Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Eur J Pharmacol ; 973: 176587, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642667

ABSTRACT

Agonist-induced phosphorylation is a crucial step in the activation/deactivation cycle of G protein-coupled receptors (GPCRs), but direct determination of individual phosphorylation events has remained a major challenge. We have recently developed a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in 96-well plates, thus eliminating the need for western blot analysis. In the present study, we adapted this assay to three novel phosphosite-specific antibodies directed against the neurokinin 1 (NK1) receptor, namely pS338/pT339-NK1, pT344/pS347-NK1, and pT356/pT357-NK1. We found that substance P (SP) stimulated concentration-dependent phosphorylation of all three sites, which could be completely blocked in the presence of the NK1 receptor antagonist aprepitant. The other two endogenous ligands of the tachykinin family, neurokinin A (NKA) and neurokinin B (NKB), were also able to induce NK1 receptor phosphorylation, but to a much lesser extent than substance P. Interestingly, substance P promoted phosphorylation of the two distal sites more efficiently than that of the proximal site. The proximal site was identified as a substrate for phosphorylation by protein kinase C. Analysis of GPCR kinase (GRK)-knockout cells revealed that phosphorylation was mediated by all four GRK isoforms to similar extents at the T344/S347 and the T356/T357 cluster. Knockout of all GRKs resulted in abolition of all phosphorylation signals highlighting the importance of these kinases in agonist-mediated receptor phosphorylation. Thus, the 7TM phosphorylation assay technology allows for rapid and detailed analyses of GPCR phosphorylation.


Subject(s)
Receptors, Neurokinin-1 , Substance P , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-1/agonists , Phosphorylation/drug effects , Humans , Substance P/pharmacology , Animals , Immunoassay/methods , Cricetulus , CHO Cells , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin A/pharmacology , Neurokinin A/metabolism
2.
Toxins (Basel) ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668612

ABSTRACT

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.


Subject(s)
Bothrops , Crotalid Venoms , Ganglia, Spinal , Hyperalgesia , Receptors, Neurokinin-1 , Animals , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Crotalid Venoms/toxicity , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Receptors, Neurokinin-1/metabolism , Minocycline/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Microglia/drug effects , Microglia/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Rats , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Microfilament Proteins/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Rats, Sprague-Dawley
3.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542509

ABSTRACT

Traumatic brain injuries represent a leading cause of death and disability in the paediatric and adult populations. Moderate-to-severe injuries are associated with blood-brain barrier dysfunction, the development of cerebral oedema, and neuroinflammation. Antagonists of the tachykinin NK1 receptor have been proposed as potential agents for the post-injury treatment of TBI. We report on the identification of EUC-001 as a potential clinical candidate for development as a novel TBI therapy. EUC-001 is a selective NK1 antagonist with a high affinity for the human NK1 receptor (Ki 5.75 × 10-10 M). It has sufficient aqueous solubility to enable intravenous administration, whilst still retaining good CNS penetration as evidenced by its ability to inhibit the gerbil foot-tapping response. Using an animal model of TBI, the post-injury administration of EUC-001 was shown to restore BBB function in a dose-dependent manner. EUC-001 was also able to ameliorate cerebral oedema. These effects were associated with a significant reduction in post-TBI mortality. In addition, EUC-001 was able to significantly reduce functional deficits, both motor and cognitive, that normally follow a severe injury. EUC-001 is proposed as an ideal candidate for clinical development for TBI.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Animals , Humans , Child , Receptors, Neurokinin-1 , Substance P , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Brain Injuries, Traumatic/drug therapy , Infusions, Intravenous
4.
Biol Pharm Bull ; 47(3): 692-697, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38417893

