Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 207, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164713

ABSTRACT

Despite advances in antimicrobial and anti-inflammatory treatment, inflammation and its consequences remain a major challenge in the field of medicine. Inflammatory reactions can lead to life-threatening conditions such as septic shock, while chronic inflammation has the potential to worsen the condition of body tissues and ultimately lead to significant impairment of their functionality. Although the central nervous system has long been considered immune privileged to peripheral immune responses, recent research has shown that strong immune responses in the periphery also affect the brain, leading to reactive microglia, which belong to the innate immune system and reside in the brain, and neuroinflammation. The inflammatory response is primarily a protective mechanism to defend against pathogens and tissue damage. However, excessive and chronic inflammation can have negative effects on neuronal structure and function. Neuroinflammation underlies the pathogenesis of many neurological and neurodegenerative diseases and can accelerate their progression. Consequently, targeting inflammatory signaling pathways offers potential therapeutic strategies for various neuropathological conditions, particularly Parkinson's and Alzheimer's disease, by curbing inflammation. Here the blood-brain barrier is a major hurdle for potential therapeutic strategies, therefore it would be highly advantageous to foster and utilize brain innate anti-inflammatory mechanisms. The tricarboxylic acid cycle-derived metabolite itaconate is highly upregulated in activated macrophages and has been shown to act as an immunomodulator with anti-inflammatory and antimicrobial functions. Mesaconate, an isomer of itaconate, similarly reduces the inflammatory response in macrophages. Nevertheless, most studies have focused on its esterified forms and its peripheral effects, while its influence on the CNS remained largely unexplored. Therefore, this study investigated the immunomodulatory and therapeutic potential of endogenously synthesized itaconate and its isomer mesaconate in lipopolysaccharide (LPS)-induced neuroinflammatory processes. Our results show that both itaconate and mesaconate reduce LPS-induced neuroinflammation, as evidenced by lower levels of inflammatory mediators, reduced microglial reactivity and a rescue of synaptic plasticity, the cellular correlate of learning and memory processes in the brain. Overall, this study emphasizes that both itaconate and mesaconate have therapeutic potential for neuroinflammatory processes in the brain and are of remarkable importance due to their endogenous origin and production, which usually leads to high tolerance.


Subject(s)
Lipopolysaccharides , Neuroinflammatory Diseases , Succinates , Animals , Succinates/pharmacology , Succinates/therapeutic use , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/immunology , Lipopolysaccharides/toxicity , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain/immunology , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Mice, Inbred C57BL
2.
J Neurosci Res ; 102(8): e25370, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39158105

ABSTRACT

Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.


Subject(s)
Lipopolysaccharides , Memory Disorders , Neuroinflammatory Diseases , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Lipopolysaccharides/toxicity , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Rats , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Memory Disorders/chemically induced , Memory Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Resistance Training/methods , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Lipid Peroxidation/drug effects , Acetylcholinesterase/metabolism , Receptor, Muscarinic M1/metabolism
3.
Nat Commun ; 15(1): 6744, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112447

ABSTRACT

Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.


Subject(s)
Cuprizone , Demyelinating Diseases , Disease Models, Animal , Myelin Sheath , Oligodendroglia , Animals , Cuprizone/toxicity , Male , Demyelinating Diseases/chemically induced , Demyelinating Diseases/therapy , Demyelinating Diseases/pathology , Mice , Oligodendroglia/metabolism , Oligodendroglia/pathology , Myelin Sheath/metabolism , Mice, Inbred C57BL , Ferroptosis , Neuronal Plasticity , Brain/pathology , Brain/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology
4.
Neurosci Lett ; 837: 137923, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39106918

ABSTRACT

Caffeine, a nonselective adenosine receptor antagonist, is the major component of coffee and the most consumed psychostimulant at nontoxic doses in the world. It has been identified that caffeine consumption reduces the risk of several neurological diseases. However, the mechanisms by which it impacts the pathophysiology of neurological diseases remain to be elucidated. In this study, we investigated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation and depression in vivo and explored the potential mechanism of caffeine through LPS-induced brain injury. Adult male Sprague-Dawley (SD) rats were intraperitoneal injected with various concentrations of LPS to induce the neuroinflammation and depressive-like behavior. Then SD rats were treated with caffeine in the presence or absence of LPS. Open-filed and closed-field tests were applied to detect the behaviors of SD rats, while western blot was performed to measure the phosphorylation level of protein kinase B (p-AKT) and nuclear factor κB (NF-κB) in the cortex after caffeine was orally administered. Our findings indicated that caffeine markedly improved the neuroinflammation and depressive-like behavior of LPS-treated SD rats. Mechanistic investigations demonstrated that caffeine down-regulated the expression of p-AKT and NF-κB in LPS-induced SD rats cortex. Taken together, these results indicated that caffeine, a potential agent for preventing inflammatory diseases, may suppress LPS-induced inflammatory and depressive responses by regulating AKT phosphorylation and NF-κB.


Subject(s)
Caffeine , Depression , Lipopolysaccharides , NF-kappa B , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , NF-kappa B/metabolism , Male , Caffeine/pharmacology , Caffeine/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Rats , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Phosphorylation/drug effects , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/chemically induced
5.
J Neuroinflammation ; 21(1): 174, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014482

ABSTRACT

BACKGROUND: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson's disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. METHODS: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-h intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). RESULTS: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 h after acute inflammation, as also observed in BMDMs. CONCLUSIONS: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.


Subject(s)
Inflammation , Lipopolysaccharides , Mice, Knockout , Microglia , Protein Deglycase DJ-1 , Animals , Protein Deglycase DJ-1/deficiency , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Mice , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Inflammation/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/genetics , Humans , Mice, Inbred C57BL , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/genetics
6.
Eur J Pharmacol ; 979: 176850, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39059571

ABSTRACT

Microglia are primarily involved in inflammatory reactions and oxidative stress in the brain; as such reducing microglial activation has been proposed as a potential therapeutic strategy for neurodegenerative disorders. Herein, we investigated the anti-inflammatory and antioxidant activities of coniferaldehyde (CFA), a naturally occurring cinnamaldehyde derivative, on activated microglia to evaluate its therapeutic potential. CFA inhibited the production of nitric oxide (NO) and proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. CFA also inhibited intracellular reactive oxygen species levels and oxidative stress markers such as 4-HNE and 8-OHdG. Detailed mechanistic studies showed that CFA exerted anti-inflammatory effects by inhibiting TAK1-mediated MAP kinase/NF-κB activation and upregulating AMPK signaling pathways. In addition, CFA exerted antioxidant effects by inhibiting the NADPH oxidase subunits and by increasing the expression of antioxidant enzymes such as HO-1, NQO1, and catalase by upregulating Nrf2 signaling. Finally, we confirmed the effects of CFA on the brains of the LPS-injected mice. CFA inhibited microglial activation and the expression of proinflammatory markers and increased Nrf2-driven antioxidant enzymes. Furthermore, CFA inhibited the production of 4-HNE and 8-OHdG in the brains of LPS-injected mice. As a result, CFA's significant anti-inflammatory and antioxidant properties may have therapeutic applications in neuroinflammatory disorders related with oxidative stress and microglial activation.


Subject(s)
AMP-Activated Protein Kinases , Anti-Inflammatory Agents , Antioxidants , Lipopolysaccharides , MAP Kinase Kinase Kinases , Microglia , NF-E2-Related Factor 2 , NF-kappa B , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , NF-kappa B/metabolism , Mice , AMP-Activated Protein Kinases/metabolism , Male , MAP Kinase Kinase Kinases/metabolism , Microglia/drug effects , Microglia/metabolism , Signal Transduction/drug effects , Cell Line , Oxidative Stress/drug effects , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Acrolein/analogs & derivatives , Acrolein/pharmacology , Cytokines/metabolism , Reactive Oxygen Species/metabolism
7.
Sci Total Environ ; 946: 174313, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964406

