Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.810
Filter
1.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696601

ABSTRACT

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Subject(s)
Membrane Proteins , Prefrontal Cortex , Synapses , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Humans , Male , Female , Synapses/pathology , Synapses/metabolism , Adult , Middle Aged , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Young Adult , Adolescent , Child , Autistic Disorder/metabolism , Autistic Disorder/pathology , Neural Inhibition/physiology , Vesicular Glutamate Transport Protein 1/metabolism
2.
Exp Brain Res ; 242(6): 1481-1493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702470

ABSTRACT

The anterior (DA) and posterior parts of the deltoid (DP) show alternating contraction during shoulder flexion and extension movements. It is expected that an inhibitory spinal reflex between the DA and DP exists. In this study, spinal reflexes between the DA and DP were examined in healthy human subjects using post-stimulus time histogram (PSTH) and electromyogram averaging (EMG-A). Electrical conditioning stimulation was delivered to the axillary nerve branch that innervates the DA (DA nerve) and DP (DP nerve) with the intensity below the motor threshold. In the PSTH study, the stimulation to the DA and DP nerves inhibited (decrease in the firing probability) 31 of 54 DA motor units and 31 of 51 DP motor units. The inhibition was not provoked by cutaneous stimulation. The central synaptic delay of the inhibition between the DA and DP nerves was 1.5 ± 0.5 ms and 1.4 ± 0.4 ms (mean ± SD) longer than those of the homonymous facilitation of the DA and DP, respectively. In the EMG-A study, conditioning stimulation to the DA and DP nerves inhibited the rectified and averaged EMG of the DP and DA, respectively. The inhibition diminished with tonic vibration stimulation to the DA and DP and recovered 20-30 min after vibration removal. These findings suggest that oligo(di or tri)-synaptic inhibition mediated by group Ia afferents between the DA and DP exists in humans.


Subject(s)
Deltoid Muscle , Electric Stimulation , Electromyography , Neural Inhibition , Humans , Male , Adult , Deltoid Muscle/physiology , Deltoid Muscle/innervation , Female , Neural Inhibition/physiology , Young Adult , Vibration , Afferent Pathways/physiology
3.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771240

ABSTRACT

In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.


Subject(s)
Fragile X Mental Retardation Protein , Mice, Knockout , Neurons , Animals , Fragile X Mental Retardation Protein/genetics , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Mice , Male , Neural Inhibition/physiology , Neural Inhibition/drug effects , Mice, Inbred C57BL , Electroencephalography
4.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38719453

ABSTRACT

Retinal prosthetics are one of the leading therapeutic strategies to restore lost vision in patients with retinitis pigmentosa and age-related macular degeneration. Much work has described patterns of spiking in retinal ganglion cells (RGCs) in response to electrical stimulation, but less work has examined the underlying retinal circuitry that is activated by electrical stimulation to drive these responses. Surprisingly, little is known about the role of inhibition in generating electrical responses or how inhibition might be altered during degeneration. Using whole-cell voltage-clamp recordings during subretinal electrical stimulation in the rd10 and wild-type (wt) retina, we found electrically evoked synaptic inputs differed between ON and OFF RGC populations, with ON cells receiving mostly excitation and OFF cells receiving mostly inhibition and very little excitation. We found that the inhibition of OFF bipolar cells limits excitation in OFF RGCs, and a majority of both pre- and postsynaptic inhibition in the OFF pathway arises from glycinergic amacrine cells, and the stimulation of the ON pathway contributes to inhibitory inputs to the RGC. We also show that this presynaptic inhibition in the OFF pathway is greater in the rd10 retina, compared with that in the wt retina.


