Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Biol Toxicol ; 40(1): 51, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958792

ABSTRACT

The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.


Subject(s)
Embryonic Development , Neural Tube Defects , Neural Tube , Oxidative Stress , Reactive Oxygen Species , Zinc Oxide , Zinc Oxide/toxicity , Animals , Oxidative Stress/drug effects , Chick Embryo , Embryonic Development/drug effects , Mice , Neural Tube/drug effects , Neural Tube/embryology , Neural Tube/metabolism , Humans , Neural Tube Defects/chemically induced , Neural Tube Defects/metabolism , Neural Tube Defects/embryology , Neural Tube Defects/pathology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Female , Mitochondria/drug effects , Mitochondria/metabolism , Metal Nanoparticles/toxicity , Autophagy/drug effects , Cell Line, Tumor , Nanoparticles/toxicity
2.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856082

ABSTRACT

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.


Subject(s)
Cell Proliferation , Mesoderm , Models, Biological , Morphogenesis , Neural Tube , Animals , Mesoderm/embryology , Mesoderm/cytology , Neural Tube/embryology , Neural Tube/cytology , Quail/embryology , Embryo, Nonmammalian/cytology , Embryonic Development/physiology , Viscosity
3.
Toxicol Appl Pharmacol ; 489: 117011, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906510

ABSTRACT

The critical developmental stages of the embryo are strongly influenced by the dietary composition of the mother. Acrylamide is a food contaminant that can form in carbohydrate-rich foods that are heat-treated. The aim of this study was to investigate the toxicity of a relatively low dose of acrylamide on the development of the neural tube in the early stage chick embryos. Specific pathogen-free fertilized eggs (n = 100) were treated with acrylamide (0.1, 0.5, 2.5, 12.5 mg/kg) between 28-30th hours of incubation and dissected at 48th hours. In addition to morphological and histopathological examinations, proliferating cell nuclear antigen (PCNA) and caspase 3 were analyzed immunohistochemically. The brain and reproductive expression gene (BRE) was analyzed by RT-PCR. Acrylamide exposure had a negative effect on neural tube status even at a very low dose (0.1 mg/kg) (p < 0.05). Doses of 0.5 mg/kg and above caused a delay in neural tube development (p < 0.05). Crown-rump length and somite count decreased dose-dependently, while this decrease was not significant in the very low dose group (p > 0.05), which was most pronounced at doses of 2.5 and 12.5 mg/kg (p < 0.001). Acrylamide exposure dose-dependently decreased PCNA and increased caspase 3, with this change being significant at doses of 0.5 mg/kg and above (p < 0.001). BRE was downregulated at all acrylamide exposures except in the very low dose group (0.1 mg/kg). In conclusion, we find that acrylamide exposure (at 0.5 mg/kg and above) in post-gastrulation delays neural tube closure in chicken embryos by suppressing proliferation and apoptosis induction and downregulating BRE gene expression.


Subject(s)
Acrylamide , Dose-Response Relationship, Drug , Embryonic Development , Proliferating Cell Nuclear Antigen , Animals , Chick Embryo , Acrylamide/toxicity , Proliferating Cell Nuclear Antigen/metabolism , Embryonic Development/drug effects , Neural Tube/drug effects , Neural Tube/embryology , Caspase 3/metabolism , Caspase 3/genetics , Gene Expression Regulation, Developmental/drug effects
4.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38851297

ABSTRACT

The development of the human central nervous system initiates in the early embryonic period until long after delivery. It has been shown that several neurological and neuropsychiatric diseases originate from prenatal incidents. Mathematical models offer a direct way to understand neurodevelopmental processes better. Mathematical modelling of neurodevelopment during the embryonic period is challenging in terms of how to 'Approach', how to initiate modelling and how to propose the appropriate equations that fit the underlying dynamics of neurodevelopment during the embryonic period while including the variety of elements that are built-in naturally during the process of neurodevelopment. It is imperative to answer where and how to start modelling; in other words, what is the appropriate 'Approach'? Therefore, one objective of this study was to tackle the mathematical issue broadly from different aspects and approaches. The approaches were divided into three embryonic categories: cell division, neural tube growth and neural plate growth. We concluded that the neural plate growth approach provides a suitable platform for simulation of brain formation/neurodevelopment compared to cell division and neural tube growth. We devised a novel equation and designed algorithms that include geometrical and topological algorithms that could fit most of the necessary elements of the neurodevelopmental process during the embryonic period. Hence, the proposed equations and defined mathematical structure would be a platform to generate an artificial neural network that autonomously grows and develops.


Subject(s)
Models, Biological , Neural Tube , Animals , Humans , Algorithms , Cell Division , Embryonic Development , Models, Neurological , Neural Networks, Computer , Neural Plate/cytology , Neural Plate/embryology , Neural Tube/embryology , Neurogenesis , Neurons/cytology
5.
Dev Cell ; 59(12): 1487-1488, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889690

ABSTRACT

In this issue of Developmental Cell, Bolondi et al. systematically assesses neuro-mesodermal progenitor (NMP) dynamics by combining a mouse stem-cell-based embryo model with molecular recording of single cells, shedding light on the dynamics of neural tube and paraxial mesoderm formation during mammalian development.


Subject(s)
Mesoderm , Animals , Mice , Mesoderm/cytology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Neural Tube/cytology , Neural Tube/embryology , Cell Differentiation/physiology , Stem Cells/cytology , Stem Cells/metabolism , Body Patterning
6.
Dev Growth Differ ; 66(5): 320-328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38925637

ABSTRACT

During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.


Subject(s)
Neural Plate , Neural Tube , Xenopus laevis , Animals , Neural Tube/embryology , Neural Tube/cytology , Neural Tube/metabolism , Neural Plate/embryology , Neural Plate/metabolism , Neural Plate/cytology , Xenopus laevis/embryology , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Microscopy, Atomic Force , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology
7.
Genesis ; 62(3): e23602, 2024 06.
Article in English | MEDLINE | ID: mdl-38721990

ABSTRACT

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Subject(s)
Cilia , Neural Tube , Animals , Mice , Cilia/metabolism , Cilia/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Point Mutation , Signal Transduction
8.
Curr Top Dev Biol ; 159: 168-231, 2024.
Article in English | MEDLINE | ID: mdl-38729676

ABSTRACT

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell Movement
9.
Sci Bull (Beijing) ; 69(14): 2260-2272, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38702277

ABSTRACT

Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.


Subject(s)
Autophagy , Heparan Sulfate Proteoglycans , Neural Tube Defects , Animals , Mice , Heparan Sulfate Proteoglycans/metabolism , Heparan Sulfate Proteoglycans/genetics , Humans , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/pathology , Neural Tube/metabolism , Neural Tube/embryology , Neural Tube/pathology , Neural Stem Cells/metabolism , Neuroepithelial Cells/metabolism , Female , Male , Disease Models, Animal
10.
Dev Biol ; 511: 26-38, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38580174

ABSTRACT

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Subject(s)
Neural Tube , Spinal Cord , Animals , Spinal Cord/embryology , Neural Tube/embryology , Neural Crest/embryology , Neural Crest/cytology , Neural Crest/physiology , Cell Differentiation/physiology , Neuroglia/physiology , Neuroepithelial Cells/cytology , Neuroepithelial Cells/physiology , Humans
11.
Nature ; 628(8007): 391-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408487

ABSTRACT

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Subject(s)
Body Patterning , Microfluidics , Neural Tube , Humans , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Neural Crest/cytology , Neural Crest/embryology , Neural Tube/cytology , Neural Tube/embryology , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Prosencephalon/embryology , Spinal Cord/cytology , Spinal Cord/embryology
12.
Brain Behav Evol ; 99(1): 45-68, 2024.
Article in English | MEDLINE | ID: mdl-38342091

ABSTRACT

BACKGROUND: The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY: Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES: The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.


Subject(s)
Biological Evolution , Brain , Neural Tube , Vertebrates , Animals , Vertebrates/embryology , Vertebrates/growth & development , Brain/embryology , Brain/growth & development , Neural Tube/embryology , Neurogenesis/physiology , Neurulation/physiology
13.
Arch. esp. urol. (Ed. impr.) ; 69(2): 73-85, mar. 2016. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-149159

ABSTRACT

Los defectos en el cierre del tubo neural (DTN) son las malformaciones congénitas más frecuentes del sistema nervioso, van a tener una etiología multifactorial, se producen por la exposición a agentes tóxicos químicos, físicos o biológicos, por factores carenciales, diabetes, obesidad, hipertermia, alteraciones genéticas y causas desconocidas. Algunos de los factores señalados se asocian con la desnutrición por interferir con la vía metabólica del ácido fólico (AF), vitamina encargada del cierre del tubo neural, y cuyo déficit produce las anomalías que pueden ocasionar abortos, mortinatos o lesiones graves del recién nacido que producen incapacidad, alteraciones en la calidad de vida y requieren tratamientos costosos para tratar de paliar en alguna forma las alteraciones producidas en el embrión. El déficit de ácido fólico se considera la causa última de la producción de defectos del tubo neural, la comprobación de la disminución de la incidencia de la Espina Bífida tras la administración preconcepcional de Ácido Fólico es evidente, lo que nos lleva a querer profundizar en el estudio de la acción del AF y su aplicación en la prevención primaria de los DTN. Más de 40 países han realizado la fortificación de harinas con folatos, llegando a conseguir datos esperanzadores de decrecimiento de la prevalencia de los DTN. Este trabajo intenta realizar una revisión bibliográfica que nos clarifique la situación actual y el futuro de la prevención de los DTN


Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects


Subject(s)
Humans , Male , Female , Infant , Neural Tube/abnormalities , Primary Prevention/methods , Primary Prevention/trends , Folic Acid/therapeutic use , Neurulation/physiology , Neural Tube/metabolism , Folic Acid/metabolism , Folic Acid/pharmacokinetics , Neural Tube/embryology , Neural Tube/physiopathology , Gastrulation/physiology , Gastrulation/radiation effects
14.
Arch. argent. pediatr ; 113(3): e137-e139, jun. 2015.
Article in Spanish | LILACS | ID: lil-750470

ABSTRACT

El síndrome de Wiskott-Aldrich es una inmunodeficiencia primaria; con una incidencia de 3,5 a 5,2 por cada millón de recién nacidos masculinos. Se caracteriza por tener un patrón de herencia recesiva ligada al cromosoma X. En estos pacientes; se ha descrito la tríada clásica de inmunodeficiencia; microtrombocitopenia y eczema. Presentamos un paciente de 5 años de edad; hispánico; con antecedentes de numerosas infecciones desde el primer año de vida. Actualmente; presenta desnutrición crónica; talla baja secundaria y retraso en el desarrollo del lenguaje. Se diagnosticó una mutación poco frecuente del gen asociado al síndrome de Wiskott-Aldrich.


The Wiskott-Aldrich syndrome is a rare X-linked recessive immunodeficiency, with an estimated incidence of 3.5 to 5.2 cases per million males. It is characterizedby immunodeficiency, microthrombocytopenia and eczema. We present a 5-year-old Hispanic male, with a medical history of numerous infectious diseases, compromised health, chronic malnutrition, language delay and failure to thrive. An infrequent mutation in the Wiskott-Aldrich syndrome gene was found.


Subject(s)
Animals , Chick Embryo , Avian Proteins/metabolism , Cadherins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Avian Proteins/antagonists & inhibitors , Avian Proteins/genetics , Base Sequence , Cell Count , Cadherins/antagonists & inhibitors , Cadherins/genetics , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Neural Tube/cytology , Neural Tube/embryology , Neural Tube/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction
15.
Arch. argent. pediatr ; 113(3): e137-e139, jun. 2015.
Article in Spanish | BINACIS | ID: bin-134128

ABSTRACT

El síndrome de Wiskott-Aldrich es una inmunodeficiencia primaria; con una incidencia de 3,5 a 5,2 por cada millón de recién nacidos masculinos. Se caracteriza por tener un patrón de herencia recesiva ligada al cromosoma X. En estos pacientes; se ha descrito la tríada clásica de inmunodeficiencia; microtrombocitopenia y eczema. Presentamos un paciente de 5 años de edad; hispánico; con antecedentes de numerosas infecciones desde el primer año de vida. Actualmente; presenta desnutrición crónica; talla baja secundaria y retraso en el desarrollo del lenguaje. Se diagnosticó una mutación poco frecuente del gen asociado al síndrome de Wiskott-Aldrich.(AU)


The Wiskott-Aldrich syndrome is a rare X-linked recessive immunodeficiency, with an estimated incidence of 3.5 to 5.2 cases per million males. It is characterizedby immunodeficiency, microthrombocytopenia and eczema. We present a 5-year-old Hispanic male, with a medical history of numerous infectious diseases, compromised health, chronic malnutrition, language delay and failure to thrive. An infrequent mutation in the Wiskott-Aldrich syndrome gene was found.(AU)


Subject(s)
Animals , Chick Embryo , Avian Proteins/metabolism , Cadherins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Avian Proteins/antagonists & inhibitors , Avian Proteins/genetics , Base Sequence , Cadherins/antagonists & inhibitors , Cadherins/genetics , Cell Count , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Neural Tube/cytology , Neural Tube/embryology , Neural Tube/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction
16.
Int. j. morphol ; 32(1): 319-326, Mar. 2014. ilus
Article in Spanish | LILACS | ID: lil-708764

ABSTRACT

Durante el desarrollo embrionario, las células de muchos tejidos se diferencian de acuerdo con la información de posición que se establece por las gradientes de concentración de morfógenos. Estas son moléculas de señalización secretadas en una región restringida de un tejido y se difunden lejos de su fuente para formar una gradiente de concentración. La molécula de un mismo morfógeno actúa generalmente en distintas etapas de desarrollo de un organismo y puede provocar reacciones muy diferentes en las células en función de su historia de diferenciación. Los morfógenos más conocidos son miembros del factor de crecimiento beta (TGF-b), Hedgehog (Hh), familias Wnt y los microRNAs.


During embryonic development, cells in many tissues differ according to the positional information that is set by the concentration of morphogen gradients. These are signaling molecules that are secreted in a restricted region of a tissue and diffuse away from their source forming a concentration gradient. Morphogens generally act at different development stages in an organism and cause different reactions in cells depending on their history of differentiation. The best known example of morphogens are members of growth factor beta (TGF-beta), Hedgehog(Hh), and Wnt families or microRNAs.


Subject(s)
Vertebrates/embryology , Neural Tube/embryology , Morphogenesis
17.
Rev. fac. cienc. méd. (Impr.) ; 10(1): 38-47, ene.-jun. 2013. tab, graf, ilus
Article in Spanish | LILACS | ID: lil-750074

ABSTRACT

En la presente revisión bibliográfica se hace referencia del ácido fólico, vitamina perteneciente al complejo B,cuya ingestión en etapa preconcepcional contribuye a la prevención de defectos congénitos y otros problemas relacionados con la salud del ser humano. El Ácido Fólico (AF) es necesario para la formación de proteínas estructurales y hemoglobina. La deficiencia de AF es la condición en que cuerpo carece de reservas adecuadas de vitamina B9. Durante toda la gestación se debe ingerir AF, debido al continuo proceso de crecimiento y desarrollo del embrión y feto, donde el AF participa en la metilación del ADN, proceso imprescindible para la constante división y crecimiento celular. El cierre de neuroporos del tubo neural ocurre antes que finalice el primer mes de embarazo. Cuando la mujer se da cuenta que está embarazada, las consecuencias de una dieta deficiente en AF ya habrán mostrado sus consecuencias, provocando varias deformaciones congénitas denominadas malformaciones por Defectos de cierre del Tubo Neural (DTN). La ingesta de AF debe recomendarse en toda la vida reproductiva de la mujer (pubertad-antes de menopausia), esto evita el aumento de la homocisteína; productor importante de DTN...


Subject(s)
Humans , Female , Pregnancy , Folic Acid/therapeutic use , Congenital Abnormalities , Neural Tube/embryology , Fetal Mortality , Body Patterning/genetics
18.
Int. j. morphol ; 31(2): 473-479, jun. 2013. ilus
Article in English | LILACS | ID: lil-687087

ABSTRACT

The role of bone morphogenetic proteins (BMP-s) in the development of the nervous system has been widely studied on avian and rodent embryos. Human embryos have rarely been available for detection of BMP expression. In this study 39 human embryos of Carnegie stages (CS) 10-20 were investigated. The embryos were fixed in paraformaldehyde, embedded in paraffin and sectioned serially in transverse direction. BMP-2 and BMP-4 protein expression in the developing neural tube and the caudal spinal cord was determined by immunohistochemistry. Our data show that BMP-s tend to be more expressed in the neural tube in earlier stages; in particular, BMP-4 staining was found to be higher at CS10 compared to CS20. More detailed analysis was performed on embryos of CS14-18. Stronger BMP-2 and BMP-4 expression was found in the dorsal part than in the ventral part of the spinal cord. No differences were seen in the staining intensity of BMP-s in the spinal ganglia. Interestingly, in neural crest cells BMP-2 staining was stronger at CS16 and CS18 as compared to CS14, while no differences were found in BMP-4 staining. On the other hand, in the non-neural ectoderm BMP-4 staining was found to be stronger at CS16 than at CS14, while no differences were seen for BMP-2. In conclusion, expression of BMP-s in the developing neural tube and spinal cord of human embryos is generally in accordance with the findings made in rodents and birds.


El papel de las proteínas morfogenéticas óseas (BMP-s) ha sido ampliamente estudiado en el desarrollo del sistema nervioso en embriones de aves y roedores. Los embriones humanos rara vez han estado disponibles para la detección de la expresión de BMP. En este estudio se investigaron 39 embriones humanos de los estadios Carnegie (CS) 10-20. Los embriones fueron fijados en paraformaldehído, embebidos en parafina y seccionados en serie en dirección transversal. Se determinó por inmunohistoquímica BMP-2 la expresión de la proteína BMP-4 en el tubo neural y en la médula espinal caudal en desarrollo. Nuestros resultados mostraron que la BMP-s tienden a ser más expresadas en el tubo neural en etapas tempranas, en particular, se encontró tinción BMP-4 más alta en comparación con CS10 CS20. Un análisis más detallado se realizó en embriones de CS14-18. En la parte dorsal se observó mayor expresión de BMP-2 y de BMP-4 que en la parte ventral de la médula espinal. No se observaron diferencias en la intensidad de la tinción de BMP-s en los ganglios espinales. Curiosamente, en las células de la cresta neural BMP-2 la tinción fue más fuerte en CS16 y CS18 en comparación con CS14, mientras que no se encontraron diferencias en la tinción de BMP-4. Por otro lado, en el ectodermo no neural se encontró tinción BMP-4 más fuerte en CS16 que en CS14, mientras que no se observaron diferencias para BMP-2. En conclusión, la expresión de BMP-s en el tubo neural en desarrollo y la médula espinal de embriones humanos está generalmente de acuerdo con los hallazgos realizados en roedores y aves.


Subject(s)
Humans , Spinal Cord/embryology , /physiology , /physiology , Neural Tube/embryology , Embryonic Development , Immunohistochemistry
SELECTION OF CITATIONS
SEARCH DETAIL