molecular mechanisms of CASR in renal tubular epithelial cells and nephrolithiasis. METHODS: HK-2 cells were transfected with lentiviruses carrying either CASR (named CASR) or an empty vector negative control (named NC), as well as shRNA intended to target CASR (named shCASR) or its corresponding negative control (named shNC). CCK-8 assay was used to detect the effect of CASR on the proliferation of HK-2 cells. RNA-Sequencing was applied to explore potential pathways regulated by CASR in HK-2 cells. RESULTS: PCR and western blot results showed that CASR expression was significantly increased in CASR cells and was decreased in shCASR cells when compared to their corresponding negative control, respectively. CCK-8 assay revealed that CASR inhibited the proliferation of HK-2 cells. RNA-Sequencing results suggested that the shCASR HK-2 cells exhibited a significant up-regulation of 345 genes and a down-regulation of 366 genes. These differentially expressed genes (DEGs) were related to cell apoptosis and cell development. In CASR HK-2 cells, 1103 DEGs primarily functioned in mitochondrial energy metabolism, and amino acid metabolism. With the Venn diagram, 4 DEGs (Clorf116, ENPP3, IL20RB, and CLDN2) were selected as the hub genes regulated by CASR. Enrichment analysis revealed that these hub genes were involved in cell-cell junction, and epithelial cell development. CONCLUSIONS: In summary, our investigation has the potential to offer novel perspectives on CASR regulating cell-cell junction in HK-2 cells.


Subject(s)
Epithelial Cells , Kidney Tubules , Receptors, Calcium-Sensing , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Humans , Epithelial Cells/metabolism , Kidney Tubules/cytology , Kidney Tubules/metabolism , Intercellular Junctions/metabolism , Cells, Cultured , Cell Proliferation , Nephrolithiasis/genetics , Nephrolithiasis/metabolism , Gene Expression Regulation , Cell Line
11.
Nephrology (Carlton) ; 29(4): 201-213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290500

ABSTRACT

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is characterized by increased endogenous oxalate production and deposition as calcium oxalate crystals. The main manifestations are nephrocalcinosis/nephrolithiasis, causing impaired kidney function. We aimed to evaluate the clinical characteristics and overall outcomes of paediatric PH1 patients in Turkey. METHODS: This is a nationwide, multicentre, retrospective study evaluating all available paediatric PH1 patients from 15 different paediatric nephrology centres in Turkey. Detailed patient data was collected which included demographic, clinical and laboratory features. Patients were classified according to their age and characteristics at presentation: patients presenting in the first year of life with nephrocalcinosis/nephrolithiasis (infantile oxalosis, Group 1), cases with recurrent nephrolithiasis diagnosed during childhood (childhood-onset PH1, Group 2), and asymptomatic children diagnosed with family screening (Group 3). RESULTS: Forty-eight patients had a mutation consistent with PH1. The most common mutation was c.971_972delTG (25%). Infantile oxalosis patients had more advanced chronic kidney disease (CKD) or kidney failure necessitating dialysis (76.9% vs. 45.5%). These patients had much worse clinical course and mortality rates seemed to be higher (23.1% vs. 13.6%). Patients with fatal outcomes were the ones with significant comorbidities, especially with cardiovascular involvement. Patients in Group 3 were followed with better outcomes, with no kidney failure or mortality. CONCLUSION: PH1 is not an isolated kidney disease but a systemic disease. Family screening helps to preserve kidney function and prevent systemic complications. Despite all efforts made with traditional treatment methods including transplantation, our results show devastating outcomes or mortality.


Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Failure, Chronic , Nephrocalcinosis , Nephrolithiasis , Renal Insufficiency , Humans , Child , Nephrocalcinosis/diagnosis , Nephrocalcinosis/epidemiology , Nephrocalcinosis/etiology , Retrospective Studies , Kidney Failure, Chronic/complications , Renal Dialysis/adverse effects , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Nephrolithiasis/complications , Nephrolithiasis/diagnosis , Nephrolithiasis/genetics , Hyperoxaluria/complications
12.
Pediatr Nephrol ; 39(4): 1093-1104, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37914965

