Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
J Mol Cell Cardiol ; 164: 69-82, 2022 03.
Article in English | MEDLINE | ID: mdl-34838588

ABSTRACT

The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , SARS-CoV-2 , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Clinical Trials as Topic , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , HMGB1 Protein/physiology , Humans , Macaca mulatta , Mice , Neuropilin-1/physiology , Oxidative Stress , Reactive Oxygen Species , Receptors, Virus/physiology , Scavenger Receptors, Class B/physiology , Severity of Illness Index , Signal Transduction , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/physiopathology , Thrombophilia/etiology , Thrombophilia/physiopathology , Vascular Endothelial Growth Factor A/physiology , Vasculitis/etiology , Vasculitis/immunology , Vasculitis/physiopathology , Young Adult
2.
Sci Rep ; 11(1): 15767, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344941

ABSTRACT

The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.


Subject(s)
Adipose Tissue, Brown/physiology , Homeostasis , Myeloid Cells/metabolism , Neuropilin-1/physiology , Obesity/prevention & control , Thermogenesis , Animals , Diet/adverse effects , Energy Metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Obesity/pathology
3.
Aging (Albany NY) ; 13(12): 15770-15784, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168096

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), and is highly contagious and pathogenic. TMPRSS2 and Neuropilin-1, the key components that facilitate SARS-CoV-2 infection, are potential targets for treatment of COVID-19. Here we performed a comprehensive analysis on NRP1 and TMPRSS2 in lung to provide information for treating comorbidity of COVID-19 with lung cancer. NRP1 is widely expressed across all the human tissues while TMPRSS2 is expressed in a restricted pattern. High level of NRP1 associates with worse prognosis in multiple cancers, while high level of TMPRSS2 is associated with better survival of Lung Adenocarcinoma (LUAD). Moreover, NRP1 positively correlates with the oncogenic Cancer Associated Fibroblast (CAF), macrophage and endothelial cells infiltration, negatively correlates with infiltration of CD8+ T cell, the tumor killer cell in Lung Squamous cell carcinoma (LUSC). TMPRSS2 shows negative correlation with the oncogenic events in LUAD. RNA-seq data show that NRP1 level is slightly decreased in peripheral blood of ICU admitted COVID-19 patients, unaltered in lung, while TMPRSS2 level is significantly decreased in lung of COVID-19 patients. Our analysis suggests NRP1 as a potential therapeutic target, while sets an alert on targeting TMPRSS2 for treating comorbidity of COVID-19 and lung cancers.


Subject(s)
Adenocarcinoma of Lung/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neuropilin-1/physiology , Serine Endopeptidases/physiology , Adenocarcinoma of Lung/mortality , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , COVID-19/metabolism , Cancer-Associated Fibroblasts/metabolism , Computer Simulation , Endothelial Cells/metabolism , Humans , Lung Neoplasms/mortality , Macrophages/metabolism , Neuropilin-1/genetics , RNA-Seq , SARS-CoV-2 , Serine Endopeptidases/genetics
5.
Mol Neurobiol ; 58(6): 2465-2480, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33439437

ABSTRACT

The recent outbreak of SARS-CoV-2 infections that causes coronavirus-induced disease of 2019 (COVID-19) is the defining and unprecedented global health crisis of our time in both the scale and magnitude. Although the respiratory tract is the primary target of SARS-CoV-2, accumulating evidence suggests that the virus may also invade both the central nervous system (CNS) and the peripheral nervous system (PNS) leading to numerous neurological issues including some serious complications such as seizures, encephalitis, and loss of consciousness. Here, we present a comprehensive review of the currently known role of SARS-CoV-2 and identify all the neurological problems reported among the COVID-19 case reports throughout the world. The virus might gain entry into the CNS either through the trans-synaptic route via the olfactory neurons or through the damaged endothelium in the brain microvasculature using the ACE2 receptor potentiated by neuropilin-1 (NRP-1). The most critical of all symptoms appear to be the spontaneous loss of breathing in some COVID-19 patients. This might be indicative of a dysfunction within the cardiopulmonary regulatory centers in the brainstem. These pioneering studies, thus, lay a strong foundation for more in-depth basic and clinical research required to confirm the role of SARS-CoV-2 infection in neurodegeneration of critical brain regulatory centers.


Subject(s)
COVID-19/complications , Central Nervous System Diseases/etiology , Peripheral Nervous System Diseases/etiology , SARS-CoV-2 , Adult , Age Factors , Angiotensin-Converting Enzyme 2/metabolism , Brain/virology , COVID-19/epidemiology , COVID-19/physiopathology , Cardiovascular Diseases/epidemiology , Central Nervous System Diseases/diagnostic imaging , Central Nervous System Diseases/physiopathology , Child , Comorbidity , Diabetes Mellitus/epidemiology , Endothelial Cells/pathology , Female , Humans , Kidney Diseases/etiology , Liver Diseases/etiology , Male , Nerve Tissue Proteins/metabolism , Neuroimaging , Neuropilin-1/physiology , Obesity/epidemiology , Organ Specificity , Peripheral Nervous System Diseases/physiopathology , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism
6.
Oncogene ; 40(4): 777-790, 2021 01.
Article in English | MEDLINE | ID: mdl-33262463

ABSTRACT

Metastasis remains the major obstacle to improved survival for breast cancer patients. Downregulation of FOXO3a transcription factor in breast cancer is causally associated with the development of metastasis through poorly understood mechanisms. Here, we report that FOXO3a is functionally related to the inhibition of VEGF-A/NRP1 signaling and to the consequent suppression of breast cancer metastasis. We show that FOXO3a directly induces miR-29b-2 and miR-338 expression. Ectopic expression of miR-29b-2/miR-338 significantly suppresses EMT, migration/invasion, and in vivo metastasis of breast cancer. Moreover, we demonstrate that miR-29b-2 directly targets VEGF-A while miR-338 directly targets NRP1, and show that regulation of miR-29b-2 and miR-338 mediates the ability of FOXO3a to suppress VEGF-A/NRP1 signaling and breast cancer metastasis. Clinically, our results show that the FOXO3a-miR-29b-2/miR-338-VEGF-A/NRP1 axis is dysregulated and plays a critical role in disease progression in breast cancer. Collectively, our findings propose that FOXO3a functions as a metastasis suppressor, and define a novel signaling axis of FOXO3a-miRNA-VEGF-A/NRP1 in breast cancer, which might be potential therapeutic targets for breast cancer.


Subject(s)
Breast Neoplasms/pathology , Forkhead Box Protein O3/physiology , MicroRNAs/physiology , Neuropilin-1/physiology , Vascular Endothelial Growth Factor A/physiology , Adult , Aged , Animals , Cell Line, Tumor , Female , Humans , Mice , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Signal Transduction/physiology
7.
Neoplasma ; 68(2): 325-333, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33350850

ABSTRACT

It is generally believed that the existence of cancer stem cells (CSCs) is related to tumor recurrence and metastasis of hepatocellular carcinoma (HCC). Neuropilin1 (NRP1) is involved in numerous pathophysiological processes of tumor progression, however, whether NRP1 is involved in the regulation of liver CSCs and metastasis of HCC is still unknown. In the present study, we examined the effect of NRP1 on the population of liver CSCs and the metastasis mechanism of HCC. In NRP1 small hairpin RNA (shRNA)-transduced HCC cells, liver CSCs surface markers (CD133+/ EpCAM+/CD13+/CD44+) expressing cells, which imply the CSCs population, were decreased. Transwell assay and nude mouse liver orthotopic transplantation model confirmed that NRP1 knockdown inhibited HCC cells' migration and lung metastasis. Our data showed that the expression of NRP1 was upregulated in 5 independent cohorts of HCC patients, consequently, high levels of NRP1 correlated with recurrence and poor prognosis in HCC. Mechanism research showed that NRP1 promotes cell spreading through the epithelial-mesenchymal transition (EMT) signaling pathway. In summary, NRP1 enhanced the population of liver CSCs and migration of HCC via EMT, indicating that NRP1 might be a novel target for HCC treatments.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neuropilin-1/physiology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/secondary , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Neuropilin-1/genetics
8.
Med Hypotheses ; 146: 110406, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33246692

ABSTRACT

Three mechanisms have been proposed to account for COVID-19 associated olfactory dysfunction; obstruction of the olfactory cleft; epithelial injury and infection of the sustentacular supporting cells, which are known to express ACE2, or injury to the olfactory bulb due to axonal transport through olfactory sensory neurones. The absence of ACE2 expression by olfactory sensory neurones has led to the neurotropic potential of COVID-19 to be discounted. While an accumulating body of evidence supports olfactory epithelial injury as an important mechanism, this does not account for all the features of olfactory dysfunction seen in COVID-19; for example the duration of loss in some patients, evidence of changes within the olfactory bulb on MRI imaging, identification of viral particles within the olfactory bulb in post-mortem specimens and the inverse association between severity of COVID-19 and the prevalence of olfactory loss. The recent identification of a second route of viral entry mediated by NRP1 addresses many of these inconsistencies. Expression by the olfactory sensory neurones and their progenitor cells may facilitate direct injury and axonal transport to the olfactory bulb as well as a mechanism for delayed or absent recovery. Expression by regulatory T cells may play a central role in the cytokine storm. Variability in expression by age, race or gender may explain differing morbidity of infection and inverse association between anosmia and severity; in the case of higher expression there may be a higher risk of olfactory function but greater activation of regulatory T cells that may suppress the cytokine storm.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/complications , COVID-19/physiopathology , Models, Biological , Neuropilin-1/physiology , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , SARS-CoV-2 , Anosmia/etiology , Anosmia/physiopathology , COVID-19/virology , Humans , Magnetic Resonance Imaging , Olfaction Disorders/virology , Olfactory Bulb/diagnostic imaging , Olfactory Bulb/physiopathology , Olfactory Mucosa/injuries , Olfactory Mucosa/physiopathology , Olfactory Mucosa/virology , Olfactory Receptor Neurons/physiology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Smell/physiology , T-Lymphocytes, Regulatory/immunology , Virus Internalization
9.
BMC Cancer ; 20(1): 1213, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33302912

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS: GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS: Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS: These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.


Subject(s)
Brain Neoplasms/pathology , ErbB Receptors/genetics , Genes, erbB-1 , Glioblastoma/pathology , Glioma/pathology , Neoplasm Proteins/physiology , Semaphorin-3A/physiology , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Genetic Vectors/genetics , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/genetics , Glioma/metabolism , Heterografts , Humans , Lentivirus/genetics , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neuropilin-1/biosynthesis , Neuropilin-1/genetics , Neuropilin-1/physiology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/physiology , Specific Pathogen-Free Organisms
10.
Elife ; 92020 11 09.
Article in English | MEDLINE | ID: mdl-33164751

ABSTRACT

Pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 19 disease (COVID-19) which presents a large spectrum of manifestations with fatal outcomes in vulnerable people over 70-years-old and with hypertension, diabetes, obesity, cardiovascular disease, COPD, and smoking status. Knowledge of the entry receptor is key to understand SARS-CoV-2 tropism, transmission and pathogenesis. Early evidence pointed to angiotensin-converting enzyme 2 (ACE2) as SARS-CoV-2 entry receptor. Here, we provide a critical summary of the current knowledge highlighting the limitations and remaining gaps that need to be addressed to fully characterize ACE2 function in SARS-CoV-2 infection and associated pathogenesis. We also discuss ACE2 expression and potential role in the context of comorbidities associated with poor COVID-19 outcomes. Finally, we discuss the potential co-receptors/attachment factors such as neuropilins, heparan sulfate and sialic acids and the putative alternative receptors, such as CD147 and GRP78.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/virology , Virus Attachment , Angiotensin-Converting Enzyme 2 , Basigin/physiology , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Enzymologic , Heparitin Sulfate/physiology , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Neuropilin-1/physiology , Oligopeptides/physiology , Organ Specificity , Pandemics , Pneumonia, Viral/epidemiology , Protein Binding , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Virus , Renin-Angiotensin System/physiology , Respiratory System/enzymology , SARS-CoV-2 , Sialic Acids/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization
11.
J Neurosci ; 40(43): 8248-8261, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33009002

ABSTRACT

Reelin plays versatile roles in neocortical development. The C-terminal region (CTR) of Reelin is required for the correct formation of the superficial structure of the neocortex; however, the mechanisms by which this position-specific effect occurs remain largely unknown. In this study, we demonstrate that Reelin with an intact CTR binds to neuropilin-1 (Nrp1), a transmembrane protein. Both male and female mice were used. Nrp1 is localized with very-low-density lipoprotein receptor (VLDLR), a canonical Reelin receptor, in the superficial layers of the developing neocortex. It forms a complex with VLDLR, and this interaction is modulated by the alternative splicing of VLDLR. Reelin with an intact CTR binds more strongly to the VLDLR/Nrp1 complex than to VLDLR alone. Knockdown of Nrp1 in neurons leads to the accumulation of Dab1 protein. Since the degradation of Dab1 is induced by Reelin signaling, it is suggested that Nrp1 augments Reelin signaling. The interaction between Reelin and Nrp1 is required for normal dendritic development in superficial-layer neurons. All of these characteristics of Reelin are abrogated by proteolytic processing of the six C-terminal amino acid residues of Reelin (0.17% of the whole protein). Therefore, Nrp1 is a coreceptor molecule for Reelin and, together with the proteolytic processing of Reelin, can account for context-specific Reelin function in brain development.SIGNIFICANCE STATEMENT Reelin often exhibits a context-dependent function during brain development; however, its underlying mechanism is not well understood. We found that neuropilin-1 (Nrp1) specifically binds to the CTR of Reelin and acts as a coreceptor for very-low-density lipoprotein receptor (VLDLR). The Nrp1/VLDLR complex is localized in the superficial layers of the neocortex, and its interaction with Reelin is essential for proper dendritic development in superficial-layer neurons. This study provides the first mechanistic evidence of the context-specific function of Reelin (>3400 residues) regulated by the C-terminal residues and Nrp1, a component of the canonical Reelin receptor complex.


Subject(s)
Dendrites/physiology , Neocortex/cytology , Neocortex/growth & development , Neuropilin-1/physiology , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Line , DNA/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Gene Knockdown Techniques , Male , Mice , Mice, Inbred ICR , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropilin-1/genetics , Receptors, LDL/metabolism , Reelin Protein , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
12.
Cell Tissue Res ; 381(2): 299-308, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32242249

ABSTRACT

Sympathetic nerves innervate most organs and regulate organ blood flow. Specifically, in the uterus, estradiol (E2) elicits rapid degeneration of sympathetic axons and stimulates the growth of blood vessels. Both physiological remodeling processes, critical for reproduction, have been extensively studied but as independent events and are still not fully understood. Here, we examine the neuropilin-1 (NRP1), a shared receptor for axon guidance and angiogenic factors. Systemic estradiol or vehicle were chronically injected to prepubertal rats and uterine and sympathetic chain sections immunostained for NRP1. Uterine semaphorin-3A mRNA was evaluated by in situ hybridization. Control sympathetic uterine-projecting neurons (1-month-old) expressed NRP1 in their somas but not in their intrauterine terminal axons. Estradiol did not affect NRP1 in the distal ganglia. However, at the entrance of the organ, some sympathetic NRP1-positive nerves were recognized. Vascular NRP1 was confined to intrauterine small-diameter vessels in both hormonal conditions. Although the overall pattern of NRP1-IR was not affected by E2 treatment, a subpopulation of infiltrated eosinophil leukocytes showed immunoreactivity for NRP1. Sema3A transcripts were detected in this cellular type as well. No NRP1-immunoreactive axons nor infiltrated eosinophils were visualized in other estrogenized pelvic organs. Together, these data suggest the involvement of NRP1/Sema3A signaling in the selective E2-induced uterine neurovascular remodeling. Our data support a model whereby NRP1 could coordinate E2-induced uterine neurovascular remodeling, acting as a positive regulator of growth when expressed in vessels and as a negative regulator of growth when expressed on axons.


Subject(s)
Neuronal Plasticity , Neuropilin-1/physiology , Semaphorin-3A/physiology , Sympathetic Nervous System , Uterus , Vascular Remodeling , Animals , Estradiol/pharmacology , Female , Rats , Rats, Wistar , Uterus/blood supply , Uterus/innervation
13.
Neurobiol Aging ; 87: 18-25, 2020 03.
Article in English | MEDLINE | ID: mdl-31791659

ABSTRACT

Literature suggests vascular endothelial growth factor A (VEGFA) is protective among those at highest risk for Alzheimer's disease (AD). Apolipoprotein E (APOE) ε4 allele carriers represent a highly susceptible population for cognitive decline, and VEGF may confer distinct protection among APOE-ε4 carriers. We evaluated interactions between cortical expression of 10 VEGF gene family members and APOE-ε4 genotype to clarify which VEGF genes modify the association between APOE-ε4 and cognitive decline. Data were obtained from the Religious Orders Study and Rush Memory and Aging Project (N = 531). Linear regression assessed interactions on global cognition. VEGF genes NRP1 and VEGFA interacted with APOE-ε4 on cognitive performance (p.fdr < 0.05). Higher NRP1 expression correlated with worse outcomes among ε4 carriers but better outcomes among ε4 noncarriers, suggesting NRP1 modifies the risk for poor cognitive scores based on APOE-ε4 status. NRP1 regulates angiogenesis, and literature suggests vessels in APOE-ε4 brains are more prone to leaking, perhaps placing young vessels at risk for ischemia. Results suggest that future therapeutics targeting brain angiogenesis should also consider ε4 allele status.


Subject(s)
Aging/genetics , Apolipoprotein E4/genetics , Cognitive Aging , Cognitive Dysfunction/genetics , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Vascular Endothelial Growth Factor A/genetics , Aged , Aged, 80 and over , Female , Genotype , Humans , Male , Neovascularization, Physiologic/genetics , Neuropilin-1/genetics , Neuropilin-1/physiology
14.
Development ; 146(21)2019 11 05.
Article in English | MEDLINE | ID: mdl-31690636

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human orthologue of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency.


Subject(s)
Axons/physiology , Gene Expression Regulation, Developmental , Gonadotropin-Releasing Hormone/physiology , Nerve Tissue Proteins/physiology , Neurons/physiology , Receptors, Cell Surface/physiology , Animals , Body Patterning , Brain/physiology , Cell Movement , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Tissue Proteins/genetics , Neuropilin-1/physiology , Neuropilin-2/physiology , Nose , Phenotype , Receptors, Cell Surface/genetics , Semaphorin-3A/physiology , Sexual Maturation/genetics , Signal Transduction
15.
Development ; 146(13)2019 07 02.
Article in English | MEDLINE | ID: mdl-31167777

ABSTRACT

Unlike adult mammals, zebrafish can regenerate their heart. A key mechanism for regeneration is the activation of the epicardium, leading to the establishment of a supporting scaffold for new cardiomyocytes, angiogenesis and cytokine secretion. Neuropilins are co-receptors that mediate signaling of kinase receptors for cytokines with crucial roles in zebrafish heart regeneration. We investigated the role of neuropilins in response to cardiac injury and heart regeneration. All four neuropilin isoforms (nrp1a, nrp1b, nrp2a and nrp2b) were upregulated by the activated epicardium and an nrp1a-knockout mutant showed a significant delay in heart regeneration and displayed persistent collagen deposition. The regenerating hearts of nrp1a mutants were less vascularized, and epicardial-derived cell migration and re-expression of the developmental gene wt1b was impaired. Moreover, cryoinjury-induced activation and migration of epicardial cells in heart explants were reduced in nrp1a mutants. These results identify a key role for Nrp1 in zebrafish heart regeneration, mediated through epicardial activation, migration and revascularization.


Subject(s)
Heart/physiology , Neovascularization, Physiologic/genetics , Neuropilin-1/physiology , Pericardium/physiology , Regeneration/genetics , Animals , Animals, Genetically Modified , Cell Movement/genetics , Cells, Cultured , Cold Temperature , Coronary Vessels/physiology , Heart Injuries/etiology , Heart Injuries/pathology , Heart Injuries/physiopathology , Myocytes, Cardiac/physiology , Neuropilin-1/genetics , Rats , Zebrafish/physiology
17.
FASEB J ; 33(1): 494-500, 2019 01.
Article in English | MEDLINE | ID: mdl-30118322

ABSTRACT

Dimethylarginine dimethylaminohydrolases (DDAHs) are known to degrade asymmetric dimethylarginine, an endogenous inhibitor of NOS, and maintain vascular homeostasis; however, the regulatory pathways of DDAHs remain unclear. In this study, we aimed to define the role of transmembrane glycoprotein neuropilin-1 (NRP1) in the expression of DDAHs and investigate the potential roles of NRP1 in regulation of blood pressure. Short hairpin RNA-mediated knockdown of NRP1 reduced the level and mRNA stability of DDAH1 but not DDAH2 in HUVECs, whereas overexpression of NRP1 increased the mRNA stability of DDAH1. Meanwhile, mesenteric arteries and lung vascular endothelial cells of tamoxifen-inducible endothelial cell-specific NRP1 knockout mice exhibited decreased expression of DDAH1 and slightly increased expression of DDAH2. Mechanistically, the regulation of NRP1 on DDAH1 expression is mediated by a posttranscriptional mechanism involving miR-219-5p in HUVECs. Although the endothelial cell-specific NRP1 knockout mice did not exhibit any significant change in blood pressure at the basal level, they were more sensitive to low-dose angiotensin II infusion-induced increases in blood pressure. Our results show that NRP1 is required for full expression of DDAH1 in endothelial cells and that NRP1 contributes to protection from low-dose angiotensin II-induced increases in blood pressure.-Wang, Y., Wang, E., Zhang, Y., Madamsetty, V. S., Ji, B., Radisky, D. C., Grande, J. P., Misra, S., Mukhopadhyay, D. Neuropilin-1 maintains dimethylarginine dimethylaminohydrolase 1 expression in endothelial cells, and contributes to protection from angiotensin II-induced hypertension.


Subject(s)
Amidohydrolases/physiology , Angiotensin II/toxicity , Endothelium, Vascular/drug effects , Hypertension/prevention & control , Neuropilin-1/physiology , Vasoconstrictor Agents/toxicity , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Blood Pressure , Cells, Cultured , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Hypertension/chemically induced , Hypertension/metabolism , Male , Mice , Mice, Knockout , Nitric Oxide/metabolism
18.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29774231

ABSTRACT

The neuromuscular junction (NMJ) is a specialized synapse that is formed by motor axon innervation of skeletal muscle fibers. The maintenance of motor-muscle connectivity is critical for the preservation of muscle tone and generation of movement. Injury can induce a robust regenerative response in motor axons, but severe trauma or chronic denervation resulting from neurodegenerative disease typically leads to inefficient repair and poor functional recovery. The axon guidance molecule Semaphorin3A (Sema3A) has been implicated as a negative regulator of motor innervation. Upon binding to a plexinA-neuropilin1 (Npn1) receptor complex, Sema3A initiates a downstream signaling cascade that results in axonal repulsion. Here, we established a reproducible nerve crush model to quantify motor nerve regeneration. We then used that model to investigate the role of Sema3A signaling at the adult NMJ. In contrast to previous findings, we found that Sema3A and Npn1 mRNA decrease in response to denervation, suggesting that Sema3A-Npn1 signaling may regulate NMJ reinnervation. To directly test that hypothesis, we used inducible knockout models to ubiquitously delete Sema3A or Npn1 from adult mice. Despite demonstrating that we could achieve highly efficient gene deletion, disruption of Sema3A-Npn1 signaling did not affect the normal maintenance of the NMJ or disrupt motor axon reinnervation after a denervating injury.


Subject(s)
Axons/metabolism , Motor Neurons/metabolism , Nerve Regeneration , Neuromuscular Junction/metabolism , Peroneal Nerve/injuries , Semaphorin-3A/metabolism , Animals , Gene Expression , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Myelin Sheath/metabolism , Nerve Crush/methods , Neuropilin-1/physiology , Peroneal Nerve/physiopathology , Signal Transduction , Spinal Cord/metabolism
19.
Gene ; 653: 72-79, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29432830

ABSTRACT

Tetralogy of Fallot (TOF) is one of the most severe forms of cyanotic congenital heart disease (CHD) and is also the most common. Previous genome-wide association study (GWAS) and replication studies have suggested that a polymorphism in the neuropilin 1 (NRP1) gene is significantly associated with the risk of TOF. To further confirm the association between the NRP1 polymorphism and the risk of TOF and to identify additional positive functional single-nucleotide polymorphisms (SNPs) for TOF risk, we systematically screened for functional polymorphisms throughout the regulatory and coding regions of the NRP1 gene. A total of 11 functional SNPs in 747 Chinese Han individuals, including 314 TOF patients and 433 healthy controls, were genotyped using the MassARRAY system and GeneScan. The results revealed that the allelic and genotypic frequencies of the NRP1 polymorphism rs2228638 were strongly associated with the risk of TOF (p = 0.002 and 0.001, respectively). To increase the robustness of rs2228638 as a TOF risk SNP, we conducted a meta-analysis that combined published studies and our current case-control study. The meta-analysis showed that the T allele of the NRP1 polymorphism rs2228638 was significantly associated with an increased risk of TOF in the combined population, which included European and Chinese Han individuals [combined p < 0.00001, odds ratio (OR) = 1.53, 95% confidence interval (95% CI) = 1.35-1.73]. In addition, the association analysis suggested for the first time that there is a strong association between the allele distribution of rs10080 and susceptibility to TOF (p = 0.001). Our data provide further evidence of the association between NRP1 polymorphisms and TOF risk, and suggest that rs2228638 may be an excellent marker for TOF risk in European and Chinese Han populations.


Subject(s)
Neuropilin-1/genetics , Polymorphism, Single Nucleotide , Tetralogy of Fallot/genetics , Alleles , Asian People/genetics , Case-Control Studies , Child , Child, Preschool , China , Computational Biology , Female , Gene Frequency , Genetic Markers , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Infant , Linkage Disequilibrium , Male , Neuropilin-1/physiology , Risk
20.
Cancer Res ; 78(3): 685-694, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29097606

ABSTRACT

Glioma-associated microglia and macrophages (GAM), which infiltrate high-grade gilomas, constitute a major cellular component of these lesions. GAM behavior is influenced by tumor-derived cytokines that suppress initial antitumorigenic properties, causing them to support tumor growth and to convert and suppress adaptive immune responses to the tumor. Mice that lack the transmembrane receptor neuropilin-1 (Nrp1), which modulates GAM immune polarization, exhibit a decrease in glioma volumes and neoangiogenesis and an increase in antitumorigenic GAM infiltrate. Here we show that replacing the peripheral macrophage populations of wild-type mice with Nrp1-depleted bone marrow-derived macrophages (BMDM) confers resistance to the development of glioma. This resistance occurred in a similar fashion seen in mice in which all macrophages lacked Nrp1 expression. Tumors had decreased volumes, decreased vascularity, increased CTL infiltrate, and Nrp1-depleted BMDM adopted a more antitumorigenic phenotype relative to wild-type GAMs within the tumors. Mice with Nrp1-deficient microglia and wild-type peripheral macrophages showed resistance to glioma development and had higher microglial infiltrate than mice with wild-type GAMs. Our findings show how manipulating Nrp1 in either peripheral macrophages or microglia reprograms their phenotype and their pathogenic roles in tumor neovascularization and immunosuppression.Significance: This study highlights the proangiogenic receptor neuropilin 1 in macrophages and microglial cells in gliomas as a pivotal modifier of tumor neovascularization and immunosuppression, strengthening emerging evidence of the functional coordination of these two fundamental traits of cancer. Cancer Res; 78(3); 685-94. ©2017 AACR.


Subject(s)
Bone Marrow/pathology , Brain Neoplasms/prevention & control , Glioma/prevention & control , Macrophages/pathology , Microglia/pathology , Neuropilin-1/physiology , Animals , Bone Marrow/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cells, Cultured , Disease Progression , Female , Glioma/genetics , Glioma/pathology , Macrophages/metabolism , Male , Mice , Mice, Knockout , Microglia/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL