Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 521
Filter
1.
J Clin Invest ; 134(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38950322

ABSTRACT

Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized. Our study revealed that patients with biallelic loss of function in CIAO1 developed proximal and axial muscle weakness, fluctuating creatine kinase elevation, and respiratory insufficiency. In addition, they presented with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, mild normocytic to macrocytic anemia, and gastrointestinal symptoms. Mutational analysis revealed reduced stability of the variants compared with WT CIAO1. Functional assays demonstrated failure of the variants identified in patients to recruit Fe-S recipient proteins, resulting in compromised activities of DNA helicases, polymerases, and repair enzymes that rely on the CIA complex to acquire their Fe-S cofactors. Lentivirus-mediated restoration of CIAO1 expression reversed all patient-derived cellular abnormalities. Our study identifies CIAO1 as a human disease gene and provides insights into the broader implications of the cytosolic Fe-S assembly pathway in human health and disease.


Subject(s)
Iron-Sulfur Proteins , Humans , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Male , Female , Neuromuscular Diseases/genetics , Neuromuscular Diseases/enzymology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology , Child , Cell Nucleus/metabolism , Cell Nucleus/enzymology , Cell Nucleus/genetics , Cytoplasm/metabolism , Cytoplasm/enzymology , Metallochaperones
2.
Biochem Soc Trans ; 52(3): 1085-1098, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38716888

ABSTRACT

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.


Subject(s)
Deubiquitinating Enzymes , Humans , Animals , Deubiquitinating Enzymes/metabolism , Muscle, Skeletal/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/genetics , Neuromuscular Diseases/physiopathology , Neuromuscular Diseases/enzymology , Muscular Diseases/metabolism , Muscular Diseases/genetics , Mice , Proteostasis
3.
J Cell Mol Med ; 28(8): e18122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652110

ABSTRACT

Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.


Subject(s)
Biomarkers , Proteomics , Humans , Biomarkers/blood , Proteomics/methods , Female , Male , Adult , Neuromuscular Diseases/blood , Neuromuscular Diseases/genetics , Neuromuscular Diseases/metabolism , Middle Aged , Proteome/metabolism , Leukocytes/metabolism
4.
Cell Mol Life Sci ; 81(1): 198, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678519

ABSTRACT

Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.


Subject(s)
Genetic Therapy , Neuromuscular Diseases , Humans , Neuromuscular Diseases/therapy , Neuromuscular Diseases/genetics , Neuromuscular Diseases/metabolism , Genetic Therapy/methods , Animals
5.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554281

ABSTRACT

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Subject(s)
Cholinergic Neurons , Methyltransferases , Neuromuscular Diseases , Animals , Humans , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology
6.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958619

ABSTRACT

The Blood-Brain Barrier (BBB) is a selective structural and functional barrier between the circulatory system and the cerebral environment, playing an essential role in maintaining cerebral homeostasis by limiting the passage of harmful molecules. Exosomes, nanovesicles secreted by virtually all cell types into body fluids, have emerged as a major mediator of intercellular communication. Notably, these vesicles can cross the BBB and regulate its physiological functions. However, the precise molecular mechanisms by which exosomes regulate the BBB remain unclear. Recent research studies focused on the effect of exosomes on the BBB, particularly in the context of their involvement in the onset and progression of various cerebral disorders, including solid and metastatic brain tumors, stroke, neurodegenerative, and neuroinflammatory diseases. This review focuses on discussing and summarizing the current knowledge about the role of exosomes in the physiological and pathological modulation of the BBB. A better understanding of this regulation will improve our understanding of the pathogenesis of cerebral diseases and will enable the design of effective treatment strategies.


Subject(s)
Brain Neoplasms , Exosomes , Neuromuscular Diseases , Stroke , Humans , Blood-Brain Barrier/metabolism , Exosomes/metabolism , Stroke/metabolism , Brain Neoplasms/metabolism , Neuromuscular Diseases/metabolism
7.
J Neuromuscul Dis ; 10(5): 761-776, 2023.
Article in English | MEDLINE | ID: mdl-37522215

ABSTRACT

Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.


Subject(s)
Induced Pluripotent Stem Cells , Neuromuscular Diseases , Adult , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Muscle, Skeletal , Muscle Fibers, Skeletal/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Diseases/therapy , Neuromuscular Diseases/metabolism
8.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675000

ABSTRACT

Water transport across the biological membranes is mediated by aquaporins (AQPs). AQP4 and AQP1 are the predominantly expressed AQPs in the skeletal muscle. Since the discovery of AQP4, several studies have highlighted reduced AQP4 levels in Duchenne muscular dystrophy (DMD) patients and mouse models, and other neuromuscular disorders (NMDs) such as sarcoglycanopathies and dysferlinopathies. AQP4 loss is attributed to the destabilizing dystrophin-associated protein complex (DAPC) in DMD leading to compromised water permeability in the skeletal muscle fibers. However, AQP4 knockout (KO) mice appear phenotypically normal. AQP4 ablation does not impair physical activity in mice but limits them from achieving the performance demonstrated by wild-type mice. AQP1 levels were found to be upregulated in DMD models and are thought to compensate for AQP4 loss. Several groups investigated the expression of other AQPs in the skeletal muscle; however, these findings remain controversial. In this review, we summarize the role of AQP4 with respect to skeletal muscle function and findings in NMDs as well as the implications from a clinical perspective.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Muscular Dystrophy, Duchenne , Neuromuscular Diseases , Mice , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Neuromuscular Diseases/metabolism , Mice, Knockout , Water/metabolism , Dystrophin/metabolism
9.
mBio ; 12(6): e0271221, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781742

ABSTRACT

Poliomyelitis-like illness is a common clinical manifestation of neurotropic viral infections. Functional loss and death of motor neurons often lead to reduced muscle tone and paralysis, causing persistent motor sequelae among disease survivors. Despite several reports demonstrating the molecular basis of encephalopathy, the pathogenesis behind virus-induced flaccid paralysis remained largely unknown. The present study for the first time aims to elucidate the mechanism responsible for limb paralysis by studying clinical isolates of Japanese encephalitis virus (JEV) and Chandipura virus (CHPV) responsible for causing acute flaccid paralysis (AFP) in vast regions of Southeast Asia and the Indian subcontinent. An experimental model for studying virus-induced AFP was generated by intraperitoneal injection of 10-day-old BALB/c mice. Progressive decline in motor performance of infected animals was observed, with paralysis being correlated with death of motor neurons (MNs). Furthermore, we demonstrated that upon infection, MNs undergo an extrinsic apoptotic pathway in a RIG-I-dependent fashion via transcription factors pIRF-3 and pIRF-7. Both gene-silencing experiments using specific RIG-I-short interfering RNA and in vivo morpholino abrogated cellular apoptosis, validating the important role of pattern recognition receptor (PRR) RIG-I in MN death. Hence, from our experimental observations, we hypothesize that host innate response plays a significant role in deterioration of motor functioning upon neurotropic virus infections. IMPORTANCE Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.


Subject(s)
Central Nervous System Viral Diseases/metabolism , Central Nervous System Viral Diseases/physiopathology , DEAD Box Protein 58/metabolism , Encephalitis Virus, Japanese/physiology , Motor Neurons/cytology , Myelitis/metabolism , Myelitis/physiopathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/physiopathology , Vesiculovirus/physiology , Animals , Cell Death , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , DEAD Box Protein 58/genetics , Encephalitis Virus, Japanese/genetics , Female , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Male , Mice , Motor Activity , Motor Neurons/metabolism , Motor Neurons/virology , Myelitis/genetics , Myelitis/virology , Neuromuscular Diseases/genetics , Neuromuscular Diseases/virology , Vesiculovirus/genetics
10.
Biomolecules ; 11(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34827632

ABSTRACT

Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and ß-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.


Subject(s)
Mitochondrial Proteins/metabolism , Neuromuscular Diseases/metabolism , Animals , Electron Transport/genetics , Humans , Models, Biological , Mutation/genetics , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/enzymology , Phenotype
11.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298968

ABSTRACT

Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.


Subject(s)
Cardiomyopathies/genetics , Heart/physiopathology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Diseases/genetics , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Disease Models, Animal , Energy Metabolism , Humans , Mice , Mitochondria, Heart/metabolism , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology , Phenotype
12.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199845

ABSTRACT

Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1ß and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.


Subject(s)
Inflammasomes/metabolism , Inflammation/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuromuscular Diseases/pathology , Animals , Humans , Inflammation/complications , Inflammation/metabolism , Neuromuscular Diseases/etiology , Neuromuscular Diseases/metabolism
13.
Sci Rep ; 11(1): 12251, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112844

ABSTRACT

The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor neuron axon terminal and a muscle fibre. NMJs are thought to be the primary site of peripheral pathology in many neuromuscular diseases, but innervation/denervation status is often assessed qualitatively with poor systematic criteria across studies, and separately from 3D morphological structure. Here, we describe the development of 'NMJ-Analyser', to comprehensively screen the morphology of NMJs and their corresponding innervation status automatically. NMJ-Analyser generates 29 biologically relevant features to quantitatively define healthy and aberrant neuromuscular synapses and applies machine learning to diagnose NMJ degeneration. We validated this framework in longitudinal analyses of wildtype mice, as well as in four different neuromuscular disease models: three for amyotrophic lateral sclerosis (ALS) and one for peripheral neuropathy. We showed that structural changes at the NMJ initially occur in the nerve terminal of mutant TDP43 and FUS ALS models. Using a machine learning algorithm, healthy and aberrant neuromuscular synapses are identified with 95% accuracy, with 88% sensitivity and 97% specificity. Our results validate NMJ-Analyser as a robust platform for systematic and structural screening of NMJs, and pave the way for transferrable, and cross-comparison and high-throughput studies in neuromuscular diseases.


Subject(s)
Neuromuscular Diseases/etiology , Neuromuscular Diseases/metabolism , Neuromuscular Junction/metabolism , Animals , Biomarkers , Case-Control Studies , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Machine Learning , Mice , Mice, Knockout , Neuromuscular Diseases/diagnosis , Neuromuscular Junction/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , ROC Curve
14.
Cells ; 10(4)2021 04 06.
Article in English | MEDLINE | ID: mdl-33917450

ABSTRACT

Tripartite motif (TRIM) proteins are RING E3 ubiquitin ligases defined by a shared domain structure. Several of them are implicated in rare genetic diseases, and mutations in TRIM32 and TRIM-like malin are associated with Limb-Girdle Muscular Dystrophy R8 and Lafora disease, respectively. These two proteins are evolutionary related, share a common ancestor, and both display NHL repeats at their C-terminus. Here, we revmniew the function of these two related E3 ubiquitin ligases discussing their intrinsic and possible common pathophysiological pathways.


Subject(s)
Nervous System Diseases/metabolism , Neuromuscular Diseases/metabolism , Rare Diseases/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Humans , Nervous System Diseases/physiopathology , Neuromuscular Diseases/physiopathology , Rare Diseases/physiopathology , Signal Transduction , Tripartite Motif Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry
15.
J Clin Invest ; 131(9)2021 05 03.
Article in English | MEDLINE | ID: mdl-33755596

ABSTRACT

GDP-mannose-pyrophosphorylase-B (GMPPB) facilitates the generation of GDP-mannose, a sugar donor required for glycosylation. GMPPB defects cause muscle disease due to hypoglycosylation of α-dystroglycan (α-DG). Alpha-DG is part of a protein complex, which links the extracellular matrix with the cytoskeleton, thus stabilizing myofibers. Mutations of the catalytically inactive homolog GMPPA cause alacrima, achalasia, and mental retardation syndrome (AAMR syndrome), which also involves muscle weakness. Here, we showed that Gmppa-KO mice recapitulated cognitive and motor deficits. As structural correlates, we found cortical layering defects, progressive neuron loss, and myopathic alterations. Increased GDP-mannose levels in skeletal muscle and in vitro assays identified GMPPA as an allosteric feedback inhibitor of GMPPB. Thus, its disruption enhanced mannose incorporation into glycoproteins, including α-DG in mice and humans. This increased α-DG turnover and thereby lowered α-DG abundance. In mice, dietary mannose restriction beginning after weaning corrected α-DG hyperglycosylation and abundance, normalized skeletal muscle morphology, and prevented neuron degeneration and the development of motor deficits. Cortical layering and cognitive performance, however, were not improved. We thus identified GMPPA defects as the first congenital disorder of glycosylation characterized by α-DG hyperglycosylation, to our knowledge, and we have unraveled underlying disease mechanisms and identified potential dietary treatment options.


Subject(s)
Dystroglycans , Guanosine Diphosphate Mannose , Muscle, Skeletal/metabolism , Neuromuscular Diseases , Nucleotidyltransferases/deficiency , Animals , Dystroglycans/genetics , Dystroglycans/metabolism , Glycosylation , Guanosine Diphosphate Mannose/genetics , Guanosine Diphosphate Mannose/metabolism , Humans , Mice , Mice, Knockout , Neuromuscular Diseases/diet therapy , Neuromuscular Diseases/genetics , Neuromuscular Diseases/metabolism , Nucleotidyltransferases/metabolism
16.
Muscle Nerve ; 64(1): 23-36, 2021 07.
Article in English | MEDLINE | ID: mdl-33458861

ABSTRACT

Amyloidosis refers to an etiologically heterogeneous group of protein misfolding diseases, pathologically characterized by extracellular amyloid fibrils producing congophillic amorphous deposits in organs and tissues, which may lead to severe organ dysfunction and mortality. Clinical presentations vary and are often nonspecific, depending on what organs or tissues are affected. In systemic amyloidosis, the peripheral nervous system is commonly affected, whereas the skeletal muscles are only rarely involved. Immunoglobulin light chain (AL) amyloidosis and hereditary transthyretin (ATTRv) amyloidosis are the most frequent types of systemic amyloidosis involving the neuromuscular system. Localized amyloidosis can occur in skeletal muscle, so-called isolated amyloid myopathy. Amyloid neuropathy typically involves small myelinated and unmyelinated sensory and autonomic nerve fibers early in the course of the disease, followed by large myelinated fiber sensory and motor deficits. The relentlessly progressive nature with motor, painful sensory and severe autonomic dysfunction, profound weight loss, and systemic features are distinct characteristics of amyloid neuropathy. Amyloid myopathy presentation differs between systemic amyloidosis and isolated amyloid myopathy. Long-standing symptoms, distal predominant myopathy, markedly elevated creatine kinase level, and lack of peripheral neuropathy or systemic features are highly suggestive of isolated amyloid myopathy. In ATTR and AL amyloidosis, early treatment correlates with favorable outcomes. Therefore, awareness of these disorders and active screening for amyloidosis in patients with neuropathy or myopathy are crucial in detecting these patients in the everyday practice of neuromuscular medicine. Herein, we review the clinical manifestations of neuromuscular amyloidosis and provide a diagnostic approach to this disorder.


Subject(s)
Amyloidosis/diagnostic imaging , Amyloidosis/metabolism , Neuromuscular Diseases/diagnostic imaging , Neuromuscular Diseases/metabolism , Amyloid Neuropathies, Familial/diagnostic imaging , Amyloid Neuropathies, Familial/metabolism , Autonomic Nervous System Diseases/diagnostic imaging , Autonomic Nervous System Diseases/metabolism , Humans , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Immunoglobulin Light-chain Amyloidosis/metabolism , Muscular Diseases/diagnostic imaging , Muscular Diseases/metabolism
17.
Trends Mol Med ; 27(5): 469-481, 2021 05.
Article in English | MEDLINE | ID: mdl-33384234

ABSTRACT

Skeletal muscle formation is a complex process that requires tight spatiotemporal control of key myogenic factors. Emerging evidence suggests that RNA processing is crucial for the regulation of these factors, and that multiple post-transcriptional regulatory pathways work dependently and independently of one another to enable precise control of transcripts throughout muscle development and repair. Moreover, disruption of these pathways is implicated in neuromuscular disease, and the recent development of RNA-mediated therapies shows enormous promise in the treatment of these disorders. We discuss the overlapping post-transcriptional regulatory pathways that mediate muscle development, how these pathways are disrupted in neuromuscular disorders, and advances in RNA-mediated therapies that present a novel approach to the treatment of these diseases.