ABSTRACT

Nervous system diseases are a global health problem, and with the increase in the elderly population around the world, their incidence will also increase. Harmful substances in the environment are closely related to the occurrence of nervous system diseases. China is a large agricultural country, and thus the insecticide cyfluthrin has been widely used. Cyfluthrin is neurotoxic, but the mechanism of this injury is not clear. Inflammation is an important mechanism for the occurrence of nervous system diseases. Mitochondria are the main regulators of the inflammatory response, and various cellular responses, including autophagy, directly affect the regulation of inflammatory processes. Mitochondrial damage is related to mitochondrial quality control (MQC) and PTEN-induced kinase 1 (PINK1). As an anti-inflammatory factor, stimulator of interferon genes (STING) participates in the regulation of inflammation. However, the relationship between STING and mitochondria in the process of cyfluthrin-induced nerve injury is unclear. This study established in vivo and in vitro models of cyfluthrin exposure to explore the role of MQC and to clarify the mechanism of action of STING and PINK1. Our results showed that cyfluthrin can increase the reactive oxygen species (ROS) level, resulting in mitochondrial damage and inflammation. In this process, an imbalance in MQC leads to the aggravation of mitochondrial damage, and high STING expression drives the occurrence of inflammation. We established a differential expression model of STING and PINK1 to further determine the underlying mechanism and found that the interaction between STING and PINK1 regulates MQC to affect the levels of mitochondrial damage and inflammation. When STING and PINK1 expression are downregulated, mitochondrial damage and STING-induced inflammation are significantly alleviated. In summary, a synergistic effect between STING and PINK1 on cyfluthrin-induced neuroinflammation may exist, which leads to an imbalance in MQC by inhibiting mitochondrial biogenesis and division/fusion, and PINK1 can reduce STING-driven inflammation.


Subject(s)
Mitochondria , Nitriles , Protein Kinases , Pyrethrins , Pyrethrins/toxicity , Mitochondria/drug effects , Animals , Nitriles/toxicity , Protein Kinases/metabolism , Protein Kinases/genetics , Neuroinflammatory Diseases/chemically induced , Insecticides/toxicity , Mice , Reactive Oxygen Species/metabolism , Inflammation/chemically induced , Membrane Proteins/metabolism , Membrane Proteins/genetics
8.
Toxicol Appl Pharmacol ; 490: 117043, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059506

ABSTRACT

AIMS: Depression is a potentially fatal illness affecting millions of individuals worldwide, across all age groups. Neuroinflammation is a key factor in depression development. Paclitaxel (PXL), a well-known chemotherapeutic agent has been used as therapy for several types of cancer. This study aims to evaluate the ameliorative effect of low-dose PXL against lipopolysaccharide (LPS)-induced depression in rats. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were administrated a single dose of LPS (5 mg/kg, i.p.); 2 h later, rats received PXL (0.3 mg/kg, i.p. three times/week) for one week. KEY FINDINGS: Low-dose PXL alleviated LPS-induced depressive-like behavior in rats as evidenced by significantly improving behavioral changes in both forced swim test (FST) and open field test (OFT), successfully mitigated depletion of monoamines (serotonin, norepinephrine, and dopamine), in addition to markedly decreasing lipid peroxidation with antioxidant levels elevation in brain tissues. Low-dose PXL substantially decreased inflammation triggered by LPS in brain tissue via repressing the expression of NLRP3 and its downstream markers level, caspase-1 and IL-1ß jointly with a corresponding decrease in proinflammatory cytokine levels (TNF-α). Furthermore, low-dose PXL remarkably down-regulated Sphk1/S1P signaling pathway. Concurrent with these biochemical findings, there was a noticeable improvement in the brain tissue's histological changes. SIGNIFICANCE: These findings prove the role of low-dose PXL in treatment of LPS-induced neuroinflammation and depressive-like behavior through their anti-depressant, antioxidant and anti-inflammatory actions. The suggested molecular mechanism may entail focusing the interconnection among Sphk1/S1P, and NLRP3/caspase-1/IL-1ß signaling pathways. Hence PXL could be used as a novel treatment against LPS-induced depression.


Subject(s)
Caspase 1 , Depression , Interleukin-1beta , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Paclitaxel , Rats, Sprague-Dawley , Signal Transduction , Animals , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/toxicity , Signal Transduction/drug effects , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism , Rats , NF-kappa B/metabolism , Paclitaxel/toxicity , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Behavior, Animal/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
9.
Eur J Pharmacol ; 979: 176818, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39029779

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN. However, these processes are still poorly understood, and while many chemotherapy drugs alone can drive the activation of these cells and consequent neuroinflammation, it remains elusive to what extent the gut microbiome influences these processes. In this review, we focus on the peripheral mechanisms driving CIPN, and we address the bidirectional pathways by which the gut microbiome communicates with the immune and nervous systems. Additionally, we critically evaluate literature addressing how chemotherapy-induced dysbiosis and the consequent imbalance in bacterial products may contribute to the activation of immune and glial cells, both of which drive neuroinflammation and possibly CIPN development, and how we could use this knowledge for the development of effective treatment strategies.


Subject(s)
Antineoplastic Agents , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Peripheral Nervous System Diseases , Humans , Gastrointestinal Microbiome/drug effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/microbiology , Animals , Antineoplastic Agents/adverse effects , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/chemically induced , Dysbiosis/chemically induced , Dysbiosis/microbiology , Neuroglia/drug effects , Neuroglia/immunology
10.
Neurochem Int ; 178: 105799, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950625

ABSTRACT

Alumunium usage and toxicity has been a global concern especially an increased use of nanoparticulated aluminum (Al-NPs) products from the environment and the workplace. Al degrades in to nanoparticulate form in the environment due to the routine process of bioremediation in human body. Al-NPs toxicity plays key role in the pathophysiology of neurodegeneration which is characterised by the development of neurofibrillary tangles and neuritic plaques which correlates to the Alzheimer's disease. This study evaluated the Al-NPs induced neurodegeneration and causative behavioral alterations due to oxidative stress, inflammation, DNA damage, ß-amyloid aggregation, and histopathological changes in mice. Furthermore, the preventive effect of naringenin (NAR) as a potent neuroprotective flavonoid against Al-NPs induced neurodegeneration was assessed. Al-NPs were synthesized and examined using FTIR, XRD, TEM, and particle size analyzer. Mice were orally administered with Al-NPs (6 mg/kg b.w.) followed by NAR treatment (10 mg/kg b.w. per day) for 66 days. The spatial working memory was determined by novel object recognition, T-maze, Y-maze, and Morris Water Maze tests. We measured nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, oxidised glutathione, and acetylcholine esterase, as well as cytokines analysis, immunohistochemistry, and DNA damage. Al-NPs significantly reduced the learning memory power, increased oxidative stress, reduced antioxidant enzymatic activity, increased DNA damage, altered the levels of cytokines, and increased ß-amyloid aggregation in the cortex and hippocampus regions of the mice brain. These neurobehavioral impairments, neuronal oxidative stress, and histopathological alterations were significantly attenuated by NAR supplementation. In conclusion, Al-NPs may be potent neurotoxic upon exposure and that NAR could serve as a potential preventive measure in the treatment and management of neuronal degeneration.


Subject(s)
Aluminum , Flavanones , Hippocampus , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Aluminum/toxicity , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Down-Regulation/drug effects , Nerve Degeneration/drug therapy , Nerve Degeneration/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Metal Nanoparticles
11.
Sci Total Environ ; 942: 173739, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38839007

ABSTRACT

Triclosan (TCS), a commonly used antibacterial agent, is associated with various harmful effects on mammalian neurodevelopment, particularly when exposed prenatally. This study investigated the impact of long-term exposure to TCS on the prefrontal cortex development in adolescent mice. We evaluated the motor ability, motor coordination, and anxiety behavior of mice using open field tests (OFT) and elevated cross maze tests (EPM). An increase in movement distance, number of passes through the central area, and open arm retention time was observed in mice treated with TCS. Hematoxylin eosin staining and Nissl staining also showed significant adverse reactions in the brain tissue of TCS-exposed group. TCS induced microglia activation and increased inflammatory factors expression in the prefrontal cortex. TCS also increased the expression of pyruvate kinase M2 (PKM2), thereby elevating the levels of PKM2 dimer, which entered the nucleus. Treatment with TEPP46 (PKM2 dimer nuclear translocation inhibitor) blocked the expression of inflammatory factors induced by TCS. TCS induced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro, upregulating the levels of inflammatory cytokines. The results also demonstrated the binding of PKM2 to STAT3, which promoted STAT3 phosphorylation at the Tyr705 site, thereby regulating the expression of inflammatory factors. These findings highlight the role of PKM2-regulated STAT3 phosphorylation in TCS-induced behavioral disorders in adolescents and propose a reliable treatment target for TCS.