Subject(s)
Electric Stimulation , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Retinal Degeneration/physiopathology , Mice, Inbred C57BL , Retinal Bipolar Cells/physiology , Patch-Clamp Techniques , Visual Pathways/physiology , Visual Pathways/physiopathology , Neural Inhibition/physiology , Female , Male , Retina/physiology , Amacrine Cells/physiology
5.
Physiol Rep ; 12(9): e16039, 2024 May.
Article in English | MEDLINE | ID: mdl-38740563

ABSTRACT

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Subject(s)
Spinal Cord Stimulation , Thigh , Humans , Male , Spinal Cord Stimulation/methods , Adult , Thigh/physiology , Thigh/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle Contraction/physiology , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , H-Reflex/physiology , Femoral Nerve/physiology , Neural Inhibition/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/innervation , Hamstring Muscles/physiology , Electromyography
6.
Neural Comput ; 36(5): 803-857, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38658028

ABSTRACT

Deep feedforward and recurrent neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how real neural circuits operate. Towards this aim, we put forth a new framework for spike-based computation in low-rank excitatory-inhibitory spiking networks. By considering populations with rank-1 connectivity, we cast each neuron's spiking threshold as a boundary in a low-dimensional input-output space. We then show how the combined thresholds of a population of inhibitory neurons form a stable boundary in this space, and those of a population of excitatory neurons form an unstable boundary. Combining the two boundaries results in a rank-2 excitatory-inhibitory (EI) network with inhibition-stabilized dynamics at the intersection of the two boundaries. The computation of the resulting networks can be understood as the difference of two convex functions and is thereby capable of approximating arbitrary non-linear input-output mappings. We demonstrate several properties of these networks, including noise suppression and amplification, irregular activity and synaptic balance, as well as how they relate to rate network dynamics in the limit that the boundary becomes soft. Finally, while our work focuses on small networks (5-50 neurons), we discuss potential avenues for scaling up to much larger networks. Overall, our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.


Subject(s)
Action Potentials , Models, Neurological , Neural Inhibition , Neural Networks, Computer , Neurons , Nonlinear Dynamics , Action Potentials/physiology , Neurons/physiology , Neural Inhibition/physiology , Humans , Animals , Nerve Net/physiology , Synapses/physiology , Computer Simulation
7.
Sci Rep ; 14(1): 8475, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605084

ABSTRACT

Prolonged local vibration (LV) can induce neurophysiological adaptations thought to be related to long-term potentiation or depression. Yet, how changes in intracortical excitability may be involved remains to be further investigated as previous studies reported equivocal results. We therefore investigated the effects of 30 min of LV applied to the right flexor carpi radialis muscle (FCR) on both short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). SICI and ICF were measured through transcranial magnetic stimulation before and immediately after 30 min of FCR LV (vibration condition) or 30 min of rest (control condition). Measurements were performed during a low-intensity contraction (n = 17) or at rest (n = 7). No significant SICI nor ICF modulations were observed, whether measured during isometric contractions or at rest (p = 0.2). Yet, we observed an increase in inter-individual variability for post measurements after LV. In conclusion, while intracortical excitability was not significantly modulated after LV, increased inter-variability observed after LV may suggest the possibility of divergent responses to prolonged LV exposure.


Subject(s)
Motor Cortex , Vibration , Electromyography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation/methods , Neural Inhibition/physiology
8.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38565288

ABSTRACT

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Mice, Inbred C57BL , Signal Transduction , TRPM Cation Channels , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Mice , TRPM Cation Channels/metabolism , Signal Transduction/physiology , Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Receptors, GABA-A/metabolism , Hippocampus/metabolism , Neural Inhibition/physiology , GABAergic Neurons/metabolism , Heart Arrest/complications , Heart Arrest/metabolism
9.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38658137

ABSTRACT

The primary motor cortex (M1) integrates sensory and cognitive inputs to generate voluntary movement. Its functional impairments have been implicated in the pathophysiology of motor symptoms in Parkinson's disease (PD). Specifically, dopaminergic degeneration and basal ganglia dysfunction entrain M1 neurons into the abnormally synchronized bursting pattern of activity throughout the cortico-basal ganglia-thalamocortical network. However, how degeneration of the midbrain dopaminergic neurons affects the anatomy, microcircuit connectivity, and function of the M1 network remains poorly understood. The present study examined whether and how the loss of dopamine (DA) affects the morphology, cellular excitability, and synaptic physiology of Layer 5 parvalbumin-expressing (PV+) cells in the M1 of mice of both sexes. Here, we reported that loss of midbrain dopaminergic neurons does not alter the number, morphology, and physiology of Layer 5 PV+ cells in M1. Moreover, we demonstrated that the number of perisomatic PV+ puncta of M1 pyramidal neurons as well as their functional innervation of cortical pyramidal neurons were not altered following the loss of DA. Together, the present study documents an intact GABAergic inhibitory network formed by PV+ cells following the loss of midbrain dopaminergic neurons.


