Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.630
Filter
1.
J Virol ; 98(5): e0195923, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38634598

ABSTRACT

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mosquito Vectors , Sialic Acids , Virus Attachment , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Animals , Culex/virology , Culex/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , Mosquito Vectors/virology , Sialic Acids/metabolism , Cell Line , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Virus Internalization , Mice , Neuraminidase/metabolism , Neuraminidase/genetics
2.
Arch Virol ; 169(5): 111, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664271

ABSTRACT

India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Phylogeny , Phylogeography , India/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Genotype , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Disease Outbreaks
3.
Int Immunopharmacol ; 132: 112051, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599098

ABSTRACT

BACKGROUND: IgA Nephropathy (IgAN), the primary form of glomerulonephritis, presents significant clinical challenges due to its obscure pathogenesis and lack of targeted treatments. We conducted a proteome-wide Mendelian randomization (MR) study to identify therapeutic targets for IgAN. METHODS: Utilizing a plasma proteome dataset comprising 4907 blood plasma proteins as the exposure variable, and renal biopsy-confirmed IgAN cases as the outcome, this study employed MR to pinpoint proteins potentially pathogenic to IgAN. The robustness of our findings was affirmed through external dataset validation, reverse causation testing, and Bayesian colocalization analysis. Additionally, we conducted phenotypic scanning and analyzed downstream metabolites to investigate candidate proteins's biological function. RESULTS: In our study, a significant association was identified between an increase in neuraminidase 1 (NEU1) expression and the risk of IgAN. Specifically, a one standard deviation increase in NEU1 expression was associated with an odds ratio of 11.80 for the development of IgAN (95% confidence interval: 4.03-34.54). This association was substantiated across various statistical models and external validations. Colocalization analysis indicated a shared causal variant between NEU1 expression and IgAN. Furthermore, an increased influenza risk associated with NEU1 was observed, supporting the therapeutic potential of NEU1 inhibitors for IgAN. However, our study found no significant role for neuraminic acid-related metabolites in IgAN's development, suggesting an independent pathway for NEU1's influence. CONCLUSION: This study identifies NEU1 as a promising therapeutic target for IgAN, backed by robust genetic evidence. Future research should explore NEU1's therapeutic potential in diverse populations and clinical scenarios, further establishing its role in IgAN.


Subject(s)
Glomerulonephritis, IGA , Mendelian Randomization Analysis , Neuraminidase , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/metabolism , Humans , Neuraminidase/genetics , Neuraminidase/metabolism , Influenza, Human/genetics , Genomics , Proteome , Molecular Targeted Therapy
4.
Microb Pathog ; 190: 106628, 2024 May.
Article in English | MEDLINE | ID: mdl-38508422

ABSTRACT

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Subject(s)
Neuraminidase , Rotavirus Infections , Rotavirus , Virus Replication , Animals , Neuraminidase/metabolism , Neuraminidase/genetics , Rotavirus/drug effects , Rotavirus/physiology , Swine , Virus Replication/drug effects , Cell Line , Epithelial Cells/virology , Epithelial Cells/microbiology , Virus Attachment/drug effects , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/pharmacology , Antiviral Agents/pharmacology , Haplorhini , Swine Diseases/virology , Swine Diseases/microbiology
5.
Hum Vaccin Immunother ; 20(1): 2304393, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38497413

ABSTRACT

Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity. Hydrogen deuterium exchange experiments identified differences in anchorage binding sites at the base of the open tetramer, offering a structural mechanistic explanation for the change in conformation and decreased functional activity. Change to the open configuration was triggered by the combined stresses of acidic pH and F/T. The desired closed conformation was preserved in a potassium phosphate buffer (KP), minimizing pH drop upon freezing and including 10% sucrose to control F/T stress. Stability was further evaluated in thermal stress studies where changes in conformation were readily detected by ELISA and size exclusion chromatography (SEC). Both tests were suitable indicators of stability and antigenicity and considered potential critical quality attributes (pCQAs). To understand longer-term stability, the pCQA profiles from thermally stressed rNA at 6 months were modeled to predict stability of at least 24-months at 5°C storage. In summary, a desired rNA closed tetramer was maintained by formulation selection and monitoring of pCQAs to produce a stable rNA vaccine candidate. The study highlights the importance of understanding and controlling vaccine protein structural and functional integrity.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Neuraminidase/genetics , Vaccines, Synthetic/genetics , RNA
6.
Respir Res ; 25(1): 134, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500102

ABSTRACT

Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.


