Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2344: 227-238, 2021.
Article in English | MEDLINE | ID: mdl-34115363

ABSTRACT

The completion and annotation of the human proteome require the availability of information related to protein function. Currently, more than 1800 human genes constitute the "dark proteome," which include missing proteins, uncharacterized human genes validated at protein level, smORFs, proteins from lncRNAs, or any uncharacterized transcripts. During the last years, different experimental workflows based on multi-omics analyses, bioinformatics, and in vitro and in vivo studies have been promoted by the Human Proteome Project Consortium to enhance the annotation of dark proteins. In this chapter, we describe a method that utilizes recombinant proteins and antibody arrays to establish a straightforward methodology in order to rapidly characterize potential functional features of dark proteins associated to intracellular signaling dynamics and extracellular immune response in human cell cultures. Further validating the method, this workflow was applied to probe changes in the activation patterns of kinases and transcription factors as well as in cytokine production modulated by the dark C1orf128 (PITHD1) protein in human olfactory neuroepithelial cells.


Subject(s)
Antibodies/immunology , Neuroepithelial Cells/immunology , Olfactory Bulb/immunology , Protein Array Analysis , Proteins/immunology , Proteome/immunology , Antibodies/genetics , Humans , Neuroepithelial Cells/pathology , Olfactory Bulb/pathology , Proteins/genetics , Proteome/genetics
2.
Sci Immunol ; 5(48)2020 06 05.
Article in English | MEDLINE | ID: mdl-32503876

ABSTRACT

The neuroepithelium is a nasal barrier surface populated by olfactory sensory neurons that detect odorants in the airway and convey this information directly to the brain via axon fibers. This barrier surface is especially vulnerable to infection, yet respiratory infections rarely cause fatal encephalitis, suggesting a highly evolved immunological defense. Here, using a mouse model, we sought to understand the mechanism by which innate and adaptive immune cells thwart neuroinvasion by vesicular stomatitis virus (VSV), a potentially lethal virus that uses olfactory sensory neurons to enter the brain after nasal infection. Fate-mapping studies demonstrated that infected central nervous system (CNS) neurons were cleared noncytolytically, yet specific deletion of major histocompatibility complex class I (MHC I) from these neurons unexpectedly had no effect on viral control. Intravital imaging studies of calcium signaling in virus-specific CD8+ T cells revealed instead that brain-resident microglia were the relevant source of viral peptide-MHC I complexes. Microglia were not infected by the virus but were found to cross-present antigen after acquisition from adjacent neurons. Microglia depletion interfered with T cell calcium signaling and antiviral control in the brain after nasal infection. Collectively, these data demonstrate that microglia provide a front-line defense against a neuroinvasive nasal infection by cross-presenting antigen to antiviral T cells that noncytolytically cleanse neurons. Disruptions in this innate defense likely render the brain susceptible to neurotropic viruses like VSV that attempt to enter the CNS via the nose.


Subject(s)
Antigen Presentation/immunology , Brain/immunology , CD8-Positive T-Lymphocytes/immunology , Microglia/immunology , Neuroepithelial Cells/immunology , Nose/virology , Vesicular Stomatitis/immunology , Animals , Brain/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/virology , Neuroepithelial Cells/virology , Vesicular Stomatitis/virology
3.
Cell Rep ; 16(10): 2576-2592, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27568284

ABSTRACT

The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.


Subject(s)
Mitosis , Neural Stem Cells/enzymology , Neural Stem Cells/virology , Neuroepithelial Cells/virology , Neuroglia/virology , Protein Serine-Threonine Kinases/metabolism , Zika Virus/pathogenicity , Brain/embryology , Brain/pathology , Brain/virology , Cell Death/drug effects , Centrosome/drug effects , Centrosome/metabolism , Fetus/virology , Gene Expression Profiling , Humans , Immunity, Innate/drug effects , Microcephaly/pathology , Microcephaly/virology , Mitochondria/drug effects , Mitochondria/metabolism , Mitosis/drug effects , Neocortex/pathology , Neural Stem Cells/immunology , Neural Stem Cells/ultrastructure , Neuroepithelial Cells/drug effects , Neuroepithelial Cells/immunology , Neuroepithelial Cells/ultrastructure , Neuroglia/pathology , Neuroglia/ultrastructure , Neurons/drug effects , Neurons/pathology , Neurons/virology , Neuroprotective Agents/pharmacology , Nucleosides/pharmacology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Spinal Cord/pathology , Transcription, Genetic/drug effects , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus/ultrastructure , Zika Virus Infection/pathology , Zika Virus Infection/virology , Axl Receptor Tyrosine Kinase
4.
J Neuroimmune Pharmacol ; 8(4): 1010-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23744346