Subject(s)
Dopaminergic Neurons , Interneurons , Mesencephalon , Mice, Transgenic , Motor Cortex , Parvalbumins , Animals , Parvalbumins/metabolism , Motor Cortex/metabolism , Dopaminergic Neurons/metabolism , Interneurons/metabolism , Male , Female , Mesencephalon/metabolism , GABAergic Neurons/metabolism , Mice, Inbred C57BL , Mice , Neural Inhibition/physiology
10.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38569923

ABSTRACT

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Subject(s)
Gyrus Cinguli , Optogenetics , Rats, Long-Evans , Animals , Gyrus Cinguli/physiology , Male , Rats , Female , Attention/physiology , Reward , Choice Behavior/physiology , Decision Making/physiology , Neural Inhibition/physiology
11.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38604778

ABSTRACT

The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.


Subject(s)
Membrane Potentials , Optogenetics , Animals , Optogenetics/methods , Mice , Male , Female , Membrane Potentials/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Neural Inhibition/physiology , Ligand-Gated Ion Channels/metabolism , Ligand-Gated Ion Channels/genetics , Mice, Transgenic
12.
Brain Stimul ; 17(2): 476-484, 2024.
Article in English | MEDLINE | ID: mdl-38621645

ABSTRACT

BACKGROUND: Non-invasive brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation hold promise for inducing brain plasticity. However, their limited precision may hamper certain applications. In contrast, Transcranial Ultrasound Stimulation (TUS), known for its precision and deep brain targeting capabilities, requires further investigation to establish its efficacy in producing enduring effects for treating neurological and psychiatric disorders. OBJECTIVE: To investigate the enduring effects of different pulse repetition frequencies (PRF) of TUS on motor corticospinal excitability. METHODS: T1-, T2-weighted, and zero echo time magnetic resonance imaging scans were acquired from 21 neurologically healthy participants for neuronavigation, skull reconstruction, and the performance of transcranial ultrasound and thermal modelling. The effects of three different TUS PRFs (10, 100, and 1000 Hz) with a constant duty cycle of 10 % on corticospinal excitability in the primary motor cortex were assessed using TMS-induced motor evoked potentials (MEPs). Each PRF and sham condition was evaluated on separate days, with measurements taken 5-, 30-, and 60-min post-TUS. RESULTS: A significant decrease in MEP amplitude was observed with a PRF of 10 Hz (p = 0.007), which persisted for at least 30 min, and with a PRF of 100 Hz (p = 0.001), lasting over 60 min. However, no significant changes were found for the PRF of 1000 Hz and the sham conditions. CONCLUSION: This study highlights the significance of PRF selection in TUS and underscores its potential as a non-invasive approach to reduce corticospinal excitability, offering valuable insights for future clinical applications.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Humans , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Male , Evoked Potentials, Motor/physiology , Double-Blind Method , Female , Adult , Transcranial Magnetic Stimulation/methods , Young Adult , Magnetic Resonance Imaging , Pyramidal Tracts/physiology , Pyramidal Tracts/diagnostic imaging , Neural Inhibition/physiology
13.
J Physiol ; 602(10): 2343-2358, 2024 May.
Article in English | MEDLINE | ID: mdl-38654583

ABSTRACT

Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.


Subject(s)
Mice, Transgenic , Neuronal Plasticity , Pyramidal Cells , Animals , Neuronal Plasticity/physiology , Mice , Pyramidal Cells/physiology , GABAergic Neurons/physiology , Learning/physiology , Long-Term Potentiation/physiology , Male , Synapses/physiology , Optogenetics , Neural Inhibition/physiology , Piriform Cortex/physiology , Mice, Inbred C57BL , Long-Term Synaptic Depression/physiology
14.
Phys Rev E ; 109(2-1): 024302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491696

