Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.569
Filter
1.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727714

ABSTRACT

Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.


Subject(s)
Neuropeptides , Phylogeny , Receptors, G-Protein-Coupled , Sea Anemones , Animals , Sea Anemones/genetics , Neuropeptides/metabolism , Neuropeptides/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction
2.
Sci Rep ; 14(1): 10863, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740831

ABSTRACT

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Subject(s)
Cricetulus , Kinins , Neuropeptides , Peristalsis , Animals , Kinins/metabolism , CHO Cells , Neuropeptides/metabolism , Neuropeptides/genetics , Muscles/metabolism , Muscles/physiology , Ticks/metabolism , Ticks/physiology , Rhipicephalus/metabolism , Rhipicephalus/physiology , Rhipicephalus/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/genetics
3.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691185

ABSTRACT

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Subject(s)
Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
4.
Methods Mol Biol ; 2757: 531-581, 2024.
Article in English | MEDLINE | ID: mdl-38668982

ABSTRACT

Experimental discovery of neuropeptides and peptide hormones is a long and tedious task. Mining the genomic and transcriptomic sequence data with robust secretory peptide prediction tools can significantly facilitate subsequent experiments. We describe the application of various in silico neuropeptide discovery methods for the placozoan Trichopax adhaerens as an illustrated example and a powerful experimental paradigm for cellular and evolutionary biology. In total, 33 placozoan (neuro)peptide-like hormone precursors were found using homology-based BLAST search and repeat-based and comparative evolutionary methods. Some of the discovered precursors are homologous to insulins and RFamide precursors from Cnidaria and other animal phyla.


Subject(s)
Computational Biology , Neuropeptides , Placozoa , Animals , Computational Biology/methods , Placozoa/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Amino Acid Sequence , Phylogeny , Evolution, Molecular
5.
BMC Genomics ; 25(1): 337, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38641568

ABSTRACT

BACKGROUND: Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS: In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION: Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.


Subject(s)
Neuropeptides , Polychaeta , Humans , Animals , Larva/genetics , HEK293 Cells , Polychaeta/genetics , Neuropeptides/genetics , Neuropeptides/chemistry , Gene Expression Profiling
6.
Nat Commun ; 15(1): 3514, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664401

ABSTRACT

Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.


Subject(s)
Eating , Enteroendocrine Cells , Glutamic Acid , Neuropeptides , Peptide YY , Animals , Enteroendocrine Cells/metabolism , Female , Neuropeptides/metabolism , Neuropeptides/genetics , Eating/physiology , Peptide YY/metabolism , Glutamic Acid/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Feeding Behavior/physiology , Receptors, Metabotropic Glutamate/metabolism , Dopaminergic Neurons/metabolism , Diet
7.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597092

ABSTRACT

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Subject(s)
Neuropeptides , Rhodnius , Triatoma , Animals , Rhodnius/genetics , Rhodnius/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Transcriptome , Molting
8.
Pestic Biochem Physiol ; 200: 105840, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582602

ABSTRACT

CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 µM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 µM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.


Subject(s)
Hemiptera , Neuropeptides , Animals , Peptides/metabolism , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/metabolism , Signal Transduction , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hemiptera/genetics , Hemiptera/metabolism
9.
J Proteome Res ; 23(5): 1757-1767, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38644788

ABSTRACT

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.


Subject(s)
Amino Acid Sequence , Nephropidae , Neuropeptides , Proteomics , Animals , Nephropidae/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Neuropeptides/analysis , Proteomics/methods , Mass Spectrometry , Molecular Sequence Data
10.
J Agric Food Chem ; 72(18): 10304-10313, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657164

ABSTRACT

Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.


Subject(s)
Insect Proteins , Larva , Neuropeptides , Spodoptera , Animals , Spodoptera/physiology , Spodoptera/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Neuropeptides/chemistry , Larva/growth & development , Larva/metabolism , Larva/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Flavones/metabolism , Flavones/chemistry , Feeding Behavior , Amino Acid Sequence
11.
J Physiol Biochem ; 80(2): 451-463, 2024 May.
Article in English | MEDLINE | ID: mdl-38564162

ABSTRACT

The physical and functional interaction between transient receptor potential channel ankyrin 1 (TRPA1) and neuronal calcium sensor 1 (NCS-1) was assessed. NCS-1 is a calcium (Ca2+) sensor found in many tissues, primarily neurons, and TRPA1 is a Ca2+ channel involved not only in thermal and pain sensation but also in conditions such as cancer and chemotherapy-induced peripheral neuropathy, in which NCS-1 is also a regulatory component.We explored the interactions between these two proteins by employing western blot, qRT-PCR, co-immunoprecipitation, Ca2+ transient monitoring with Fura-2 spectrophotometry, and electrophysiology assays in breast cancer cells (MDA-MB-231) with different levels of NCS-1 expression and neuroblastoma cells (SH-SY5Y).Our findings showed that the expression of TRPA1 was directly correlated with NCS-1 levels at both the protein and mRNA levels. Additionally, we found a physical and functional association between these two proteins. Physically, the NCS-1 and TRPA1 co-immunoprecipitate. Functionally, NCS-1 enhanced TRPA1-dependent Ca2+ influx, current density, open probability, and conductance, where the functional effects depended on PI3K. Conclusion: NCS-1 appears to act not only as a Ca2+ sensor but also modulates TRPA1 protein expression and channel function in a direct fashion through the PI3K pathway. These results contribute to understanding how Ca2+ homeostasis is regulated and provides a mechanism underlying conditions where Ca2+ dynamics are compromised, including breast cancer. With a cellular pathway identified, targeted treatments can be developed for breast cancer and neuropathy, among other related diseases.


Subject(s)
Breast Neoplasms , Neuronal Calcium-Sensor Proteins , Neurons , Neuropeptides , Phosphatidylinositol 3-Kinases , TRPA1 Cation Channel , Humans , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Neuronal Calcium-Sensor Proteins/metabolism , Neuronal Calcium-Sensor Proteins/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Neurons/metabolism , Neurons/drug effects , Neuropeptides/metabolism , Neuropeptides/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Calcium/metabolism , Calcium Signaling
12.
Curr Biol ; 34(7): 1532-1540.e4, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38490200

ABSTRACT

The Hypocretin/Orexin signaling pathway suppresses sleep and promotes arousal, whereas the loss of Hypocretin/Orexin results in narcolepsy, including the involuntary loss of muscle tone (cataplexy).1 Here, we show that the South Asian fish species Chromobotia macracanthus exhibits a sleep-like state during which individuals stop swimming and rest on their side. Strikingly, we discovered that the Hypocretin/Orexin system is pseudogenized in C. macracanthus, but in contrast to Hypocretin-deficient mammals, C. macracanthus does not suffer from sudden behavioral arrests. Similarly, zebrafish mutations in hypocretin/orexin show no evident signs of cataplectic-like episodes. Notably, four additional species in the Botiidae family also lack a functional Hypocretin/Orexin system. These findings identify the first vertebrate family that does not rely on a functional Hypocretin/Orexin system for the regulation of sleep and arousal.


Subject(s)
Cataplexy , Fishes , Narcolepsy , Neuropeptides , Animals , Arousal/physiology , Mammals , Neuropeptides/genetics , Neuropeptides/metabolism , Orexins/genetics , Zebrafish/genetics , Zebrafish/metabolism
13.
Methods Mol Biol ; 2758: 151-178, 2024.
Article in English | MEDLINE | ID: mdl-38549013

ABSTRACT

Neuropeptides and peptide hormones are signaling molecules produced via complex posttranslational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a well-validated methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.


Subject(s)
Neuropeptides , Proteomics , Gene Expression Profiling , Hormones/metabolism , Computational Biology/methods , Neuropeptides/genetics , Neuropeptides/metabolism
14.
J Vet Med Sci ; 86(5): 497-506, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38479882

ABSTRACT

The study aimed to investigate the effect of Grid1, encoding the glutamate ionotropic receptor delta type subunit 1 (GluD1), on puberty onset in female rats. Grid1 mRNA and protein expression was detected in the hypothalamus of female rats at prepuberty and puberty. The levels of Grid1 mRNA in the hypothalamus, the fluorescence intensity in the arcuate nucleus and paraventricular nucleus of the prepubertal rats was significantly lower than pubertal. Additionally, the expression of Grid1 was suppressed in primary hypothalamus cells and prepubertal rat. Finally, investigated the effect of Grid1 knockdown on puberty onset and reproductive performance. Treatment of hypothalamic neurons with LV-Grid1 decreased the level of Grid1 and Rfrp-3 (encoding RFamide-related peptide 3) mRNA expression, but increased the Gnrh (encoding gonadotropin-releasing hormone) mRNA levels. After an ICV injection, the time for the rat vaginal opening occurred earlier. Moreover, Gnrh mRNA expression was increased, whereas Rfrp-3 mRNA expression was decreased in the hypothalamus. The concentration of progesterone (P4) in the serum was significantly decreased compare with control group. Ovary hematoxylin-eosin staining revealed that the LV-Grid1 group mainly contained primary and secondary follicles. The reproductive performance of the rats was not affected by the Grid1 knockdown. Therefore, Grid1 may affect the onset of puberty in female rats by regulating the levels of Gnrh, and Rfrp-3 in the hypothalamus, as well as the concentrations of P4, but not reproduction performance.


Subject(s)
Gonadotropin-Releasing Hormone , Hypothalamic Hormones , Hypothalamus , Sexual Maturation , Animals , Female , Sexual Maturation/physiology , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Rats , Hypothalamus/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Progesterone/blood , Progesterone/metabolism , Rats, Sprague-Dawley , Neurons/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
15.
Arch Insect Biochem Physiol ; 115(2): e22094, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409857

ABSTRACT

The predatory stink bug Arma custos has been selected as an effective biological control agent and has been successfully massly bred and released into fields for the control of a diverse insect pests. As a zoophytophagous generalist, A. custos relies on a complex neuropeptide signaling system to prey on distinct food and adapt to different environments. However, information about neuropeptide signaling genes in A. custos has not been reported to date. In the present study, a total of 57 neuropeptide precursor transcripts and 41 potential neuropeptide G protein-coupled receptor (GPCR) transcripts were found mainly using our sequenced transcriptome data. Furthermore, a number of neuropeptides and their GPCR receptors that were enriched in guts and salivary glands of A. custos were identified, which might play critical roles in feeding and digestion. Our study provides basic information for an in-depth understanding of biological and ecological characteristics of the predatory bug and would aid in the development of better pest management strategies based on the effective utilization and protection of beneficial natural enemies.


Subject(s)
Hemiptera , Heteroptera , Neuropeptides , Animals , Heteroptera/genetics , Receptors, G-Protein-Coupled/genetics , Neuropeptides/genetics
16.
Neural Dev ; 19(1): 3, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383501

ABSTRACT

BACKGROUND: The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS: Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS: The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS: Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.


Subject(s)
Annelida , Neuropeptides , Polychaeta , Animals , Phylogeny , Annelida/anatomy & histology , Annelida/genetics , Nervous System/metabolism , Polychaeta/anatomy & histology , Polychaeta/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Larva
17.
Mol Cell Endocrinol ; 586: 112192, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38408601

ABSTRACT

Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.


Subject(s)
Neuropeptides , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/genetics , Invertebrates/genetics , Vertebrates , Neuropeptides/genetics , Mollusca/genetics , Ligands , Evolution, Molecular , Phylogeny
18.
Mol Cell Endocrinol ; 584: 112162, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38290646

ABSTRACT

Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Neuropeptides , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Phylogeny , Peptides , Glycoproteins , Neurosecretory Systems/metabolism , Hormones , Caenorhabditis elegans Proteins/genetics
19.
Peptides ; 173: 171153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220091
20.
Am J Respir Cell Mol Biol ; 70(4): 308-321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271699

ABSTRACT

Alveolar septation increases gas-exchange surface area and requires coordinated cytoskeletal rearrangement in lung fibroblasts (LFs) to balance the demands of contraction and cell migration. We hypothesized that DBN (drebrin), a modulator of the actin cytoskeleton in neuronal dendrites, regulates the remodeling of the LF cytoskeleton. Using mice bearing a transgelin-Cre-targeted deletion of Dbn in pulmonary fibroblasts and pericytes, we examined alterations in alveolar septal outgrowth, LF spreading and migration, and actomyosin function. The alveolar surface area and number of alveoli were reduced, whereas alveolar ducts were enlarged, in mice bearing the dbn deletion (DBNΔ) compared with their littermates bearing only one dbn-Flox allele (control). Cultured DBNΔ LFs were deficient in their responses to substrate rigidity and migrated more slowly. Drebrin was abundant in the actin cortex and lamella, and the actin fiber orientation was less uniform in lamella of DBNΔ LFs, which limited the development of traction forces and altered focal adhesion dynamics. Actin fiber orientation is regulated by contractile NM2 (nonmuscle myosin-2) motors, which help arrange actin stress fibers into thick ventral actin stress fibers. Using fluorescence anisotropy, we observed regional intracellular differences in myosin regulatory light chain phosphorylation in control LFs that were altered by dbn deletion. Using perturbations to induce and then release stalling of NM2 on actin in LFs from both genotypes, we made predictions explaining how DBN interacts with actin and NM2. These studies provide new insight for diseases such as emphysema and pulmonary fibrosis, in which fibroblasts inappropriately respond to mechanical cues in their environment.


Subject(s)
Actins , Neuropeptides , Mice , Animals , Actins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Lung/metabolism , Actin Cytoskeleton/metabolism , Myosin Light Chains/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...