ABSTRACT

HIV enters the brain early during infection and induces a chronic inflammatory state that can result in neurological abnormalities in a subset of infected individuals. To investigate the effects of HIV exposure on neurogenesis and neuronal survival in the brain, we have used a model system consisting of human neuroepithelial progenitor (NEP) cells that undergo directed differentiation into astrocytes and neurons in vitro. Changes in gene expression in NEP cultures as a result of HIV exposure were investigated using gene expression microarrays with the Illumina HT-12 V4_0_R1 platform array. Through this approach, we identified a group of genes specifically upregulated by exposure to virus that are strongly related to interferon induced responses and antigen presentation. When the data were stratified by their apolipoprotein genotype, this innate immune response was more robust in the apolipoprotein E3/E3 genotype cultures than in the apolipoprotein E3/E4 counterparts. Biological processes as defined by the gene ontology (GO) program were also differently affected upon virus exposure in cultures of the two genotypes, particularly those related to antigen presentation and the actions of interferons. Differences occurred in both in numbers of genes affected and their significance in the GO processes in which they participate, with apoE3/E3 > apoE3/E4. These data suggest that maturing NEP cultures recognize HIV and respond to it by mounting an innate immune response with a vigor that is influenced by the apolipoprotein E genotype of the cells.


Subject(s)
Apolipoproteins E/physiology , Fetal Stem Cells/microbiology , HIV-1 , Immunity, Innate/immunology , Neural Stem Cells/immunology , Neuroepithelial Cells/immunology , Apolipoproteins E/genetics , Cells, Cultured , Fetal Stem Cells/immunology , Fetal Stem Cells/virology , Genotype , Humans , Immunity, Innate/genetics , Neural Stem Cells/virology , Neuroepithelial Cells/virology
5.
J Neurosci ; 30(6): 2324-9, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20147558

ABSTRACT

Inflammatory sinus and nasal disease is a common cause of human olfactory loss. To explore the mechanisms underlying rhinosinusitis-associated olfactory loss, we have generated a transgenic mouse model of olfactory inflammation, in which tumor necrosis factor alpha (TNF-alpha) expression is induced in a temporally controlled manner specifically within the olfactory epithelium (OE). Like the human disease, TNF-alpha expression leads to a progressive infiltration of inflammatory cells into the OE. Using this model, we have defined specific phases of the pathologic process. An initial loss of sensation without significant disruption is observed, followed by a striking reorganization of the sensory neuroepithelium. An inflamed and disrupted state is sustained chronically by continued induction of cytokine expression. After prolonged maintenance in a deficient state, there is a dramatic recovery of function and a normal histologic appearance when TNF-alpha expression is extinguished. Although obstruction of airflow is also a contributing factor in human rhinosinusitis, this in vivo model demonstrates for the first time that direct effects of inflammation on OE structure and function are important mechanisms of olfactory dysfunction. These features mimic essential aspects of chronic rhinosinusitis-associated olfactory loss, and illuminate underlying cellular and molecular aspects of the disease. This manipulable model also serves as a platform for developing novel therapeutic interventions.


Subject(s)
Disease Models, Animal , Neuroepithelial Cells/pathology , Olfaction Disorders/pathology , Olfaction Disorders/physiopathology , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Rhinitis/physiopathology , Sinusitis/physiopathology , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Cell Proliferation , Chronic Disease , Mice , Mice, Transgenic , Neuroepithelial Cells/immunology , Olfaction Disorders/genetics , Olfaction Disorders/immunology , Olfactory Mucosa/immunology , Promoter Regions, Genetic , Rhinitis/immunology , Sinusitis/immunology , Steroid Hydroxylases/genetics , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
6.
Gene Ther ; 15(3): 233-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17960158

ABSTRACT

Inflammation and immune reaction, or pre-existing immunity towards commonly used viral vectors for gene therapy severely impair long-term gene expression in the central nervous system (CNS), impeding the possibility to repeat the therapeutic intervention. Here, we show that injection of a helper-dependent adenoviral (HD-Ad) vector by lumbar puncture into the cerebrospinal fluid (CSF) of non-human primates allows long-term (three months) infection of neuroepithelial cells, also in monkeys bearing a pre-existing anti-adenoviral immunity. Intrathecal injection of the HD-Ad vector was not associated with any sign of systemic or local toxicity, nor by signs of a CNS-specific immune reaction towards the HD-Ad vector. Injection of HD-Ad vectors into the CSF circulation may thus represent a valuable approach for CNS gene therapy allowing for long-term expression and re-administration.


Subject(s)
Adenoviridae/genetics , Cerebrospinal Fluid/virology , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Helper Viruses/genetics , Parkinson Disease/therapy , Animals , Gene Expression , Genetic Engineering , Genetic Vectors/immunology , Interleukin-4/genetics , Macaca fascicularis , Male , Models, Animal , Neuroepithelial Cells/immunology , Neuroepithelial Cells/virology , Parkinson Disease/immunology , Spinal Puncture , Transduction, Genetic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...