ABSTRACT

The space of possible behaviors that complex biological systems may exhibit is unimaginably vast, and these systems often appear to be stochastic, whether due to variable noisy environmental inputs or intrinsically generated chaos. The brain is a prominent example of a biological system with complex behaviors. The number of possible patterns of spikes emitted by a local brain circuit is combinatorially large, although the brain may not make use of all of them. Understanding which of these possible patterns are actually used by the brain, and how those sets of patterns change as properties of neural circuitry change is a major goal in neuroscience. Recently, tools from information geometry have been used to study embeddings of probabilistic models onto a hierarchy of model manifolds that encode how model outputs change as a function of their parameters, giving a quantitative notion of "distances" between outputs. We apply this method to a network model of excitatory and inhibitory neural populations to understand how the competition between membrane and synaptic response timescales shapes the network's information geometry. The hyperbolic embedding allows us to identify the statistical parameters to which the model behavior is most sensitive, and demonstrate how the ranking of these coordinates changes with the balance of excitation and inhibition in the network.


Subject(s)
Brain , Neural Networks, Computer , Brain/physiology , Models, Statistical , Models, Neurological , Neural Inhibition/physiology
15.
Nat Neurosci ; 27(4): 782-792, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491324

ABSTRACT

The interplay between excitation and inhibition determines the fidelity of cortical representations. The receptive fields of excitatory neurons are often finely tuned to encoded features, but the principles governing the tuning of inhibitory neurons remain elusive. In this study, we recorded populations of neurons in the mouse postsubiculum (PoSub), where the majority of excitatory neurons are head-direction (HD) cells. We show that the tuning of fast-spiking (FS) cells, the largest class of cortical inhibitory neurons, was broad and frequently radially symmetrical. By decomposing tuning curves using the Fourier transform, we identified an equivalence in tuning between PoSub-FS and PoSub-HD cell populations. Furthermore, recordings, optogenetic manipulations of upstream thalamic populations and computational modeling provide evidence that the tuning of PoSub-FS cells has a local origin. These findings support the notion that the equivalence of neuronal tuning between excitatory and inhibitory cell populations is an intrinsic property of local cortical networks.


Subject(s)
Neurons , Thalamus , Mice , Animals , Neurons/physiology , Neural Inhibition/physiology , Action Potentials/physiology
16.
Brain ; 147(4): 1423-1435, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38537253

ABSTRACT

Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Cross-Sectional Studies , Parietal Lobe , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Neural Inhibition/physiology
17.
Behav Brain Res ; 464: 114946, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38452975

ABSTRACT

In this study, we aimed to analyze control mechanisms of short-latency afferent inhibition (SAI) during motor output exertion from an agonist or antagonist muscle. The motor task involved index finger abduction (agonist) and adduction (antagonist). In Experiment 1, motor-evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) muscle with and without SAI at three output force levels. In Experiment 2, MEPs were recorded with and without SAI at various time points immediately before the muscle output. Experiment 1 showed that inhibition decreased with an increase in muscle output in the agonist muscle but increased in the antagonist muscle. Experiment 2 showed a decreasing trend of inhibition in the agonist muscle immediately before contraction but showed no significant change in the antagonist muscle. MEPs without electrical stimulation during the reaction time increased in both directions of movement as compared to those in the resting state. These results suggest that SAI modulation strongly influences smooth motor output. Analyzing the inhibitory or enhanced mechanisms during the performance of motor output by SAI in patients with motor impairment and comparing them with the mechanisms seen in healthy participants will improve our understanding of the neurophysiological mechanisms relevant to various situations (e.g., rehabilitation and sports).


Subject(s)
Motor Cortex , Humans , Motor Cortex/physiology , Neural Inhibition/physiology , Muscle, Skeletal/physiology , Hand , Fingers/physiology , Evoked Potentials, Motor/physiology , Transcranial Magnetic Stimulation/methods , Electromyography , Electric Stimulation
18.
J Comput Neurosci ; 52(2): 165-181, 2024 May.
Article in English | MEDLINE | ID: mdl-38512693

ABSTRACT

Gamma oscillations are widely seen in the cerebral cortex in different states of the wake-sleep cycle and are thought to play a role in sensory processing and cognition. Here, we study the emergence of gamma oscillations at two levels, in networks of spiking neurons, and a mean-field model. At the network level, we consider two different mechanisms to generate gamma oscillations and show that they are best seen if one takes into account the synaptic delay between neurons. At the mean-field level, we show that, by introducing delays, the mean-field can also produce gamma oscillations. The mean-field matches the mean activity of excitatory and inhibitory populations of the spiking network, as well as their oscillation frequencies, for both mechanisms. This mean-field model of gamma oscillations should be a useful tool to investigate large-scale interactions through gamma oscillations in the brain.


Subject(s)
Action Potentials , Gamma Rhythm , Models, Neurological , Nerve Net , Neural Inhibition , Neurons , Neurons/physiology , Gamma Rhythm/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Animals , Action Potentials/physiology , Humans , Neural Networks, Computer
19.
Brain Struct Funct ; 229(4): 909-918, 2024 May.
Article in English | MEDLINE | ID: mdl-38483581

ABSTRACT

Humans display automatic action tendencies toward emotional stimuli, showing faster automatic behavior (i.e., approaching a positive stimulus and avoiding a negative stimulus) than regulated behavior (i.e., avoiding a positive stimulus and approaching a negative stimulus). Previous studies have shown that the primary motor cortex is involved in the processing of automatic actions, with higher motor evoked potential amplitudes during automatic behavior elicited by single-pulse transcranial magnetic stimulation. However, it is unknown how intracortical circuits are involved with automatic action tendencies. Here, we measured short-interval intracortical inhibition and intracortical facilitation within the primary motor cortex by using paired-pulse transcranial magnetic stimulation protocols during a manikin task, which has been widely used to explore approaching and avoiding behavior. Results showed that intracortical facilitation was stronger during automatic behavior than during regulated behavior. Moreover, there was a significant negative correlation between reaction times and intracortical facilitation effect during automatic behavior: individuals with short reaction times had stronger faciliatory activity, as shown by higher intracortical facilitation. By contrast, no significant difference was found for short-interval intracortical inhibition between automatic behavior and regulated behavior. The results indicated that the intracortical facilitation circuit, mediated by excitatory glutamatergic neurons, in the primary motor cortex, plays an important role in mediating automatic action tendencies. This finding further supports the link between emotional perception and the action system.


Subject(s)
Motor Cortex , Humans , Motor Cortex/physiology , Evoked Potentials, Motor/physiology , Reaction Time/physiology , Transcranial Magnetic Stimulation/methods , Neurons , Neural Inhibition/physiology , Electromyography/methods
20.
Clin Neurophysiol ; 161: 188-197, 2024 May.
Article in English | MEDLINE | ID: mdl-38520799

ABSTRACT

OBJECTIVE: Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI. METHODS: We studied 27 adults with chronic C1-C8 SCI (age 48.8 ± 16.1 years, 3 females) and 16 able-bodied participants (age 33.2 ± 11.8 years, 9 females). CSP characteristics were assessed across biceps (muscle power = 3-5) and triceps (muscle power = 1-3) representing stronger and weaker muscles, respectively. We assessed functional abilities using the Capabilities of the Upper Extremity Test (CUE-T). RESULTS: Participants with chronic SCI had prolonged CSPs for biceps but delayed and diminished CSPs for triceps compared to able-bodied participants. Early-onset CSPs for biceps and longer, deeper CSPs for triceps correlated with better CUE-T scores. CONCLUSIONS: Corticospinal inhibition is pronounced for stronger biceps but diminished for weaker triceps muscle in SCI indicating innervation relative to the level of injury matters in the study of CSP. SIGNIFICANCE: Nevertheless, corticospinal inhibition or CSP holds relevance for upper extremity function following SCI.


Subject(s)
Neural Inhibition , Pyramidal Tracts , Spinal Cord Injuries , Transcranial Magnetic Stimulation , Upper Extremity , Humans , Female , Spinal Cord Injuries/physiopathology , Male , Adult , Middle Aged , Pyramidal Tracts/physiopathology , Upper Extremity/physiopathology , Transcranial Magnetic Stimulation/methods , Neural Inhibition/physiology , Muscle, Skeletal/physiopathology , Evoked Potentials, Motor/physiology , Cervical Cord/physiopathology , Cervical Cord/injuries , Young Adult , Cervical Vertebrae/physiopathology , Electromyography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...