Subject(s)
Asthma , Respiration Disorders , Humans , Neuraminidase/genetics , Inflammation
7.
Antiviral Res ; 224: 105853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430970

ABSTRACT

While clinical trials have illuminated both the virological and clinical efficacy of baloxavir for influenza and post-treatment viral resistance, these aspects warrant further study in real-world settings. In response, we executed a prospective, observational study of the Japanese 2022-2023 influenza season. A cohort of 73 A(H3N2)-diagnosed outpatients-36 treated with baloxavir, 20 with oseltamivir, and 17 with other neuraminidase inhibitors (NAIs)-were analyzed. Viral samples were collected before and after administering an antiviral on days 1, 5, and 10, respectively. Cultured viruses were amplified using RT-PCR and sequenced to detect mutations. Fever and other symptoms were tracked via self-reporting diaries. In the baloxavir cohort, viral detection was 11.1% (4/36) and 0% (0/36) on day 5 and day 10, respectively. Two isolates from day 5 (5.6%, 2/36) manifested I38T/M-substitutions in the polymerase acidic protein (PA). For oseltamivir and other NAIs, viral detection rates were 60.0% (12/20) and 52.9% (9/17) on day 5, and 16.7% (3/18) and 6.3% (1/16) on day 10, respectively. No oseltamivir-resistant neuraminidase mutations were identified after treatment. Median fever durations for the baloxavir, oseltamivir, and other NAI cohorts were 27.0, 38.0, and 36.0 h, respectively, with no significant difference. Two patients harboring PA I38T/M-substitutions did not exhibit prolonged fever or other symptoms. These findings affirm baloxavir's virological and clinical effectiveness against A(H3N2) in the 2022-2023 season and suggest limited clinical influence of post-treatment resistance emergence.


Subject(s)
Dibenzothiepins , Influenza, Human , Morpholines , Triazines , Humans , Influenza, Human/drug therapy , Oseltamivir/therapeutic use , Oseltamivir/pharmacology , Neuraminidase/genetics , Neuraminidase/therapeutic use , Influenza A Virus, H3N2 Subtype/genetics , Outpatients , Seasons , Prospective Studies , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Pyridones/therapeutic use , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Fever/drug therapy
8.
Crit Rev Eukaryot Gene Expr ; 34(4): 45-54, 2024.
Article in English | MEDLINE | ID: mdl-38505872

ABSTRACT

HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Down-Regulation , Uterine Cervical Neoplasms/genetics , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/genetics , Sincalide/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism
9.
Viruses ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543754

ABSTRACT

The H274Y substitution (N2 numbering) in neuraminidase (NA) N1 confers oseltamivir resistance to A(H1N1) influenza viruses. This resistance has been associated with reduced N1 expression using transfected cells, but the effect of this substitution on the enzymatic properties and on the expression of other group-1-NA subtypes is unknown. The aim of the present study was to evaluate the antiviral resistance, enzymatic properties, and expression of wild-type (WT) and H274Y-substituted NA for each group-1-NA. To this end, viruses with WT or H274Y-substituted NA (N1pdm09 or avian N4, N5 or N8) were generated by reverse genetics, and for each reverse-genetic virus, antiviral susceptibility, NA affinity (Km), and maximum velocity (Vm) were measured. The enzymatic properties were coupled with NA quantification on concentrated reverse genetic viruses using mass spectrometry. The H274Y-NA substitution resulted in highly reduced inhibition by oseltamivir and normal inhibition by zanamivir and laninamivir. This resistance was associated with a reduced affinity for MUNANA substrate and a conserved Vm in all viruses. NA quantification was not significantly different between viruses carrying WT or H274Y-N1, N4 or N8, but was lower for viruses carrying H274Y-N5 compared to those carrying a WT-N5. In conclusion, the H274Y-NA substitution of different group-1-NAs systematically reduced their affinity for MUNANA substrate without a significant impact on NA Vm. The impact of the H274Y-NA substitution on viral NA expression was different according to the studied NA.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Oseltamivir/pharmacology , Antiviral Agents/pharmacology , Influenza A virus/genetics , Neuraminidase/genetics , Neuraminidase/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Reverse Genetics , Drug Resistance, Viral/genetics , Amino Acid Substitution , Enzyme Inhibitors/pharmacology
10.
Cell Rep Med ; 5(3): 101433, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38401547

ABSTRACT

Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Humans , Hemagglutinins , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype , Liposomes , Adjuvants, Immunologic , Vaccines, Synthetic
11.
Infect Immun ; 92(3): e0034423, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38376159

ABSTRACT

As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Humans , Virulence , Neuraminidase/genetics , Neuraminidase/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Periodontitis/microbiology
12.
Gene Ther ; 31(5-6): 263-272, 2024 May.
Article in English | MEDLINE | ID: mdl-38321198

ABSTRACT

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where ß-Gal binds to this complex to form a multienzyme complex in order to execute its function.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Mice, Knockout , Mucolipidoses , Neuraminidase , Animals , Genetic Therapy/methods , Neuraminidase/genetics , Neuraminidase/metabolism , Mice , Dependovirus/genetics , Mucolipidoses/therapy , Mucolipidoses/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Cathepsin A/genetics , Cathepsin A/metabolism , Humans , Brain/metabolism
13.
Virol J ; 21(1): 7, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178138

ABSTRACT

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Subject(s)
Colorectal Neoplasms , Oncolytic Viruses , Humans , Animals , Mice , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , HN Protein/genetics , HN Protein/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism , Hemagglutinins , N-Acetylneuraminic Acid/metabolism , HCT116 Cells , Oncolytic Viruses/genetics , Disease Models, Animal , Membrane Proteins , Colorectal Neoplasms/therapy
14.
mBio ; 15(2): e0220323, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38206008

ABSTRACT

The ongoing transmission of influenza A viruses (IAV) for the past century continues to be a burden to humans. IAV binds terminal sialic acids (SA) of sugar molecules present within the upper respiratory tract (URT) in order to successfully infect hosts. The two most common SA structures that are important for IAV infection are those with α2,3- and α2,6-linkages. While mice were once considered to be an unsuitable system for studying IAV transmission due to their lack of α2,6-SA in the trachea, we have successfully demonstrated that IAV transmission in infant mice is remarkably efficient. This finding led us to re-evaluate the SA composition of the URT of mice using in situ immunofluorescence and examine its in vivo contribution to transmission for the first time. We demonstrate that mice express both α2,3- and α2,6-SA in the URT and that the difference in expression between infants and adults contributes to the variable transmission efficiencies observed. Furthermore, selectively blocking α2,3-SA or α2,6-SA within the URT of infant mice using lectins was necessary but insufficient at inhibiting transmission, and simultaneous blockade of both receptors was crucial in achieving the desired inhibitory effect. By employing a broadly acting neuraminidase to indiscriminately remove both SA moieties in vivo, we effectively suppressed viral shedding and halted the transmission of different strains of influenza viruses. These results emphasize the utility of the infant mouse model for studying IAV transmission and strongly indicate that broadly targeting host SA is an effective approach that inhibits IAV contagion.IMPORTANCEInfluenza virus transmission studies have historically focused on viral mutations that alter hemagglutinin binding to sialic acid (SA) receptors in vitro. However, SA binding preference does not fully account for the complexities of influenza A virus transmission in humans. Our previous findings reveal that viruses that are known to bind α2,6-SA in vitro have different transmission kinetics in vivo, suggesting that diverse SA interactions may occur during their life cycle. In this study, we examine the role of host SA on viral replication, shedding, and transmission in vivo. We highlight the critical role of SA presence during virus shedding, such that attachment to SA during virion egress is equally important as detachment from SA during virion release. These insights support the potential of broadly acting neuraminidases as therapeutic agents capable of restraining viral transmission in vivo. Our study unveils intricate virus-host interactions during shedding, highlighting the necessity to develop innovative strategies to effectively target transmission.


Subject(s)
Influenza A virus , Orthomyxoviridae , Humans , Animals , Mice , Sialic Acids/metabolism , Trachea , Neuraminidase/genetics , Receptors, Virus/metabolism , Orthomyxoviridae/metabolism
15.
J Med Virol ; 96(2): e29427, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38288882

ABSTRACT

Influenza virus is known to cause mild to severe respiratory infections and is also prone to genetic mutations. Of all the mutations, neuraminidase (NA) gene mutations are a matter of concern, as most approved antivirals target this protein. During the 2020 influenza season, an emergence of mutation in the NA gene, affecting the binding of the World Health Organization (WHO)-recommended probes to the specific site of the NA gene, was reported by our group. As a result of this mutation, the WHO-recommended allelic discrimination real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was unable to detect wild-type (H275) or mutant oseltamivir-resistant (Y275) strains of influenza A(H1N1)pmd09 viruses. In the current study, the WHO-recommended probes were redesigned according to the mutation in the probe binding site. Fifty undetermined samples (2020-2021) from the previous study were retested with the newly designed probes and found to be positive for H275 and/or Y275. The results obtained were similar to the Sanger sequencing results from the previous study, suggesting that the redesigned probes were efficient in discriminating between wild-type and mutant-type viruses. Furthermore, 133 samples from 2022, making a total of 183 samples (2020-2022), were tested using improved allelic discrimination real-time RT-PCR, and the overall prevalence rate of oseltamivir resistance in 2020-2022 was found to be 0.54%.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/genetics , Reverse Transcriptase Polymerase Chain Reaction , Mutation, Missense , Viral Proteins/genetics , Drug Resistance, Viral/genetics , Mutation , Neuraminidase/genetics
16.
J Glob Antimicrob Resist ; 36: 466-472, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37992963

ABSTRACT

OBJECTIVES: The neuraminidase (NA) mutations causing resistance to NA inhibitors (NAIs) mostly compromise the fitness of influenza viruses. Considering the importance of these mutations, constant monitoring of the effectiveness of available drugs is critical. This study aimed to identify NA mutations in the influenza A/H1N1 and A/H3N2 subtypes in the samples of Mazandaran, Iran from 2016 to 2020. METHODS: In this cross-sectional study, 20 influenza A/H1N1 and 20 influenza A/H3N2 samples were included in the study. After design of appropriate primers for NA gene, all samples subjected to RT-PCR and electrophoresis. Then the PCR product was sequenced to determine the mutations. RESULTS: In the present study, no oseltamivir resistance-related mutations were detected. Still, NA gene showed variations compared to the vaccine strains. In A/H1N1, a total of 43 mutations were detected. Similarly, in A/H3N2, a total of 66 mutations were observed. In all isolates of H1N1, N200S, N248D and I321V mutations were detected in the antigenic site of NA protein, which can affect vaccine incompatibility and virus escape from the host's immune system. Also, H150R mutation was observed in the NA active site of H3N2, which is the cause of agglutination by NA protein. Also, S245N mutation was identified as a new N-Glycosylation site of H3N2 subtype. CONCLUSIONS: The study of NA gene sequences revealed no oseltamivir resistance mutations. In H1N1 isolates, ca. 97% identities and in the H3N2 subtype, 96% identities were observed compared to reference isolate of 2009, which indicates the importance of constant monitoring of the emergence of the drug resistance mutations.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Vaccines , Humans , Neuraminidase/genetics , Neuraminidase/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Iran , Cross-Sectional Studies , Oseltamivir/pharmacology , Mutation
17.
Virology ; 590: 109954, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086284

ABSTRACT

The possible emergence of drug-resistant avian flu raises concerns over the limited effectiveness of currently approved antivirals (neuraminidase inhibitors - NAIs) in the hypothetical event of a zoonotic spillover. Our study demonstrated that the recombinant avian A(H6N1) viruses showed reduced inhibition (RI) by multiple NAI drugs following the introduction of point mutations found predominantly in the neuraminidase gene (NA) of NAI-resistant human influenza strains (E119V, R292K and H274Y; N2 numbering). Moreover, A(H6N1)-H274Y showed increased replication efficiency in vitro, and a fitness advantage over wild-type (WT) when co-inoculated into embryonated hen's eggs. The results presented in our study together with the zoonotic potential of the A(H6N1) virus as evidenced by the human infection from 2013, highlight the need for enhanced monitoring of NAI resistance-associated signatures in circulating LPAI (low pathogenic avian influenza) globally.


Subject(s)
Influenza in Birds , Influenza, Human , Animals , Female , Humans , Oseltamivir/pharmacology , Chickens , Neuraminidase/genetics , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Mutation , Drug Resistance , Drug Resistance, Viral/genetics
18.
Acta Parasitol ; 69(1): 384-395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147296

ABSTRACT

PURPOSE: African Animal Trypanosomosis (AAT) caused by Trypanosoma congolense is a parasitic disease affecting the livestock industry in sub-Saharan Africa and usually results in severe anemia, organ damage, and ultimately the death of the infected host. The present study was designed to investigate the possible chemotherapeutic effect of eugenol on T. congolense infections and its inhibitory effect on the trans-sialidase (TconTS) gene expression. METHODS: Animals were infected with T. congolense and treated with 15 and 30 mg/kg body weight (BW) of eugenol for ten (10) days. RESULTS: The eugenol (15 mg/kg BW) significantly (P < 0.05) reduced the T. congolense proliferation, increased animal survival, and reduced serum urea level. However, both dosages of eugenol significantly (P < 0.05) ameliorated T. congolense-induced anemia, renal hypertrophy, splenomegaly, and reduced total damage score in the liver and kidney of infected animals. In addition, the compound significantly (P < 0.05) downregulated the expression levels of TconTS1, TconTS2, TconTS3, and TconTS4 but the effect was more pronounced (sevenfold reduction) on TconTS1. CONCLUSIONS: The oral administration of eugenol suppressed T. congolense proliferation and prevented some major pathologies associated with trypanosomiasis infection. The reversal of renal hypertrophy and splenomegaly by the compound in addition to the reduction in the expression level of the TconTS gene variants could explain the observed anemia ameliorative potential of the compound.


Subject(s)
Anemia , Eugenol , Glycoproteins , Neuraminidase , Trypanosoma congolense , Trypanosomiasis, African , Eugenol/pharmacology , Trypanosoma congolense/drug effects , Trypanosoma congolense/genetics , Trypanosoma congolense/enzymology , Animals , Anemia/parasitology , Anemia/drug therapy , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary , Glycoproteins/genetics , Neuraminidase/genetics , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
19.
Article in English | MEDLINE | ID: mdl-38141291

ABSTRACT

Recombinant protein-based approaches are ideally suited for producing vaccine antigens that are not overly abundant in viruses, such as influenza neuraminidase (NA). However, obtaining sufficient quantities of recombinant viral surface antigens remains challenging, often resulting in the use of chimeric proteins with affinity tags that can invariably impact the antigen's properties. Here, we developed multistep chromatography approaches for purifying secreted recombinant NA (rNA) antigens that are derived from recent H1N1 and H3N2 viruses and produced using insect cells. Analytical analyses showed that these isolation procedures yielded homogenous tetrameric rNA preparations with consistent specific activities that were not possible from a common immobilized metal affinity chromatography purification procedure. The use of classical chromatography improved the rNA tetramer homogeneity by removing the requirement of the N-terminal poly-histidine affinity tag that was shown to promote higher order rNA oligomer formation. In addition, these procedures reduced the specific activity variation by eliminating the exposure to Ni2+ ions and imidazole, with the latter showing pH and NA subtype dependent effects. Together, these results demonstrate that purification by multistep chromatography improves the homogeneity of secreted rNAs and eliminates the need for affinity tag-based approaches that can potentially alter the properties of these recombinant antigens.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Neuraminidase/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Recombinant Proteins/genetics , Chromatography , RNA
20.
Sci Transl Med ; 15(724): eabp9599, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38019934

ABSTRACT

Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.


Subject(s)
Gardnerella vaginalis , Vaginosis, Bacterial , Female , Humans , Gardnerella vaginalis/genetics , Gardnerella vaginalis/metabolism , Vagina , Vaginosis, Bacterial/genetics , Vaginosis, Bacterial/microbiology , Bacteria/metabolism , Polysaccharides , Neuraminidase/genetics , Neuraminidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...