Subject(s)
Muscle Development/physiology , Muscular Diseases , Neuromuscular Diseases , RNA Processing, Post-Transcriptional , Alternative Splicing , Animals , Humans , MicroRNAs , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/etiology , Muscular Diseases/metabolism , Muscular Diseases/prevention & control , Neuromuscular Diseases/etiology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/prevention & control , Polyadenylation , RNA/metabolism
18.
Nat Commun ; 11(1): 6108, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257646

ABSTRACT

Duchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no effective cure for DMD, and the identification of novel molecular targets involved in disease progression is important to design more effective treatments and therapies to alleviate DMD symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain (BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD, the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen species (ROS) metabolism are an early event in DMD onset and they are tightly linked to inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial effect on muscle function. BRD4 direct association to chromatin regulatory regions of the NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4 and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that BET inhibitors may ameliorate the pathophysiology of DMD.


Subject(s)
Muscular Dystrophy, Duchenne/metabolism , Nuclear Proteins/metabolism , Oxidative Stress/drug effects , Transcription Factors/metabolism , Animals , Azepines/pharmacology , Disease Models, Animal , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , NADP , NADPH Oxidases/metabolism , Neuromuscular Diseases/metabolism , Nuclear Proteins/drug effects , Reactive Oxygen Species/metabolism , Transcription Factors/drug effects , Triazoles/pharmacology
19.
Skelet Muscle ; 10(1): 32, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33190635

ABSTRACT

The RYR1 gene, which encodes the sarcoplasmic reticulum calcium release channel or type 1 ryanodine receptor (RyR1) of skeletal muscle, was sequenced in 1988 and RYR1 variations that impair calcium homeostasis and increase susceptibility to malignant hyperthermia were first identified in 1991. Since then, RYR1-related myopathies (RYR1-RM) have been described as rare, histopathologically and clinically heterogeneous, and slowly progressive neuromuscular disorders. RYR1 variants can lead to dysfunctional RyR1-mediated calcium release, malignant hyperthermia susceptibility, elevated oxidative stress, deleterious post-translational modifications, and decreased RyR1 expression. RYR1-RM-affected individuals can present with delayed motor milestones, contractures, scoliosis, ophthalmoplegia, and respiratory insufficiency.Historically, RYR1-RM-affected individuals were diagnosed based on morphologic features observed in muscle biopsies including central cores, cores and rods, central nuclei, fiber type disproportion, and multi-minicores. However, these histopathologic features are not always specific to RYR1-RM and often change over time. As additional phenotypes were associated with RYR1 variations (including King-Denborough syndrome, exercise-induced rhabdomyolysis, lethal multiple pterygium syndrome, adult-onset distal myopathy, atypical periodic paralysis with or without myalgia, mild calf-predominant myopathy, and dusty core disease) the overlap among diagnostic categories is ever increasing. With the continuing emergence of new clinical subtypes along the RYR1 disease spectrum and reports of adult-onset phenotypes, nuanced nomenclatures have been reported (RYR1- [related, related congenital, congenital] myopathies). In this narrative review, we provide historical highlights of RYR1 research, accounts of the main diagnostic disease subtypes and propose RYR1-related disorders (RYR1-RD) as a unified nomenclature to describe this complex and evolving disease spectrum.


Subject(s)
Neuromuscular Diseases/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Humans , Neuromuscular Diseases/genetics , Neuromuscular Diseases/pathology , Phenotype , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/standards , Terminology as Topic
20.
Nat Commun ; 11(1): 4625, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934225

ABSTRACT

A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway-Ribosome-associated Quality Control (RQC)-by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF's role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


Subject(s)
Neuromuscular Diseases/metabolism , Ribosomes/metabolism , Amino Acid Sequence , Animals , Female , Humans , Male , Mice , Mice, Knockout , Mutation , Neuromuscular Diseases/genetics , Neuromuscular Diseases/pathology , Proteolysis , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...