ABSTRACT

Existing antiemetic therapy against emetic-risk agents across malignancies 24 h post-dose in the acute period in cisplatin (CDDP)-based regimens yields a satisfactory complete response (CR) rate of ≥90%. However, the control rate after 24 h in the delayed period is unsatisfactory. This study compared the efficacy of fosnetupitant (F-NTP), a neurokinin 1 receptor antagonist, with that of fosaprepitant (F-APR) and aprepitant (APR) in the treatment of patients with cancer at high emetic risk due to chemotherapy. In this retrospective case-control study involving patients receiving cisplatin-containing regimens and neurokinin 1 receptor antagonists, patients were divided into three groups based on prophylactic antiemetic therapy: F-NTP, F-APR, and APR. The CR rate was evaluated for each period up to 168 h and further subdivided into acute (0-24 h), delayed (24-120 h), overall (0-120 h), and beyond-delayed (120-168 h) periods. Eighty-eight patients were included in the F-NTP group, 66 in the F-APR group, and 268 in the APR group. The CR rates at 0-168 and 120-168 h after cisplatin administration were significantly higher in the F-NTP group than in the F-APR and APR groups. After adjusting for confounding factors, F-NTP use was an independent factor in the multivariate analysis. Prophylactic antiemetic therapy, including F-NTP, was effective and well-tolerated during the delayed period. The efficacy of F-NTP in managing chemotherapy-induced nausea and vomiting was superior to those of F-APR and APR during the study period.


Subject(s)
Antiemetics , Antineoplastic Agents , Morpholines , Neoplasms , Humans , Aprepitant/therapeutic use , Cisplatin/adverse effects , Emetics/adverse effects , Retrospective Studies , Case-Control Studies , Vomiting/chemically induced , Vomiting/prevention & control , Vomiting/drug therapy , Neurokinin-1 Receptor Antagonists/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neoplasms/drug therapy , Gastrointestinal Agents/therapeutic use , Antineoplastic Agents/adverse effects
5.
J Zhejiang Univ Sci B ; 25(2): 91-105, 2024 Feb 15.
Article in English, Chinese | MEDLINE | ID: mdl-38303494

ABSTRACT

Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients quality of life in several diseases and cancers.


Subject(s)
Neoplasms , Neurokinin-1 Receptor Antagonists , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Quality of Life , Substance P , Receptors, Neurokinin-1 , Neoplasms/drug therapy
6.
Eur J Med Chem ; 264: 116021, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38086194

ABSTRACT

Different studies using Aprepitant, a NK1R antagonist currently used as a clinical drug for treating chemotherapy-related nausea and vomiting, have demonstrated that pharmacological inhibition of NK1R effectively reduces the growth of several tumor types such as neuroblastoma (NB). In a previous work, we demonstrated that a series of carbohydrate-based Aprepitant analogs, derived from either d-galactose or l-arabinose, have shown high affinity and NK1R antagonistic activity with a broad-spectrum anticancer activity and an important selectivity. In this new study, we explore the selective cytotoxic effects of these derivatives for the treatment of NB. Furthermore, we describe the design and stereoselective synthesis of a new generation of d-glucose derivatives as Aprepitant analogs, supported by docking studies. This approach showed that most of our carbohydrate-based analogs are significantly more selective than Aprepitant. The galactosyl derivative 2α, has demonstrated a marked in vitro selective cytotoxic activity against NB, with IC50 values in the same range as those of Aprepitant and its prodrug Fosaprepitant. Interestingly, the derivative 2α has shown similar apoptotic effect to that of Aprepitant. Moreover, we can select the glucosyl amino derivative 10α as an interesting hit exhibiting higher in vitro cytotoxic activity against NB than Aprepitant, being 1.2 times more selective.


Subject(s)
Antiemetics , Antineoplastic Agents , Neuroblastoma , Humans , Aprepitant/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Vomiting/drug therapy , Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Carbohydrates , Antiemetics/therapeutic use
7.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958914

ABSTRACT

The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Aprepitant/pharmacology , Aprepitant/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Drug Repositioning , Quality of Life , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptors, Neurokinin-1/metabolism , Substance P/pharmacology , Substance P/metabolism , Neoplasms/drug therapy
8.
J Cell Biochem ; 124(11): 1848-1869, 2023 11.
Article in English | MEDLINE | ID: mdl-37942587

ABSTRACT

Advances in structural biology have bestowed insights into the pleiotropic effects of neurokinin 1 receptors (NK1R) in diverse patho-physiological processes, thereby highlighting the potential therapeutic value of antagonists directed against NK1R. Herein, we investigate the mode of antagonist recognition to discern the obscure atomic facets germane for the function and molecular determinants of NK1R. To commence discernment of potent antagonists and the conformational changes in NK1R, induced upon antagonist binding, state-of-the-art classical all-atoms molecular dynamics (MD) simulations in lipid mimetic bilayers have been utilized. MD simulations of structural ensembles reveals the involvement of TM5 and TM6 in tight anchoring of antagonists through a network of interhelical hydrogen-bonds, while, the extracellular loop 2 (ECL2) governs the overall size and nature of the pocket, thereby modulating NK1R. Consistent comparison between experiments and MD simulation results discerns the predominant role of TM3, TM4, and TM6 in lipid-NK1R interaction. Correlation between hydrophobic index and helicity of TM domains elucidates their importance in maintaining the structural stability in addition to regulating NK1R antagonism. Taken together, we anticipate that our computational study marks a comprehensive structural basis of NK1R antagonism in lipid bilayers, which may facilitate designing of new therapeutics against associated diseases targeting human neurokinin receptors.


Subject(s)
Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1 , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/metabolism , Molecular Dynamics Simulation , Lipids
9.
Br J Clin Pharmacol ; 89(12): 3468-3490, 2023 12.
Article in English | MEDLINE | ID: mdl-37452618

ABSTRACT

A broad-spectrum anti-vomiting effect of neurokinin1 receptor antagonists (NK1 RA), shown in pre-clinical animal studies, has been supported by a more limited range of clinical studies in different indications. However, this review suggests that compared with vomiting, the self-reported sensation of nausea is less affected or possibly unaffected (depending on the stimulus) by NK1 receptor antagonism, a common finding for anti-emetics. The stimulus-independent effects of NK1 RAs against vomiting are explicable by actions within the central pattern generator (ventral brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The central pattern generator and NTS neurones are multifunctional so the notable lack of obvious effects of NK1 RAs on other reflexes mediated by the same neurones suggests that their anti-vomiting action is dependent on the activation state of the pathway leading to vomiting. Nausea requires activation of cerebral pathways by projection of information from the NTS. Although NK1 receptors are present in cerebral nuclei implicated in nausea, and imaging studies show very high receptor occupancy at clinically used doses, the variable or limited ability of NK1 RAs to inhibit nausea emphasizes: (i) our inadequate understanding of the mechanisms of nausea; and (ii) that classification of a drug as an anti-emetic may give a false impression of efficacy against nausea vs. vomiting. We discuss the potential mechanisms for the differential efficacy of NK1 RA and the implications for future development of drugs that can effectively treat nausea, an area of unmet clinical need.


Subject(s)
Antiemetics , Antineoplastic Agents , Animals , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Vomiting/chemically induced , Vomiting/drug therapy , Nausea/chemically induced , Nausea/drug therapy , Antiemetics/pharmacology , Antiemetics/therapeutic use , Drug Development , Antineoplastic Agents/therapeutic use
10.
Biofactors ; 49(4): 900-911, 2023.
Article in English | MEDLINE | ID: mdl-37092793

ABSTRACT

Glioblastoma multiforme (GBM) is the most malignant type of cerebral neoplasm in adults with a poor prognosis. Currently, combination therapy with different anti-cancer agents is at the forefront of GBM research. Hence, this study aims to evaluate the potential anti-cancer synergy of a clinically approved neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid (5-ALA), a prodrug that elicits fluorescent porphyrins in gliomas on U-87 human GBM cells. We found that aprepitant and 5-ALA effectively inhibited GBM cell viability. The combinatorial treatment of these drugs exerted potent synergistic growth inhibitory effects on GBM cells. Moreover, aprepitant and 5-ALA induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax and P53 along with downregulation of Bcl-2). Furthermore, aprepitant and 5-ALA increased the accumulation of protoporphyrin IX, a highly pro-apoptotic and fluorescent photosensitizer. Aprepitant and 5-ALA significantly inhibited GBM cell migration and reduced matrix metalloproteinases (MMP-2 and MMP-9) activities. Importantly, all these effects were more prominent following aprepitant-5-ALA combination treatment than either drug alone. Collectively, the combination of aprepitant and 5-ALA leads to considerable synergistic anti-proliferative, pro-apoptotic, and anti-migratory effects on GBM cells and provides a firm basis for further evaluation of this combination as a novel therapeutic approach for GBM.


Subject(s)
Aminolevulinic Acid , Glioblastoma , Adult , Humans , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Aprepitant/pharmacology , Aprepitant/therapeutic use , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Cell Line, Tumor
11.
Laryngoscope ; 133(11): 2891-2897, 2023 11.
Article in English | MEDLINE | ID: mdl-36856158

ABSTRACT

OBJECTIVE: Substance P is a peptide from the tachykinin family, which is found in peripheral and central nervous systems, causing vasodilation and increased secretion in the nasal mucosa. In this study, we aimed to investigate whether the experimental model of allergic rhinitis will cause allergic changes in the larynx and to compare the effects of aprepitant, a substance P antagonist, on nasal symptoms in allergic rhinitis, and histopathological changes in the nasal and laryngeal mucosa with antihistamine and leukotriene receptor antagonists (LTRA). STUDY DESIGN: An experimental animal study. METHOD: The study was carried out on 34 healthy 8-12 weeks old female Sprague Dawley rats in 5 groups. The rats in which an experimental allergic rhinitis model was created with ovalbumin were scored by observing their nasal symptoms, and nasal and laryngeal mucous membranes included in the study were evaluated histopathologically after medications. RESULTS: As a result of the analysis of the data obtained from the study, antihistamine and LTRA significantly reduced the symptoms of nose scratching and sneezing, while aprepitant did not affect nasal symptoms. In the histopathological examination of the larynx, effects that would make a significant difference were found in the allergy group when compared to the control group. On the larynx, aprepitant reduced pseudostratification significantly compared to the allergy group. CONCLUSION: Aprepitant provides histopathological changes in the treatment of allergic rhinitis, but does not have sufficient effect on nasal symptoms. The effect of aprepitant on the larynx has not been clearly demonstrated. LEVEL OF EVIDENCE: NA Laryngoscope, 133:2891-2897, 2023.


Subject(s)
Neurokinin-1 Receptor Antagonists , Rhinitis, Allergic , Rats , Female , Animals , Ovalbumin , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Rats, Sprague-Dawley , Aprepitant/therapeutic use , Substance P/therapeutic use , Rhinitis, Allergic/chemically induced , Rhinitis, Allergic/drug therapy , Nasal Mucosa , Histamine Antagonists/therapeutic use , Disease Models, Animal
12.
Eur J Histochem ; 67(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36629320

ABSTRACT

Neurokinin-1 receptor (NK1R) belongs to tachykinin receptor family. Recent studies have suggested that NK1R was upregulated in cancer tissues including breast cancer, glioma and melanoma. Furthermore, NK1R antagonists have been employed to exert anti-tumor effect and promote cancer cell apoptosis. However, the role of NK1R in cervical cancer remains largely unknown. In this study, we aimed to detect the expression of NK1R in cervical cancer and evaluate the anti-tumor effects of NK1R antagonist on cervical cancer cells. We found that NK1R was highly expressed in cervical cancer tissues than in adjacent normal cervical tissues. Furthermore, by using NK1R antagonist we demonstrated that NK1R antagonist inhibited the viability and induced the apoptosis of cervical cancer cells in a dose-dependent manner, and the mechanism may be related to the inhibition of ERK activation and the regulation of apoptosis proteins Bcl-2 and BAX. In conclusion, these findings suggest that NK1R plays an oncogenic role in cervical cancer and is a promising target for cervical cancer therapy.


Subject(s)
Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1 , Uterine Cervical Neoplasms , Female , Humans , Apoptosis , Cell Line, Tumor , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/metabolism , Uterine Cervical Neoplasms/drug therapy
13.
Biomed Res Int ; 2022: 8082608, 2022.
Article in English | MEDLINE | ID: mdl-36177059

ABSTRACT

Background: Osteosarcoma, the most frequent osteogenic malignancy, has become a serious public health challenge due to its high morbidity rates and metastatic potential. Recently, the neurokinin-1 receptor (NK-1R) is proved to be a promising target in cancer therapy. This study is aimed at determining the effect of aprepitant, a safe and Food and Drug Administration (FDA) approved NK-1R antagonist, on osteosarcoma cell migration and metastasis, and to explore its underlying mechanism of action. Methods: Colorimetric MTT assay was employed to assess cell viability and cytotoxicity. A wound-healing assay was used to examine migration ability. The desired genes' protein and mRNA expression levels were measured by western blot assay and quantitative real-time PCR (qRT-PCR), respectively. Gelatinase activity was also measured by zymography. Results: We found that aprepitant inhibited MG-63 osteosarcoma cell viability in a dose-dependent manner. We also observed that aprepitant inhibited the migrative phenotype of osteosarcoma cells and reduced the expression levels and activities of matrix metalloproteinases (MMP-2 and MMP-9). Aprepitant also reduced the expression of an angiogenic factor, VEGF protein, and NF-κB as an important transcriptional regulator of metastasis-related genes. Conclusion: Collectively, our observations indicate that aprepitant modulates the metastatic behavior of human osteosarcoma cells, which may be applied to an effective therapeutic approach for patients with metastatic osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Angiogenesis Inducing Agents/pharmacology , Aprepitant/pharmacology , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Osteosarcoma/pathology , RNA, Messenger/genetics , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology
14.
Biomaterials ; 285: 121536, 2022 06.
Article in English | MEDLINE | ID: mdl-35533442

ABSTRACT

Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.


Subject(s)
Chronic Pain , Neurokinin-1 Receptor Antagonists , Animals , Aprepitant/pharmacology , Aprepitant/therapeutic use , Chronic Pain/drug therapy , Endosomes , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Polymers/pharmacology
15.
Proc Natl Acad Sci U S A ; 119(15): e2122682119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377814

ABSTRACT

Comparisons of G protein-coupled receptor (GPCR) complexes with agonists and antagonists based on X-ray crystallography and cryo-electron microscopy structure determinations show differences in the width of the orthosteric ligand binding groove over the range from 0.3 to 2.9 Å. Here, we show that there are transient structure fluctuations with amplitudes up to at least 6 Å. The experiments were performed with the neurokinin 1 receptor (NK1R), a GPCR of class A that is involved in inflammation, pain, and cancer. We used 19F-NMR observation of aprepitant, which is an approved drug that targets NK1R for the treatment of chemotherapy-induced nausea and vomiting. Aprepitant includes a bis-trifluoromethyl-phenyl ring attached with a single bond to the core of the molecule; 19F-NMR revealed 180° flipping motions of this ring about this bond. In the picture emerging from the 19F-NMR data, the GPCR transmembrane helices undergo large-scale floating motions in the lipid bilayer. The functional implication is of extensive promiscuity of initial ligand binding, primarily determined by size and shape of the ligand, with subsequent selection by unique interactions between atom groups of the ligand and the GPCR within the binding groove. This second step ensures the wide range of different efficacies documented for GPCR-targeting drugs. The NK1R data also provide a rationale for the observation that diffracting GPCR crystals are obtained for complexes with only very few of the ligands from libraries of approved drugs and lead compounds that bind to the receptors.


Subject(s)
Antiemetics , Aprepitant , Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1 , Antiemetics/chemistry , Antiemetics/pharmacology , Aprepitant/chemistry , Aprepitant/pharmacology , Cryoelectron Microscopy , Crystallography, X-Ray , Ligands , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/pharmacology , Protein Structure, Secondary , Receptors, Neurokinin-1/chemistry
16.
Life Sci ; 296: 120448, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35247438

ABSTRACT

Oxidative stress which refers to redox imbalance with increased generation of reactive oxygen species (ROS) has been associated with the pathophysiology of diverse disease conditions. Recently, a close, yet not fully understood, relation between oxidative stress and neuropeptides, in particular, substance P (SP), has been reported in certain conditions. SP has been shown to affect the cellular redox environment through activation of neurokinin-1receptor (NK1R). It seems that SP/NK1R system and oxidative stress can act either synergistically or antagonistically in a context-dependent manner, thereby, influencing the pathology of various clinical disorders either destructively or protectively. Importantly, the interactions between oxidative stress and SP/NK1R system can be pharmacologically targeted. Therefore, a better understanding of the redox modulatory properties of SP/NK1R signaling will pave the way for identifying new therapeutic possibilities for attenuating oxidative stress-mediated damage. Towards this end, we performed a comprehensive search through PubMed/Medline and Scopus databases and discussed all related existing literature regarding the interplay between oxidative stress and SP/NK1R system as well as their implication in various clinical disorders, to provide a clear view and hence better management of oxidative damage.


Subject(s)
Neurokinin-1 Receptor Antagonists/pharmacology , Oxidative Stress/physiology , Receptors, Neurokinin-1/metabolism , Stress, Psychological/metabolism , Substance P/metabolism , Animals , Humans , Magnesium Deficiency/metabolism , Neurokinin-1 Receptor Antagonists/therapeutic use , Oxidation-Reduction , Signal Transduction/drug effects
17.
FEBS J ; 289(16): 5021-5029, 2022 08.
Article in English | MEDLINE | ID: mdl-35175687

ABSTRACT

Neurokinin-1 receptor (NK1r) antagonists have been shown to suppress operant self-administration of alcohol, voluntary alcohol consumption and stress-induced reinstatement of alcohol-seeking behaviour. Considering the long half-life and anxiolytic-like properties of NK1r antagonist rolapitant, we expected that it may be an effective option for reducing anxiety and alcohol motivation during early withdrawal. Voluntary alcohol intake (two-bottles paradigm) was recorded in male Wistar rats during the three periods: 24 days (basal level), 6-day period when rats received 5 mg·kg-1 rolapitant or vehicle and 12-h period after repeated withdrawal episodes (alcohol cessation for 36 h). We found that upon intraperitoneal (i.p.) administration, rolapitant rapidly penetrated into specific rat brain regions - amygdala, hypothalamus and neocortex - implicated in the control of anxiety and reward. Rolapitant did not affect basal voluntary alcohol intake, but significantly suppressed anxiety-like behaviour and alcohol consumption following withdrawal episodes. Our findings suggest that rolapitant should be further investigated as a novel treatment option for relapse prevention in alcohol-dependent patients.


Subject(s)
Alcohol Drinking , Neurokinin-1 Receptor Antagonists , Alcohol Drinking/adverse effects , Alcohol Drinking/drug therapy , Animals , Anxiety/drug therapy , Ethanol , Male , Neurokinin-1 Receptor Antagonists/pharmacology , Rats , Rats, Wistar , Spiro Compounds
18.
Life Sci ; 294: 120381, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35143828

ABSTRACT

AIMS: Aprepitant, a neurokinin-1 (NK1) receptor antagonist, is a clinically approved anti-emetic drug. Recently, inhibition of the NK1 receptor has been reported as a potential nephroprotective strategy. We aimed to assess the pharmacological mechanisms of aprepitant against diclofenac (DIC)-induced renal toxicity. MAIN METHODS: An in vivo study was conducted using twenty-four male Wistar rats, divided into 4 groups. Aprepitant was administered for 5 days (5 mg/kg/day) with or without DIC which was given on the 4th and 5th days (50 mg/kg, i.p.). At the end of the study, renal function biomarkers, renal oxidative parameters, prostaglandin E (PGE-2), and NADPH oxidase (NOX-4) were measured. Histopathological changes as well as expression of renal inflammatory and apoptotic markers (tumor necrosis factor alpha (TNF-α) and caspase-3) were investigated. KEY FINDINGS: DIC caused significant renal damage, as evidenced by deterioration of renal functions, oxidative stress, inflammatory and apoptotic markers, and confirmed by histopathological findings. Pretreatment with aprepitant successfully ameliorated and improved all biochemical and molecular parameters induced by DIC. Moreover, aprepitant restored the decrease in renal PGE-2 concentration and inhibited DIC-activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling in renal tissues. SIGNIFICANCE: The protective effect of aprepitant is possibly attributed to its anti-oxidant and anti-inflammatory roles via the NOX-4/JAK/STAT pathway.


Subject(s)
Aprepitant/pharmacology , Diclofenac/toxicity , Gene Expression Regulation/drug effects , Janus Kinase 1/metabolism , NADPH Oxidase 4/metabolism , Renal Insufficiency/drug therapy , STAT3 Transcription Factor/metabolism , Animals , Cyclooxygenase Inhibitors/toxicity , Janus Kinase 1/genetics , Male , NADPH Oxidase 4/genetics , Neurokinin-1 Receptor Antagonists/pharmacology , Protective Agents/pharmacology , Rats , Rats, Wistar , Renal Insufficiency/chemically induced , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , STAT3 Transcription Factor/genetics
19.
J Allergy Clin Immunol ; 150(1): 114-130, 2022 07.
Article in English | MEDLINE | ID: mdl-35085664

ABSTRACT

BACKGROUND: Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD. Nonetheless, the role and therapeutic opportunities of targeting the NK1R in CD remain to be elucidated. OBJECTIVE: We sought to develop an Ag-specific immunosuppressive approach to treat CD by skin codelivery of hapten and NK1R antagonists integrated in dissolvable microneedle arrays (MNA). METHODS: In vivo mouse models of contact hypersensitivity and ex vivo models of human skin were used to delineate the effects and mechanisms of NK1R signaling and the immunosuppressive effects of the contact sensitizer NK1R antagonist MNA in CD. RESULTS: We demonstrated in mice that CD requires NK1R signaling by substance P and hemokinin 1. Specific deletion of the NK1R in keratinocytes and dendritic cells, but not in mast cells, prevented CD. Skin codelivery of hapten or Ag MNA inhibited neuropeptide-mediated skin inflammation in mouse and human skin, promoted deletion of Ag-specific effector T cells, and increased regulatory T cells, which prevented CD onset and relapses locally and systemically in an Ag-specific manner. CONCLUSIONS: Immunoregulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD are caused by type 1 immunity.


Subject(s)
Dermatitis, Allergic Contact , Neurokinin-1 Receptor Antagonists , Animals , Dermatitis, Allergic Contact/drug therapy , Haptens , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1 , Substance P
20.
Cell Death Dis ; 13(1): 41, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013118

ABSTRACT

Despite the great advances in target therapy, lung cancer remains the top cause of cancer-related death worldwide. G protein-coupled receptor neurokinin-1 (NK1R) is shown to play multiple roles in various cancers; however, the pathological roles and clinical implication in lung cancer are unclarified. Here we identified NK1R as a significantly upregulated GPCR in the transcriptome and tissue array of human lung cancer samples, associated with advanced clinical stages and poor prognosis. Notably, NK1R is co-expressed with epidermal growth factor receptor (EGFR) in NSCLC patients' tissues and co-localized in the tumor cells. NK1R can crosstalk with EGFR by interacting with EGFR, transactivating EGFR phosphorylation and regulating the intracellular signaling of ERK1/2 and Akt. Activation of NK1R promotes the proliferation, colony formation, EMT, MMP2/14 expression, and migration of lung cancer cells. The inhibition of NK1R by selective antagonist aprepitant repressed cell proliferation and migration in vitro. Knockdown of NK1R significantly slowed down the tumor growth in nude mice. The sensitivity of lung cancer cells to gefitinib/osimertinib is highly increased in the presence of the selective NK1R antagonist aprepitant. Our data suggest that NK1R plays an important role in lung cancer development through EGFR signaling and the crosstalk between NK1R and EGFR may provide a potential therapeutic target for lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Receptors, Neurokinin-1/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Lung Neoplasms/pathology , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Phosphorylation , Prognosis , Protein Kinase Inhibitors/pharmacology , Receptors, Neurokinin-1/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...