ABSTRACT

BACKGROUND: Three types of primary hyperoxaluria (PH) are recognized. However, data on PH type 2 (PH2), caused by defects in the GRHPR gene, are limited. METHODS: We reviewed the medical records of patients < 18 years of age with genetically-proven PH2 from seven centres across India to identify the age of onset, patterns of clinical presentation, short-term outcomes and genetic profile, and to determine if genotype-phenotype correlation exists. RESULTS: We report 20 patients (all with nephrolithiasis or nephrocalcinosis) diagnosed to have PH2 at a median (IQR) age of 21.5 (7, 60) months. Consanguinity and family history of kidney stones were elicited in nine (45%) and eight (40%) patients, respectively. The median (IQR) serum creatinine at PH2 diagnosis was 0.45 (0.29, 0.56) mg/dL with the corresponding estimated glomerular filtration rate being 83 (60, 96) mL/1.73 m2/min. A mutational hotspot (c.494 G > A), rare in Caucasians, was identified in 12 (60%) patients. An intronic splice site variant (c.735-1G > A) was noted in five (25%) patients. Four (20%) patients required surgical intervention for stone removal. Major adverse kidney events (mortality or chronic kidney disease (CKD) stages 3-5) were noted in six (30%) patients at a median (IQR) follow-up of 12 (6, 27) months. Risk factors for CKD progression and genotype-phenotype correlation could not be established. CONCLUSIONS: PH2 should no longer be considered an innocuous disease, but rather a potentially aggressive disease with early age of presentation, and possible rapid progression to CKD stages 3-5 in childhood in some patients. A mutational hotspot (c.494 G > A variant) was identified in 60% of cases, but needs further exploration to decipher the genotype-phenotype correlation.


Subject(s)
Hyperoxaluria, Primary , Nephrolithiasis , Renal Insufficiency, Chronic , Child , Humans , Infant , Genetic Profile , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Nephrolithiasis/genetics
13.
Int J Biol Macromol ; 257(Pt 2): 128564, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061527

ABSTRACT

Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.


Subject(s)
Dent Disease , Genetic Diseases, X-Linked , Nephrolithiasis , Humans , Dent Disease/genetics , Dent Disease/pathology , Nephrolithiasis/genetics , Mutation , Ion Transport
14.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139117

ABSTRACT

Serum phosphate concentration is regulated by renal phosphate reabsorption and mediated by sodium-phosphate cotransporters. Germline mutations in genes encoding these cotransporters have been associated with clinical phenotypes, variably characterized by hyperphosphaturia, hypophosphatemia, recurrent kidney stones, skeletal demineralization, and early onset osteoporosis. We reported a 33-year-old male patient presenting a history of recurrent nephrolithiasis and early onset osteopenia in the lumbar spine and femur. He was tested, through next generation sequencing (NGS), by using a customized multigenic panel containing 33 genes, whose mutations are known to be responsible for the development of congenital parathyroid diseases. Two further genes, SLC34A1 and SLC34A3, encoding two sodium-phosphate cotransporters, were additionally tested. A novel germline heterozygous mutation was identified in the SLC34A1 gene, c.1627G>T (p.Gly543Cys), currently not reported in databases of human gene mutations and scientific literature. SLC34A1 germline heterozygous mutations have been associated with the autosomal dominant hypophosphatemic nephrolithiasis/osteoporosis type 1 (NPHLOP1). Consistently, alongside the clinical features of NPHLOP1, our patient experienced recurrent nephrolithiasis and lumbar and femoral osteopenia at a young age. Genetic screening for the p.Gly453Cys variant and the clinical characterization of his first-degree relatives associated the presence of the variant in one younger brother, presenting renal colic and microlithiasis, suggesting p.Gly453Cys is possibly associated with renal altered function in the NPHLOP1 phenotype.


Subject(s)
Familial Hypophosphatemic Rickets , Nephrolithiasis , Osteoporosis , Humans , Male , Adult , Nephrolithiasis/complications , Nephrolithiasis/genetics , Familial Hypophosphatemic Rickets/genetics , Mutation , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins/genetics , Sodium , Sodium-Phosphate Cotransporter Proteins, Type IIa
16.
Free Radic Biol Med ; 207: 120-132, 2023 10.
Article in English | MEDLINE | ID: mdl-37451369

ABSTRACT

Oxidative stress is a major risk factor for calcium oxalate nephrolithiasis. Reports suggest that oxidative stress response is induced in animals and humans with kidney stones. Keap1, Nrf2, and HO-1 are known as oxidative stress mediators. However, the association between oxidative stress response and stone formation is unclear. In this study, we analyzed oxidative stress response from the acute to the crystal formation phase when crystal formation was applied to renal crystal mice model and bioimaging mice and investigated the effect on crystal formation. In renal tissues, after glyoxylate administration, HO-1 increased for up to 6 h and returned to baseline at 24 h. This was observed following each daily dose until five days after the crystallization phase; however, the range of increase was attenuated. The possibility that Nrf2 activity influenced the number of crystals was considered in the experiment. Crystal formation increased in Nrf2-deficient mice and could be reduced by Nrf2 activators. In conclusion, the oxidative stress response via the Keap1-Nrf2 pathway may contribute to crystal formation. Particularly, this pathway may be a prospective target for drug development to prevent and cure nephrolithiasis.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Nephrolithiasis , Oxidative Stress , Animals , Mice , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/metabolism , Nephrolithiasis/prevention & control , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics
17.
Front Endocrinol (Lausanne) ; 14: 1074012, 2023.
Article in English | MEDLINE | ID: mdl-36967798

ABSTRACT

Background: Hyperuricemia and gout are risk factors of nephrolithiasis. However, it is unclear whether the ABCG2 gene contributes to the development of nephrolithiasis. We aimed to investigate the interaction between the ABCG2 rs2231142 variant and incident nephrolithiasis in the Taiwanese population. Methods: A total of 120,267 adults aged 30-70 years were enrolled from the Taiwan Biobank data-base in this retrospective case-control study and genotyped for rs2231142. The primary outcome was the prevalence of self-reported nephrolithiasis. The odds ratio (OR) of incident nephrolithiasis was analyzed by multivariable logistic regression models with adjustment for multifactorial confounding factors. Associations of the ABCG2 rs2231142 variant with serum uric acid levels, and the incident nephrolithiasis were explored. Results: The frequency of rs2231142 T allele was 53%, and 8,410 participants had nephrolithiasis. The multivariable-adjusted OR (95% confidence interval) of nephrolithiasis was 1.18 (1.09-1.28) and 1.12 (1.06-1.18) for TT and GT genotypes, respectively, compared with the GG genotype (p<0.001), specifically in the male population with hyperuricemia. Higher age, male sex, hyperlipidemia, hypertension, diabetes mellitus, hyperuricemia, smoking and overweight were independent risk factors for nephrolithiasis. In contrast, regular physical exercise is a protective factor against nephrolithiasis. Conclusions: ABCG2 genetic variation is a significant risk of nephrolithiasis, independent of serum uric acid levels. For rs2231142 T allele carriers, our result provides evidence for precision healthcare to tackle hyperuricemia, comorbidities, smoking, and overweight, and recommend regular physical exercise for the prevention of nephrolithiasis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Hyperuricemia , Nephrolithiasis , Adult , Humans , Male , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Biological Specimen Banks , Case-Control Studies , Genetic Predisposition to Disease , Hyperuricemia/epidemiology , Hyperuricemia/genetics , Neoplasm Proteins/genetics , Nephrolithiasis/epidemiology , Nephrolithiasis/genetics , Overweight , Polymorphism, Single Nucleotide , Retrospective Studies , Taiwan/epidemiology , Uric Acid , Female , Middle Aged , Aged
18.
J Biomol Struct Dyn ; 41(24): 15400-15410, 2023.
Article in English | MEDLINE | ID: mdl-36914227

ABSTRACT

In view of the ethno medicinal use of Enhydra fluctuans for the treatment of kidney stones; the present study aimed to elucidate the molecular mechanisms involved in the amelioration of nephrolithiasis through a network pharmacology approach. The phytoconstituents were queried in DIGEP-Pred to identify the regulated proteins. The modulated proteins were then enriched in the STRING to predict the protein-protein interactions and the probably regulated pathways were traced in the Kyoto Encyclopedia of Genes and Genomes. Further, the network was constructed using Cytoscape ver 3.5.1. Results showed that ß-carotene was found to be regulating maximum targets i.e. 26. In addition, 63 proteins were triggered by the components in which the vitamin D receptor was targeted by the maximum phytoconstituents i.e. 16. The enrichment analysis identified the regulation of 67 pathways in which fluid shear stress and atherosclerosis-associated pathways (KEGG entry hsa05418) regulated ten genes. Further, protein kinase C-α was traced in 23 different pathways. In addition, the majority of the regulated genes were identified from the extracellular space via the modulation of 43 genes. Also, nuclear receptor activity had the maximum molecular function via the regulation of 7 genes. Likewise, the response to organic substance was predicted to trigger the top genes i.e. 43. In contrast, Stigmasterol, Baicalein-7-o-glucoside, and Kauran-16-ol were found to have a high affinity to bind with the VDR receptor confirmed by the molecular modelling and the dynamics. Hence, the study elucidated the probable molecular mechanisms of E. fluctuans in managing nephrolithiasis and identified the lead molecules, their targets, and possible pathways.Communicated by Ramaswamy H. Sarma.


Subject(s)
Asteraceae , Drugs, Chinese Herbal , Nephrolithiasis , Network Pharmacology , Nephrolithiasis/drug therapy , Nephrolithiasis/genetics , Extracellular Space , Molecular Docking Simulation
19.
Pediatr Nephrol ; 38(8): 2615-2622, 2023 08.
Article in English | MEDLINE | ID: mdl-36688940

ABSTRACT

BACKGROUND: Diagnosing genetic kidney disease has become more accessible with low-cost, rapid genetic testing. The study objectives were to determine genetic testing diagnostic yield and examine predictors of genetic diagnosis in children with nephrolithiasis/nephrocalcinosis (NL/NC). METHODS: This retrospective multicenter cross-sectional study was conducted on children ≤ 21 years old with NL/NC from pediatric nephrology/urology centers that underwent the Invitae Nephrolithiasis Panel 1/1/2019-9/30/2021. The diagnostic yield of the genetic panel was calculated. Bivariate and multiple logistic regression were performed to assess for predictors of positive genetic testing. RESULTS: One hundred and thirteen children (83 NL, 30 NC) from 7 centers were included. Genetic testing was positive in 32% overall (29% NL, 40% NC) with definite diagnoses (had pathogenic variants alone) made in 11.5%, probable diagnoses (carried a combination of pathogenic variants and variants of uncertain significance (VUS) in the same gene) made in 5.4%, and possible diagnoses (had VUS alone) made in 15.0%. Variants were found in 28 genes (most commonly HOGA1 in NL, SLC34A3 in NC) and 20 different conditions were identified. Compared to NL, those with NC were younger and had a higher proportion with developmental delay, hypercalcemia, low serum bicarbonate, hypophosphatemia, and chronic kidney disease. In multivariate analysis, low serum bicarbonate was associated with increased odds of genetic diagnosis (ß 2.2, OR 8.7, 95% CI 1.4-54.7, p = 0.02). CONCLUSIONS: Genetic testing was high-yield with definite, probable, or possible explanatory variants found in up to one-third of children with NL/NC and shows promise to improve clinical practice. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Kidney Calculi , Nephrocalcinosis , Nephrolithiasis , Child , Humans , Young Adult , Adult , Nephrocalcinosis/diagnosis , Nephrocalcinosis/genetics , Bicarbonates , Cross-Sectional Studies , Nephrolithiasis/diagnosis , Nephrolithiasis/genetics , Kidney Calculi/genetics , Genetic Testing
20.
Pediatr Nephrol ; 38(6): 1801-1810, 2023 06.
Article in English | MEDLINE | ID: mdl-36409364

ABSTRACT

BACKGROUND: Primary hyperoxalurias (PHs) constitute rare disorders resulting in abnormal glyoxalate metabolism. PH-associated phenotypes range from progressive nephrocalcinosis and/or recurrent urolithiasis to early kidney failure. METHODS: A retrospective study was conducted for patients with confirmed PH diagnoses from three tertiary centers in Saudi Arabia. Detailed clinical molecular diagnosis was performed for 25 affected individuals. Whole exome sequencing (WES)-based molecular diagnosis was performed for all affected individuals. RESULTS: The male:female ratio was 52% male (n = 13) and 48% female (n = 12), and consanguinity was present in 88%. Nephrolithiasis and/or nephrocalcinosis were present in all patients. Kidney stones were present in 72%, nephrocalcinosis in 60%, hematuria in 32%, proteinuria in 16%, abdominal pain in 36%, developmental delay in 8%, and chronic kidney disease stage 5 (CKD stage 5) was observed in 28% of the patients. The most common PH disorder was type I caused by variants in the AGXT gene, accounting for 56%. The GRHPR gene variants were identified in 4 patients, 16% of the total cases. Seven patients did not reveal any associated variants. Missense variants were the most commonly observed variants (48%), followed by frame-shift duplication variants (28%). CONCLUSIONS: Characterization of the genetic and clinical aspects of PH in this unique population provides direction for improved patient management and further research. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Hyperoxaluria, Primary , Nephrocalcinosis , Nephrolithiasis , Male , Humans , Female , Nephrocalcinosis/epidemiology , Nephrocalcinosis/genetics , Nephrocalcinosis/diagnosis , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/epidemiology , Retrospective Studies , Saudi Arabia/epidemiology , Nephrolithiasis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL