Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.858
Filter
1.
Mol Biol Rep ; 51(1): 654, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735002

ABSTRACT

BACKGROUND: Cervical cancer is a common gynecologic malignant tumor, but the critical factors affecting cervical cancer progression are still not well demonstrated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been widely recognized as an anti-inflammatory factor to regulate macrophage polarization. In this study, the effect and mechanism of MANF on cervical cancer were preliminarily explored. METHODS AND RESULTS: Kaplan-Meier curve was used to show the overall survival time of the involved cervical cancer patients with high and low MANF expression in cervical cancer tissues. MANF was highly expressed in peritumoral tissues of cervical carcinoma by using immunohistochemistry and western blot. MANF mRNA level was detected by using qRT-PCR. Dual-labeled immunofluorescence showed MANF was mainly expressed in macrophages of cervical peritumoral tissues. Moreover, MANF-silenced macrophages promoted HeLa and SiHa cells survival, migration, invasion and EMT via NF-κB signaling activation. The results of tumor formation in nude mice indicated MANF-silenced macrophages promoted cervical tumor formation in vivo. CONCLUSION: Our study reveals an inhibitory role of MANF in cervical cancer progression, indicating MANF as a new and valuable therapeutic target for cervical cancer treatment.


Subject(s)
Disease Progression , Macrophages , Mice, Nude , Nerve Growth Factors , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Animals , Macrophages/metabolism , Mice , Cell Movement/genetics , NF-kappa B/metabolism , Cell Line, Tumor , Signal Transduction , Phenotype , HeLa Cells , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Middle Aged
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673746

ABSTRACT

Neuroinflammation is associated with several neurological disorders including temporal lobe epilepsy. Seizures themselves can induce neuroinflammation. In an in vivo model of epilepsy, the supplementation of brain-derived neurotropic factor (BDNF) and fibroblast growth factor-2 (FGF-2) using a Herpes-based vector reduced epileptogenesis-associated neuroinflammation. The aim of this study was to test whether the attenuation of the neuroinflammation obtained in vivo with BDNF and FGF-2 was direct or secondary to other effects, for example, the reduction in the severity and frequency of spontaneous recurrent seizures. An in vitro model of neuroinflammation induced by lipopolysaccharide (LPS, 100 ng/mL) in a mouse primary mixed glial culture was used. The releases of cytokines and NO were analyzed via ELISA and Griess assay, respectively. The effects of LPS and neurotrophic factors on cell viability were determined by performing an MTT assay. BDNF and FGF-2 were tested alone and co-administered. LPS induced a significant increase in pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and NO. BDNF, FGF-2, and their co-administration did not counteract these LPS effects. Our study suggests that the anti-inflammatory effect of BDNF and FGF-2 in vivo in the epilepsy model was indirect and likely due to a reduction in seizure frequency and severity.


Subject(s)
Brain-Derived Neurotrophic Factor , Cytokines , Fibroblast Growth Factor 2 , Lipopolysaccharides , Neuroinflammatory Diseases , Animals , Mice , Neuroinflammatory Diseases/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cytokines/metabolism , Cells, Cultured , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Neuroglia/metabolism , Neuroglia/drug effects , Cell Survival/drug effects , Disease Models, Animal , Mice, Inbred C57BL
3.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683978

ABSTRACT

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Subject(s)
Brain-Derived Neurotrophic Factor , Exosomes , Muscle, Skeletal , Exosomes/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Brain-Derived Neurotrophic Factor/metabolism , Mice , Fibronectins/metabolism , Motor Neurons/metabolism , Interleukin-6/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Neurons/metabolism , Nerve Growth Factors/metabolism , Myokines
4.
Proc Natl Acad Sci U S A ; 121(19): e2400903121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683992

ABSTRACT

The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.


Subject(s)
Interleukin-17 , Signal Transduction , Toll-Like Receptors , Animals , Interleukin-17/metabolism , Toll-Like Receptors/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Evolution, Molecular , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473977

ABSTRACT

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Subject(s)
Killifishes , Nerve Growth Factors , Receptors, Nerve Growth Factor , Humans , Receptors, Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Receptor Protein-Tyrosine Kinases/physiology , Retina/metabolism , Receptor, trkA , Neurotrophin 3 , Brain-Derived Neurotrophic Factor
6.
ACS Appl Mater Interfaces ; 16(13): 15730-15740, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38527279

ABSTRACT

Neural differentiation is crucial for advancing our understanding of the nervous system and developing treatments for neurological disorders. The advanced methods and the ability to manipulate the alignment, proliferation, and differentiation of stem cells are essential for studying neuronal development and synaptic interactions. However, the utilization of human induced pluripotent stem cells (iPSCs) for disease modeling of neurodegenerative conditions may be constrained by the prolonged duration and uncontrolled cell differentiation required for functional neural cell differentiation. Here, we developed a microfluidic chip to enhance the differentiation and maturation of specific neural lineages by placing aligned microelectrodes on the glass surface to regulate the neural differentiation of human iPSCs. The utilization of electrical stimulation (ES) in conjunction with neurotrophic factors (NF) significantly enhanced the efficiency in generating functional neurons from human iPSCs. We also observed that the simultaneous application of NF and ES to human iPSCs promoted their differentiation and maturation into functional neurons while increasing synaptic interactions. Our research demonstrated the effect of combining NF and ES on human iPSC-derived neural differentiation.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Microfluidics , Neurons , Cell Differentiation , Nerve Growth Factors/metabolism , Electrodes
7.
J Neural Eng ; 21(2)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38479026

ABSTRACT

Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Rats , Animals , Humans , Nerve Growth Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Hydrogels/chemistry , Parkinson Disease/therapy , Brain/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Biocompatible Materials , Collagen , Cell Differentiation
8.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38538215

ABSTRACT

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Subject(s)
Bone Neoplasms , Cancer Pain , Netrin-1 , Animals , Rats , Bone Neoplasms/complications , Cancer Pain/etiology , DCC Receptor/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Netrin-1/genetics , Nociceptors/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , RNA, Small Interfering , Signal Transduction , Tumor Microenvironment , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
9.
Exp Eye Res ; 242: 109861, 2024 May.
Article in English | MEDLINE | ID: mdl-38522635

ABSTRACT

Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.


Subject(s)
Amyloid beta-Peptides , Electroretinography , Eye Proteins , Nerve Growth Factors , Serpins , Animals , Serpins/metabolism , Eye Proteins/metabolism , Nerve Growth Factors/metabolism , Rats , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Peptide Fragments/toxicity , Disease Models, Animal , Receptors, Laminin/metabolism , Male , Retina/drug effects , Retina/metabolism , Humans , Intravitreal Injections , Blotting, Western , Retinal Diseases/prevention & control , Retinal Diseases/metabolism , Retinal Diseases/chemically induced , Cells, Cultured
10.
Ann Anat ; 254: 152247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458575

ABSTRACT

Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.


Subject(s)
Larynx , Nerve Regeneration , Netrin-1 , Netrin-1/metabolism , Animals , Humans , Nerve Regeneration/physiology , Larynx/physiology , Nerve Growth Factors/metabolism , Nerve Growth Factors/physiology , Tumor Suppressor Proteins/metabolism , Axon Guidance/physiology
11.
Mol Ther ; 32(5): 1407-1424, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38429927

ABSTRACT

Maintaining functional adipose innervation is critical for metabolic health. We found that subcutaneous white adipose tissue (scWAT) undergoes peripheral neuropathy (PN) with obesity, diabetes, and aging (reduced small-fiber innervation and nerve/synaptic/growth-cone/vesicle markers, altered nerve activity). Unlike with nerve injuries, peripheral nerves do not regenerate with PN, and therefore new therapies are needed for treatment of this condition affecting 20-30 million Americans. Here, we validated a gene therapy approach using an adipocyte-tropic adeno-associated virus (AAV; serotype Rec2) to deliver neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) directly to scWAT to improve tissue-specific PN as a proof-of-concept approach. AAVRec2-BDNF intra-adipose delivery improved tissue innervation in obese/diabetic mice with PN, but after longer periods of dietary obesity there was reduced efficacy, revealing a key time window for therapies. AAVRec2-NGF also increased scWAT innervation in obese mice and was more effective than BDNF, likely because Rec2 targeted adipocytes, the tissue's endogenous NGF source. AAVRec2-NGF also worked well even after 25 weeks of dietary obesity, unlike BDNF, which likely needs a vector that targets its physiological cellular source (stromal vascular fraction cells). Given the differing effects of AAVs carrying NGF versus BDNF, a combined therapy may be ideal for PN.


Subject(s)
Adipocytes , Brain-Derived Neurotrophic Factor , Dependovirus , Genetic Therapy , Genetic Vectors , Obesity , Subcutaneous Fat , Animals , Dependovirus/genetics , Obesity/therapy , Obesity/metabolism , Mice , Genetic Therapy/methods , Adipocytes/metabolism , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Subcutaneous Fat/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Gene Transfer Techniques , Humans , Male , Peripheral Nervous System Diseases/therapy , Peripheral Nervous System Diseases/etiology , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/genetics , Transduction, Genetic
12.
EMBO J ; 43(7): 1164-1186, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396301

ABSTRACT

Ferroptosis is a regulated form of necrotic cell death caused by iron-dependent accumulation of oxidized phospholipids in cellular membranes, culminating in plasma membrane rupture (PMR) and cell lysis. PMR is also a hallmark of other types of programmed necrosis, such as pyroptosis and necroptosis, where it is initiated by dedicated pore-forming cell death-executing factors. However, whether ferroptosis-associated PMR is also actively executed by proteins or driven by osmotic pressure remains unknown. Here, we investigate a potential ferroptosis role of ninjurin-1 (NINJ1), a recently identified executor of pyroptosis-associated PMR. We report that NINJ1 oligomerizes during ferroptosis, and that Ninj1-deficiency protects macrophages and fibroblasts from ferroptosis-associated PMR. Mechanistically, we find that NINJ1 is dispensable for the initial steps of ferroptosis, such as lipid peroxidation, channel-mediated calcium influx, and cell swelling. In contrast, NINJ1 is required for early loss of plasma membrane integrity, which precedes complete PMR. Furthermore, NINJ1 mediates the release of cytosolic proteins and danger-associated molecular pattern (DAMP) molecules from ferroptotic cells, suggesting that targeting NINJ1 could be a therapeutic option to reduce ferroptosis-associated inflammation.


Subject(s)
Alarmins , Ferroptosis , Humans , Necrosis/metabolism , Cell Death , Cell Membrane/metabolism , Nerve Growth Factors/metabolism , Cell Adhesion Molecules, Neuronal/metabolism
13.
Bioorg Med Chem ; 101: 117637, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38368633

ABSTRACT

Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.


Subject(s)
Nerve Growth Factors , Quinolines , Animals , Rats , Cell Differentiation/drug effects , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , PC12 Cells/drug effects , Phosphorylation
14.
Prog Chem Org Nat Prod ; 123: 1-473, 2024.
Article in English | MEDLINE | ID: mdl-38340248

ABSTRACT

Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.


Subject(s)
Biological Products , Humans , Biological Products/pharmacology , Nerve Growth Factors/pharmacology , Nerve Growth Factors/metabolism , Neurons/metabolism , Neurogenesis , Cell Differentiation/physiology
16.
BMC Psychiatry ; 24(1): 47, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216957

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a debilitating health condition that has significant morbidity and mortality rates. Depression can be caused due to social, biological, environmental, psychological, and genetic factors. A few biological processes have been proposed as the pathophysiological pathways of depression. Neurotrophic factors and inflammatory cytokines have been linked to depression. Thus, we aimed to investigate the serum interleukin-33 (IL-33) and mesencephalic astrocyte-derived neurotrophic factor (MANF) in MDD patients and corresponding healthy controls (HCs). METHOD: This study involved the inclusion of 129 MDD patients and 125 HCs matched by sex and age. A psychiatrist evaluated the study participants following DSM-5 criteria. The severity of the illness was assessed utilizing the Hamilton Depression Rating Scale (Ham-D). The serum concentrations of IL-33 and MANF were measured using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: The mean serum levels of IL-33 were decreased (159.12 ± 6.07 pg/ml vs. 180.60 ± 8.64 pg/ml, p = 0.042), and the MANF levels were increased (5.40 ± 0.19 ng/ml vs. 4.46 ± 0.21 ng/ml, p = 0.001) in MDD patients when compared to HCs. CONCLUSIONS: The current study proposes that lower IL-33 and higher MANF serum levels are associated with MDD progression and depression severity. These biomarkers could be used as risk assessment tools for MDD. We recommend more investigation, including a significant population, to determine the precise function of IL-33 and MANF in depression.


Subject(s)
Depressive Disorder, Major , Humans , Astrocytes/metabolism , Cross-Sectional Studies , Interleukin-33 , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism
17.
Phytomedicine ; 124: 155272, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181530

ABSTRACT

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Subject(s)
Alzheimer Disease , Biological Products , Curcumin , Neuroprotective Agents , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Resveratrol/pharmacology , Curcumin/pharmacology , Quercetin/pharmacology , Apigenin/pharmacology , Genistein/pharmacology , Amyloid beta-Peptides/metabolism , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Biological Products/pharmacology , Signal Transduction , Nerve Growth Factors/metabolism , Phytochemicals/therapeutic use , Neuroprotective Agents/chemistry
18.
Acta Neuropathol Commun ; 12(1): 10, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229173

ABSTRACT

Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Rats , Mice , Animals , Ischemic Stroke/metabolism , Rats, Sprague-Dawley , Brain/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/therapeutic use , Stroke/metabolism , Cerebral Infarction/metabolism , Inflammation/metabolism
19.
Gene ; 901: 148171, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38242372

ABSTRACT

At present, meteorin-like protein (METRNL) has been proven to be widely expressed in the myocardium and participates in the pathogenic process of various cardiovascular diseases. However, the effects of METRNL on pathological cardiac hypertrophy is still unknown. In the present study, we used a mouse model of transverse aortic constriction (TAC) surgery to mimic pathological cardiac hypertrophy and gene delivery system to overexpress METRNL in vivo. The results showed that METRNL overexpression improved TAC-induced pathological cardiac hypertrophy in mice and neonatal cardiomyocytes. In addition, METRNL overexpression diminished TAC-induced cardiac oxidative damage, inflammation and cardiomyocyte apoptosis. Moreover, the cardioprotective effect of METRNL overexpression was directly related to the activation of AMP-activated protein kinase (AMPK) and sirtuin1 (SIRT1). In summary, our data identified that METRNL may be a promising therapeutic target to mitigate pathological cardiac hypertrophy in the future.


Subject(s)
Myocardium , Nerve Growth Factors , Ventricular Remodeling , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Mice, Inbred C57BL , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Ventricular Remodeling/genetics , Nerve Growth Factors/metabolism
20.
Int J Biol Sci ; 20(1): 296-311, 2024.
Article in English | MEDLINE | ID: mdl-38164189

ABSTRACT

Dysplasia and invasive defects in early trophoblasts contribute to unexplained recurrent miscarriages (URMs). Mesencephalic astrocyte-derived neurotrophic factor (MANF) inhibits migration and invasion in some cancer cells, but its role in pregnancy-related diseases remains unresolved. Here, we found that MANF levels in the peripheral blood and aborted tissue of URM women were higher than in normal controls, irrespective of pregnancy or miscarriage. We confirm the interaction between MANF and nucleophosmin 1 (NPM1) in trophoblasts of URM patients, which increases the ubiquitination degradation of NPM1, leading to upregulation of the p53 signaling pathway and inhibition of cell proliferation, migration, and invasion ability. Using a URM mouse model, we found that MANF downregulation resulted in reduced fetal resorption; however, concomitant NPM1 downregulation led to increased abortion rates. These data indicate that MANF triggers miscarriage via NPM1 downregulation and p53 activation. Thus, MANF downregulation or disruption of the MANF-NPM1 interaction could be targets for URM therapeutics.


Subject(s)
Abortion, Habitual , Tumor Suppressor Protein p53 , Pregnancy , Mice , Animals , Humans , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Abortion, Habitual/genetics , Abortion, Habitual/metabolism , Cell Proliferation/genetics , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...