Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Med Genet A ; 185(4): 1182-1186, 2021 04.
Article in English | MEDLINE | ID: mdl-33381903

ABSTRACT

The heterozygous deletion of 15q13.3 is a recurrently observed microdeletion syndrome associated with a relatively mild phenotype including learning disability and language impairment. In contrast, the homozygous deletion of 15q13.3 is extremely rare and is associated with a much severer phenotype that includes epileptic encephalopathy, profound intellectual disability, and hypotonia. Which of the genes within the deleted interval is responsible for the more severe features when biallelically deleted is currently unknown. Here, we report a patient with profound hypotonia, severe intellectual disability, and seizures who had biallelic loss-of-function variants in OTUD7A: a 15q13.3 deletion including the OTUD7A locus, and a frameshift OTUD7A variant c.1125del, p.(Glu375Aspfs*11). Unexpectedly, both aberrations occurred de novo. Our experiment using Caenorhabditis elegans showed that worms carrying a corresponding homozygous variant in the homolog OTUB-2 exhibited weakened muscle contraction suggestive of aberrant neuromuscular transmission. We concluded that the biallelic complete loss of OTUD7A in humans represents a presumably new autosomal recessive disorder characterized by profound hypotonia, severe intellectual disability, and seizures.


Subject(s)
Deubiquitinating Enzymes/genetics , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Neuromuscular Junction Diseases/embryology , Animals , Caenorhabditis elegans/genetics , Child, Preschool , Frameshift Mutation/genetics , Homozygote , Humans , Intellectual Disability/complications , Intellectual Disability/physiopathology , Loss of Heterozygosity/genetics , Male , Muscle Contraction/genetics , Muscle Contraction/physiology , Muscle Hypotonia/physiopathology , Neuromuscular Junction Diseases/complications , Neuromuscular Junction Diseases/genetics , Neuromuscular Junction Diseases/physiopathology , Seizures/complications , Seizures/genetics , Seizures/physiopathology , Thiolester Hydrolases/genetics
2.
J Neurosci ; 21(9): 3144-50, 2001 May 01.
Article in English | MEDLINE | ID: mdl-11312299

ABSTRACT

Approximately half of the motoneurons produced during development die before birth or shortly after birth. Although it is believed that survival depends on a restricted supply of a trophic sustenance produced by the synaptic target tissue (i.e., muscle), it is unclear whether synapse formation per se is involved in motoneuron survival. To address this issue, we counted cranial motoneurons in a set of mutant mice in which formation of neuromuscular junctions is dramatically impaired (i.e., null mutants for agrin, nerve-derived agrin, rapsyn, and MuSK). We demonstrate that in the absence of synaptogenesis, there is an 18-34% increase in motoneuron survival in the facial, trochlear, trigeminal motor, and hypoglossal nuclei; the highest survival occurred in the MuSK-deficient animals in which synapse formation is most severely compromised. There was no change in the size of the mutant motoneurons as compared with control animals, and the morphology of the mutant motoneurons appeared normal. We postulate that the increased axonal branching observed in these mutants leads to a facilitated "access" of the motoneurons to muscle-derived trophic factors at sites other than synapses or that inactivity increases the production of such factors. Finally, we examined motoneurons in double mutants of CNTFRalpha(-/-) (in which there is a partial loss of motoneurons) and MuSK(-/-) (in which there is an increased survival of motoneurons). The motoneuron numbers in the double mutants parallel those of the single MuSK-deficient mice, indicating that synapse disruption can even overcome the deleterious effect of CNTFRalpha ablation.


Subject(s)
Motor Neurons/metabolism , Neuromuscular Junction Diseases/metabolism , Neuromuscular Junction Diseases/pathology , Neuromuscular Junction/pathology , Receptors, Cholinergic , Agrin/deficiency , Agrin/genetics , Animals , Animals, Newborn , Axons/pathology , Cell Count , Cell Survival/genetics , Cranial Nerves/cytology , Cranial Nerves/embryology , Mice , Mice, Mutant Strains , Motor Neurons/cytology , Muscle Proteins/deficiency , Muscle Proteins/genetics , Neuromuscular Junction/embryology , Neuromuscular Junction/genetics , Neuromuscular Junction Diseases/embryology , Neuromuscular Junction Diseases/genetics , Protein Isoforms/deficiency , Protein Isoforms/genetics , Receptor Protein-Tyrosine Kinases/deficiency , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Ciliary Neurotrophic Factor/deficiency , Receptor, Ciliary Neurotrophic Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...