Subject(s)
Microglia , Neuroinflammatory Diseases , Pyruvate Kinase , STAT3 Transcription Factor , Triclosan , Animals , Triclosan/toxicity , Mice , Microglia/drug effects , Pyruvate Kinase/metabolism , STAT3 Transcription Factor/metabolism , Phosphorylation , Neuroinflammatory Diseases/chemically induced , Anti-Infective Agents, Local/toxicity , Male
12.
Food Chem Toxicol ; 190: 114814, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876379

ABSTRACT

Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.


Subject(s)
Anxiety , Chlorogenic Acid , Ferroptosis , Lead , Neuroinflammatory Diseases , Signal Transduction , Animals , Male , Mice , Anxiety/drug therapy , Anxiety/chemically induced , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/analogs & derivatives , Ferroptosis/drug effects , Glutathione Peroxidase/metabolism , Lead/toxicity , Mice, Inbred ICR , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects
13.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840092

ABSTRACT

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Isoflurane , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , Animals , Isoflurane/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Rats , Mice , Rats, Sprague-Dawley , Male , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Female , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism
14.
Biomed Pharmacother ; 176: 116880, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850652

ABSTRACT

Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.


Subject(s)
Alzheimer Disease , Exosomes , Metals, Heavy , MicroRNAs , Microglia , Neuroinflammatory Diseases , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Humans , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Metals, Heavy/toxicity , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Microglia/metabolism , Microglia/drug effects , Brain/metabolism , Brain/pathology , Brain/drug effects
15.
Neurochem Res ; 49(9): 2573-2599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896196

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental disorders manifested mainly in children, with symptoms ranging from social/communication deficits and stereotypies to associated behavioral anomalies like anxiety, depression, and ADHD. While the patho-mechanism is not well understood, the role of neuroinflammation has been suggested. Nevertheless, the triggers giving rise to this neuroinflammation have not previously been explored in detail, so the present study was aimed at exploring the role of glutamate on these processes, potentially carried out through increased activity of inflammatory cells like astrocytes, and a decline in neuronal health. A novel chlorpyrifos-induced paradigm of ASD in rat pups was used for the present study. The animals were subjected to tests assessing their neonatal development and adolescent behaviors (social skills, stereotypies, sensorimotor deficits, anxiety, depression, olfactory, and pain perception). Markers for inflammation and the levels of molecules involved in glutamate excitotoxicity, and neuroinflammation were also measured. Additionally, the expression of reactive oxygen species and markers of neuronal inflammation (GFAP) and function (c-Fos) were evaluated, along with an assessment of histopathological alterations. Based on these evaluations, it was found that postnatal administration of CPF had a negative impact on neurobehavior during both the neonatal and adolescent phases, especially on developmental markers, and brought about the generation of ASD-like symptoms. This was further corroborated by elevations in the expression of glutamate and downstream calcium, as well as certain cytokines and neuroinflammatory markers, and validated through histopathological and immunohistochemical results showing a decline in neuronal health in an astrocyte-mediated cytokine-dependent fashion. Through our findings, conclusive evidence regarding the involvement of glutamate in neuroinflammatory pathways implicated in the development of ASD-like symptoms, as well as its ability to activate further downstream processes linked to neuronal damage has been obtained. The role of astrocytes and the detrimental effect on neuronal health are also concluded. The significance of our study and its findings lies in the evaluation of the involvement of chlorpyrifos-induced neurotoxicity in the development of ASD, particularly in relation to glutamatergic dysfunction and neuronal damage.


Subject(s)
Astrocytes , Autism Spectrum Disorder , Chlorpyrifos , Glutamic Acid , Neuroinflammatory Diseases , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Glutamic Acid/metabolism , Chlorpyrifos/toxicity , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Male , Rats, Wistar , Rats , Animals, Newborn , Female , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology
16.
Brain Res ; 1841: 149094, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38914219

ABSTRACT

Neuroinflammation has been gaining attention as one of the potential causes of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in recent years. The suppression of excessive proinflammatory responses is expected to be a target for the treatment and prevention of neurodegenerative diseases. Collapsin response mediator protein 4 (CRMP4) is involved in cytoskeleton-associated axonal guidance in the developing brain. Recently, the involvement of CRMP4 in several pathological conditions, including inflammation induced by lipopolysaccharide (LPS), a widely used inflammatory molecule, has been reported. However, the role of CRMP4 in LPS-induced inflammation in vivo remains largely unknown. In this study, we generated microglia-specific CRMP4 knockout mice for the first time and examined the role of CRMP4 in an LPS-induced brain inflammation model. We found that microglia after LPS injection in substantia nigra was significantly reduced in Crmp4-/- mice compared to Crmp4+/+mice. The increased expression of IL-10 in striatum samples was downregulated in Crmp4-/- mice. A significant reduction in Iba1 expression was also observed in microglia-specific Crmp4 knockout mice compared with that in control mice. In contrast, the expression of IL-10 did not change in these mice, whereas arginase 1 (Arg1) expression was significantly suppressed. These results demonstrate the involvement of CRMP4 in LPS-induced inflammation in vivo, that CRMP4 suppresses microglial proliferation in a cell-autonomous manner.


Subject(s)
Lipopolysaccharides , Mice, Knockout , Microglia , Nerve Tissue Proteins , Neuroinflammatory Diseases , Animals , Lipopolysaccharides/pharmacology , Microglia/metabolism , Microglia/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Inflammation/metabolism , Inflammation/chemically induced , Interleukin-10/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Mice, Inbred C57BL , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Male , Microfilament Proteins/metabolism , Arginase/metabolism
17.
Tissue Cell ; 89: 102454, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905876

ABSTRACT

BACKGROUND: Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK: The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS: Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS: SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1ß and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION: SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.


Subject(s)
Janus Kinase 2 , Nanoparticles , Paraquat , STAT3 Transcription Factor , Selenium , Signal Transduction , Animals , Selenium/pharmacology , STAT3 Transcription Factor/metabolism , Mice , Signal Transduction/drug effects , Paraquat/toxicity , Nanoparticles/chemistry , Janus Kinase 2/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Male , Antioxidants/pharmacology , Antioxidants/metabolism
18.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892185

ABSTRACT

N-methylpyridinium (NMP) is produced through the pyrolysis of trigonelline during the coffee bean roasting process. Preliminary studies suggest that NMP may have health benefits, thanks to its antioxidant properties. Based on this background, the aim of this study was to evaluate whether NMP could have a protective effect against LPS-induced neuroinflammation in human glioblastoma cells (U87MG). With this aim, U87MG cells were pre-treated with NMP (0.5 µM) for 1 h and then exposed to LPS (1 µg/mL) for 24 h. Our findings show that NMP attenuates LPS-induced neuroinflammation by reducing the expression of pro-inflammatory cytokines, such as IL-1ß, TNF-α and IL-6, through the inhibition of the NF-κB signaling pathway, which is critical in regulating inflammatory responses. NMP is able to suppress the activation of the NF-κB signaling pathway, suggesting its potential in preventing neuroinflammatory conditions. These outcomes support the notion that regular consumption of NMP, possibly through coffee consumption, may offer protection against neuroinflammatory states implicated in neurological disorders.


Subject(s)
Lipopolysaccharides , NF-kappa B , Neuroinflammatory Diseases , Neuroprotective Agents , Pyridinium Compounds , Signal Transduction , Humans , Neuroprotective Agents/pharmacology , NF-kappa B/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Signal Transduction/drug effects , Pyridinium Compounds/pharmacology , Cell Line, Tumor , Cytokines/metabolism
19.
Exp Neurol ; 379: 114862, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38866103

ABSTRACT

Neuroinflammation is a common pathological feature and onset in multiple cognitive disorders, including postoperative cognitive dysfunction (POCD). Iron deposition was proved to participate in this process. But how iron mediates inflammation-induced cognitive deficits remains unknown. This study aimed to investigate the mechanism of iron through the neuroprotective effect of the iron chelator deferoxamine (DFO) in a mouse model of lipopolysaccharide (LPS)-induced cognitive impairment. Adult C57BL/6 mice were pretreated with 0.5 µg of DFO three days before intracerebroventricular microinjection of 2 µg of LPS. The mice showed memory deficits by showing decreased percentage of distance and the time within the platform-site quadrant, fewer platform-site crossings, and shortened swimming distance around the platform in the Morris water maze test, which were significantly mitigated by DFO pretreatment. Mechanistically, DFO prevented LPS-induced iron accumulation and modulated the imbalance of proteins expression related to iron metabolism, including elevated transferrin (TF) levels and reduced ferritin (Fth) caused by LPS. DFO attenuated the LPS-induced lipid peroxidation and oxidative stress, which is evidenced by the decrease of malondialdehyde (MDA) and lipid peroxidation (LPO) levels and the increase of superoxide dismutase (SOD) activity and glutathione (GSH) concentration. Moreover, DFO ameliorated ferroptosis-like mitochondrial damages in the hippocampus and also alleviated the expression of ferroptosis-related proteins in the hippocampus. Additionally, DFO attenuated microglial activation, alleviated LPS-induced inflammation, and reduced elevated levels of IL-6 and TNF-α in the hippocampus. Taken together, our findings suggested that DFO exerts neuroprotective effects by alleviating excessive iron participation in lipid peroxidation, reducing the occurrence of ferroptosis, inhibiting the vicious cycle between oxidative stress and inflammation, and ultimately ameliorating LPS-induced cognitive dysfunction, providing novel insights into the immunopathogenesis of inflammation-related cognitive dysfunction and future potential prevention options targeting iron.


Subject(s)
Cognitive Dysfunction , Deferoxamine , Ferroptosis , Iron , Lipopolysaccharides , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Mice , Iron/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Deferoxamine/pharmacology , Male , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Lipid Peroxidation/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
20.
J Neuroinflammation ; 21(1): 137, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802820

ABSTRACT

Hyperglycemia has been shown to modulate the immune response of peripheral immune cells and organs, but the impact of hyperglycemia on neuroinflammation within the brain remains elusive. In the present study, we provide evidences that streptozotocin (STZ)-induced hyperglycemic condition in mice drives a phenotypic switch of brain astrocytes to a proinflammatory state, and increases brain vulnerability to mild peripheral inflammation. In particular, we found that hyperglycemia led to a significant increase in the astrocyte proliferation as determined by flow cytometric and immunohistochemical analyses of mouse brain. The increased astrocyte proliferation by hyperglycemia was reduced by Glut1 inhibitor BAY-876. Transcriptomic analysis of isolated astrocytes from Aldh1l1CreERT2;tdTomato mice revealed that peripheral STZ injection induced astrocyte reprogramming into proliferative, and proinflammatory phenotype. Additionally, STZ-induced hyperglycemic condition significantly enhanced the infiltration of circulating myeloid cells into the brain and the disruption of blood-brain barrier in response to mild lipopolysaccharide (LPS) administration. Systemic hyperglycemia did not alter the intensity and sensitivity of peripheral inflammation in mice to LPS challenge, but increased the inflammatory potential of brain microglia. In line with findings from mouse experiments, a high-glucose environment intensified the LPS-triggered production of proinflammatory molecules in primary astrocyte cultures. Furthermore, hyperglycemic mice exhibited a significant impairment in cognitive function after mild LPS administration compared to normoglycemic mice as determined by novel object recognition and Y-maze tasks. Taken together, these results demonstrate that hyperglycemia directly induces astrocyte reprogramming towards a proliferative and proinflammatory phenotype, which potentiates mild LPS-triggered inflammation within brain parenchymal regions.


Subject(s)
Astrocytes , Brain , Hyperglycemia , Lipopolysaccharides , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Hyperglycemia/chemically induced , Hyperglycemia/pathology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Mice , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Brain/pathology , Brain/metabolism , Brain/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Male , Cellular Reprogramming/drug effects , Cellular Reprogramming/physiology , Mice, Transgenic , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL