Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Dev Cell ; 59(12): 1487-1488, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889690

ABSTRACT

In this issue of Developmental Cell, Bolondi et al. systematically assesses neuro-mesodermal progenitor (NMP) dynamics by combining a mouse stem-cell-based embryo model with molecular recording of single cells, shedding light on the dynamics of neural tube and paraxial mesoderm formation during mammalian development.


Subject(s)
Mesoderm , Animals , Mice , Mesoderm/cytology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Neural Tube/cytology , Neural Tube/embryology , Cell Differentiation/physiology , Stem Cells/cytology , Stem Cells/metabolism , Body Patterning
2.
Curr Top Dev Biol ; 159: 168-231, 2024.
Article in English | MEDLINE | ID: mdl-38729676

ABSTRACT

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell Movement
3.
Nature ; 628(8007): 391-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408487

ABSTRACT

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Subject(s)
Body Patterning , Microfluidics , Neural Tube , Humans , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Neural Crest/cytology , Neural Crest/embryology , Neural Tube/cytology , Neural Tube/embryology , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Prosencephalon/embryology , Spinal Cord/cytology , Spinal Cord/embryology
4.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38171360

ABSTRACT

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Subject(s)
Cell Membrane Structures , Myosins , Neural Tube , Signal Transduction , Animals , Mice , Biological Transport , Cell Membrane Structures/metabolism , Hedgehog Proteins/metabolism , Myosins/metabolism , Pseudopodia/metabolism , Neural Tube/cytology , Neural Tube/metabolism
5.
J Cell Sci ; 136(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37589341

ABSTRACT

Bioenergetic metabolism is a key regulator of cellular function and signaling, but how it can instruct the behavior of cells and their fate during embryonic development remains largely unknown. Here, we investigated the role of glucose metabolism in the development of avian trunk neural crest cells (NCCs), a migratory stem cell population of the vertebrate embryo. We uncovered that trunk NCCs display glucose oxidation as a prominent metabolic phenotype, in contrast to what is seen for cranial NCCs, which instead rely on aerobic glycolysis. In addition, only one pathway downstream of glucose uptake is not sufficient for trunk NCC development. Indeed, glycolysis, mitochondrial respiration and the pentose phosphate pathway are all mobilized and integrated for the coordinated execution of diverse cellular programs, epithelial-to-mesenchymal transition, adhesion, locomotion, proliferation and differentiation, through regulation of specific gene expression. In the absence of glucose, the OXPHOS pathway fueled by pyruvate failed to promote trunk NCC adaptation to environmental stiffness, stemness maintenance and fate-decision making. These findings highlight the need for trunk NCCs to make the most of the glucose pathway potential to meet the high metabolic demands appropriate for their development.


Subject(s)
Glucose , Neural Crest , Quail , Quail/growth & development , Quail/metabolism , Animals , Neural Crest/growth & development , Neural Crest/metabolism , Glucose/metabolism , Neural Tube/cytology , Cells, Cultured , In Vitro Techniques , Oxidative Phosphorylation , Metabolic Networks and Pathways , Cell Adhesion
6.
Nature ; 612(7941): 732-738, 2022 12.
Article in English | MEDLINE | ID: mdl-36517595

ABSTRACT

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Subject(s)
Gastrulation , Macaca fascicularis , Organogenesis , Single-Cell Analysis , Animals , Humans , Mice , Gastrulation/genetics , Macaca fascicularis/embryology , Macaca fascicularis/genetics , Organogenesis/genetics , Embryoid Bodies , Gene Expression Profiling , Primitive Streak/cytology , Primitive Streak/embryology , Neural Tube/cytology , Neural Tube/embryology , Neural Crest/cytology , Neural Crest/embryology , Hippo Signaling Pathway , Mesoderm/cytology , Mesoderm/embryology , Stem Cells
7.
Nature ; 599(7884): 268-272, 2021 11.
Article in English | MEDLINE | ID: mdl-34707290

ABSTRACT

Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.


Subject(s)
Morphogenesis , Neural Tube/anatomy & histology , Neural Tube/embryology , Organ Culture Techniques/methods , Ectoderm/cytology , Ectoderm/embryology , Humans , Models, Biological , Neural Plate/cytology , Neural Plate/embryology , Neural Tube/cytology , Neural Tube Defects/embryology , Neural Tube Defects/pathology , Regeneration , Stem Cells/cytology
8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502050

ABSTRACT

To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.


Subject(s)
Cell Differentiation , Mesoderm/cytology , Neural Tube/cytology , Animals , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mesoderm/embryology , Mesoderm/metabolism , Neural Tube/embryology , Neural Tube/metabolism
9.
Nature ; 596(7870): 92-96, 2021 08.
Article in English | MEDLINE | ID: mdl-34321664

ABSTRACT

The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system.


Subject(s)
Brain/cytology , Brain/embryology , Single-Cell Analysis , Transcriptome , Animals , Animals, Newborn/genetics , Brain/anatomy & histology , Female , Gastrulation/genetics , Male , Mice , Neural Tube/anatomy & histology , Neural Tube/cytology , Neural Tube/embryology
10.
Nat Commun ; 12(1): 3277, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078907

ABSTRACT

Generating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.


Subject(s)
Body Patterning/genetics , Embryoid Bodies/metabolism , Embryonic Development/genetics , Mouse Embryonic Stem Cells/metabolism , Signal Transduction/genetics , Animals , Ectoderm/cytology , Ectoderm/growth & development , Ectoderm/metabolism , Embryo, Mammalian , Embryoid Bodies/cytology , Endoderm/cytology , Endoderm/growth & development , Endoderm/metabolism , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Gastrula/cytology , Gastrula/growth & development , Gastrula/metabolism , Gastrulation/genetics , Gene Expression Regulation, Developmental , HMGB Proteins/genetics , HMGB Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Neural Tube/cytology , Neural Tube/growth & development , Neural Tube/metabolism , Notochord/cytology , Notochord/growth & development , Notochord/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
11.
Nat Commun ; 12(1): 3192, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045434

ABSTRACT

Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications.


Subject(s)
Neural Tube/cytology , Organoids/physiology , Tissue Engineering/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Line , Extracellular Matrix/physiology , Humans , Hydrogels/chemistry , Mechanotransduction, Cellular/physiology , Pluripotent Stem Cells , Polyethylene Glycols/chemistry , RNA-Seq , Regenerative Medicine/methods , Single-Cell Analysis , Tissue Engineering/instrumentation
12.
Dev Biol ; 478: 59-75, 2021 10.
Article in English | MEDLINE | ID: mdl-34029538

ABSTRACT

Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Neural Tube Defects/embryology , Neural Tube/embryology , Animals , Cell Polarity , Cell Shape , Cytoskeletal Proteins , Gene Expression , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Morphogenesis , Mutation , Nerve Tissue Proteins/genetics , Neural Plate/cytology , Neural Plate/embryology , Neural Tube/cytology , Neural Tube Defects/genetics , Neuroepithelial Cells/cytology , Neuroepithelial Cells/metabolism , Neuroepithelial Cells/ultrastructure , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
13.
In Vitro Cell Dev Biol Anim ; 57(1): 53-65, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33415663

ABSTRACT

The origin, migratory pathways and adult derivatives of neural crest cells (NCCs) are well known. However, less is known about how these cells migrate. In this study, in a laboratory based in a low-resource setting, a hanging drop culture assay was utilised to study the movement of individual avian trunk neural crest cells. Mode of migration by means of lamellipodia and filopodia was studied in live cell cultures with a laser scanning confocal microscope and Airyscan module. Both distance migrated and speed of migration were calculated. NCCs migrated in a chain soon after emerging from the explanted neural tube, but were more dispersed and had random movements when they reached the periphery of the culture. While the distances travelled by these NCCs were less and the cells were slower on gelatine than on other extracellular matrices reported in the literature, the assay afforded detailed observation of actin filament distribution and cytoplasmic protrusions. The study has provided unique evidence of individual NCC movements in vitro, in a simple hanging drop assay optimized for the study of NCCs. The assay could be used for further analysis of the behaviour of NCCs on different extracellular matrices or with targeted action.


Subject(s)
Cell Movement , Cell Tracking , Neural Crest/cytology , Actins/metabolism , Animals , Biomarkers/metabolism , Cell Communication , Cell Migration Assays , Cells, Cultured , Chickens , Fluorescence , Imaging, Three-Dimensional , Neural Tube/cytology , Pseudopodia/metabolism , Time-Lapse Imaging
14.
Methods Mol Biol ; 2258: 193-203, 2021.
Article in English | MEDLINE | ID: mdl-33340362

ABSTRACT

Neurally differentiating human pluripotent stem cells (hPSCs) possess the ability to self-organize into structures reminiscent of the developing fetal brain. In 2- and 3D cultures, this phenomenon initiates with formation of polarized areas of neural stem cells (NSCs), known as rosettes that resemble cross-sectional slices of the embryonic neural tube, i.e., the central nervous system (CNS) anlage. Thus, neural rosettes serve as an excellent starting point for bioengineering tissue models of all CNS tissues. Here, we provide detailed methods for bioengineering controlled induction of hPSC-derived neural assemblies with a biomimetic, singular neural rosette cytoarchitecture.


Subject(s)
Human Embryonic Stem Cells/physiology , Neural Stem Cells/physiology , Neural Tube/physiology , Neurogenesis , Neurons/physiology , Tissue Engineering , Biomimetic Materials , Cell Culture Techniques , Cell Line , Human Embryonic Stem Cells/metabolism , Humans , Immunohistochemistry , Microscopy , Morphogenesis , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Neural Tube/cytology , Neural Tube/metabolism , Neurons/metabolism , Spheroids, Cellular
15.
PLoS One ; 15(12): e0244219, 2020.
Article in English | MEDLINE | ID: mdl-33338079

ABSTRACT

Cellular differentiation is a tightly regulated process under the control of intricate signaling and transcription factors interaction network working in coordination. These interactions make the systems dynamic, robust and stable but also difficult to dissect. In the spinal cord, recent work has shown that a network of FGF, WNT and Retinoic Acid (RA) signaling factors regulate neural maturation by directing the activity of a transcription factor network that contains CDX at its core. Here we have used partial and ordinary (Hill) differential equation based models to understand the spatiotemporal dynamics of the FGF/WNT/RA and the CDX/transcription factor networks, alone and in combination. We show that in both networks, the strength of interaction among network partners impacts the dynamics, behavior and output of the system. In the signaling network, interaction strength determine the position and size of discrete regions of cell differentiation and small changes in the strength of the interactions among networking partners can result in a signal overriding, balancing or oscillating with another signal. We also show that the spatiotemporal information generated by the signaling network can be conveyed to the CDX/transcription network to produces a transition zone that separates regions of high cell potency from regions of cell differentiation, in agreement with most in vivo observations. Importantly, one emerging property of the networks is their robustness to extrinsic disturbances, which allows the system to retain or canalize NP cells in developmental trajectories. This analysis provides a model for the interaction conditions underlying spinal cord cell maturation during embryonic axial elongation.


Subject(s)
Models, Theoretical , Neurogenesis , Spinal Cord/metabolism , Animals , Chick Embryo , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Tube/cytology , Neural Tube/embryology , Neural Tube/metabolism , Spinal Cord/cytology , Spinal Cord/embryology , Tretinoin/metabolism , Wnt Signaling Pathway
16.
PLoS Genet ; 16(11): e1009164, 2020 11.
Article in English | MEDLINE | ID: mdl-33175861

ABSTRACT

The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.


Subject(s)
Cell Transdifferentiation/genetics , Cell Transformation, Neoplastic/genetics , Oncogene Proteins, Fusion/metabolism , Paired Box Transcription Factors/metabolism , Rhabdomyosarcoma, Alveolar/genetics , Animals , Biopsy , Chick Embryo , Child , Cyclin D1/genetics , Datasets as Topic , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , N-Myc Proto-Oncogene Protein/genetics , Neoplasm Invasiveness/genetics , Neural Stem Cells/pathology , Neural Tube/cytology , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma, Alveolar/pathology , S Phase/genetics
17.
Stem Cell Reports ; 15(4): 898-911, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32976767

ABSTRACT

Mammalian embryos exhibit a transition from head morphogenesis to trunk elongation to meet the demand of axial elongation. The caudal neural tube (NT) is formed with neural progenitors (NPCs) derived from neuromesodermal progenitors localized at the tail tip. However, the molecular and cellular basis of elongating NT morphogenesis is yet elusive. Here, we provide evidence that caudal NPCs exhibit strong adhesion affinity that is gradually decreased along the anteroposterior (AP) axis in mouse embryonic spinal cord and human cellular models. Strong cell-cell adhesion causes collective migration, allowing AP alignment of NPCs depending on their birthdate. We further validated that this axial adhesion gradient is associated with the extracellular matrix and is under the control of graded Wnt signaling emanating from tail buds and antagonistic retinoic acid (RA) signaling. These results suggest that progressive reduction of NPC adhesion along the AP axis is under the control of Wnt-RA molecular networks, which is essential for a proper elongation of the spinal cord.


Subject(s)
Body Patterning , Cell Movement , Neural Stem Cells/cytology , Spinal Cord/cytology , Spinal Cord/embryology , Tretinoin/metabolism , Wnt Proteins/metabolism , Animals , Body Patterning/genetics , Cell Adhesion/genetics , Cell Movement/genetics , Extracellular Matrix/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice, Transgenic , Models, Biological , Neural Stem Cells/metabolism , Neural Tube/cytology , Neural Tube/embryology , Signal Transduction/genetics
18.
Nat Commun ; 11(1): 3317, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620775

ABSTRACT

Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis.


Subject(s)
Embryo, Nonmammalian/metabolism , Mitosis , Receptors, Peptide/metabolism , Sphingolipids/metabolism , Wnt Signaling Pathway , Amino Acid Sequence , Animals , Asymmetric Cell Division/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Gastrulation , Gene Expression Regulation, Developmental , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Lipoylation , Neural Tube/cytology , Neural Tube/embryology , Neural Tube/metabolism , Receptors, Peptide/genetics , Sequence Homology, Amino Acid , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Spindle Apparatus/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
Curr Top Dev Biol ; 139: 239-266, 2020.
Article in English | MEDLINE | ID: mdl-32450962

ABSTRACT

Tightly regulated gene expression programs, orchestrated by complex interactions between transcription factors, control cell type specification during development. Repressive interactions play a critical role in these networks, facilitating decision-making between two or more alternative cell fates. Here, we use the ventral neural tube as an example to illustrate how cross repressive interactions within a network drive pattern formation and specify cell types in response to a graded patterning signal. This and other systems serve to highlight how external signals are integrated through the cis regulatory elements controlling key genes and provide insight into the molecular underpinning of the process. Even the simplest networks can lead to counterintuitive results and we argue that a combination of experimental dissection and modeling approaches will be necessary to fully understand network behavior and the underlying design principles. Studying these gene regulatory networks as a whole ultimately allows us to extract fundamental properties applicable across systems that can expand our mechanistic understanding of how organisms develop.


Subject(s)
Body Patterning/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Neural Tube/metabolism , Transcription Factors/genetics , Animals , Neural Tube/cytology , Neural Tube/embryology , Protein Binding , Signal Transduction/genetics , Transcription Factors/metabolism , Vertebrates/embryology , Vertebrates/genetics , Vertebrates/metabolism
20.
Dev Biol ; 461(2): 160-171, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32059837

ABSTRACT

In amniotes, unlike primary neurulation in the anterior body, secondary neurulation (SN) proceeds along with axial elongation by the mesenchymal-to-epithelial transition of SN precursors in the tail bud. It has been under debate whether the SN is generated by neuromesodermal common progenitor cells (NMPs) or neural restricted lineage. Our direct cell labeling and serial transplantations identify uni-fated (neural) precursors in the early tail bud. The uni-fated SN precursor territory is further divided into two subpopulations, neural-differentiating and self-renewing cells, which are regulated by high- and low levels of Sox2, respectively. Unexpectedly, uni-fated SN precursors change their fate at later stages to produce both SN and mesoderm. Thus, chicken embryos adopt a previously unappreciated prolonged phase with uni-fated SN stem cells in the early tail bud, which is absent or very limited in mouse embryos.


Subject(s)
Cell Self Renewal/physiology , Chickens/genetics , Neural Stem Cells/cytology , Neural Tube/embryology , Neurulation/physiology , SOXB1 Transcription Factors/physiology , Tail/embryology , Animals , Cell Lineage , Chick Embryo , Genes, Reporter , Mesoderm/cytology , Neural Tube/cytology , Neurulation/genetics , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/genetics , Tail/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...