Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Life Sci ; 346: 122630, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614296

ABSTRACT

Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.


Subject(s)
Bone Diseases , Neuropilins , Humans , Animals , Bone Diseases/metabolism , Bone Diseases/physiopathology , Neuropilins/metabolism , Neuropilins/physiology , Cartilage Diseases/metabolism , Cartilage Diseases/physiopathology , Bone Remodeling/physiology
2.
Trends Mol Med ; 29(10): 817-829, 2023 10.
Article in English | MEDLINE | ID: mdl-37598000

ABSTRACT

Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Semaphorins , Humans , Neuropilins , Tumor Microenvironment , Pancreatic Neoplasms
3.
Clin Mol Hepatol ; 29(2): 293-319, 2023 04.
Article in English | MEDLINE | ID: mdl-36726054

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide and is characterized by complex molecular carcinogenesis. Neuropilins (NRPs) NRP1 and NRP2 are the receptors of multiple proteins involved in key signaling pathways associated with tumor progression. We aimed to systematically review all the available findings on their role in HCC. We searched the Scopus, Web of Science (WOS), PubMed, Cochrane and Embase databases for articles evaluating NRPs in preclinical or clinical HCC models. This study was registered in PROSPERO (CRD42022349774) and include 49 studies. Multiple cellular and molecular processes have been associated with one or both NRPs, indicating that they are potential diagnostic and prognostic biomarkers in HCC patients. Mainly NRP1 has been shown to promote tumor cell survival and progression by modulating several signaling pathways. NRPs mainly regulate angiogenesis, invasion and migration and have shown to induce invasion and metastasis. They also regulate the immune response and tumor microenvironment, showing a crucial interplay with the hypoxia response and microRNAs in HCC. Altogether, NRP1 and NRP2 are potential biomarkers and therapeutic targets, providing novel insight into the clinical landscape of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Neuropilins/genetics , Neuropilins/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Signal Transduction , Biomarkers , Biomarkers, Tumor , Tumor Microenvironment
4.
Life Sci ; 318: 121499, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36775114

ABSTRACT

Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.


Subject(s)
Neoplasms , Semaphorins , Humans , Phosphatidylinositol 3-Kinases , Neoplasms/pathology , Neuropilins/chemistry , Semaphorin-3A , Tumor Microenvironment
5.
Prep Biochem Biotechnol ; 53(5): 523-531, 2023.
Article in English | MEDLINE | ID: mdl-35984637

ABSTRACT

Neuropilin-1 (NRP-1) is a non-tyrosine kinase receptor and when overexpressed, leads to angiogenesis. High expression of NRP-1 has been observed in various cancers. Unique characteristic of nanobodies (small size, high affinity and stability, and ease production) make them potential therapeutic tools. Oligoclonal nanobodies which detect multiple functional epitopes on the target antigen could be potential tools for inhibition of cancer resistance problems due to escape variant of tumor cells. In this study, oligoclonal anti-NRP-1 nanobodies were selected from camel immune library and their binding activities as well as in vitro functionality were evaluated. Anti-NRP-1 nanobodies were expressed in an Escherichia coli host, and purified using nickel affinity chromatography. The effect of each individual and oligoclonal nanobodies on human endothelial cells were evaluated by MTT, Tube formation, and migration assay as well. Results showed that oligoclonal anti-NRP-1 nanobodies detected different epitopes of NRP-1 antigen and inhibited in vitro angiogenesis of human endothelial cells better than each individual nanobody. Results indicate promising oligoclonal anti-NRP-1 nanobodies for inhibition of angiogenesis.


Subject(s)
Neoplasms , Single-Domain Antibodies , Humans , Epitopes , Endothelial Cells , Neuropilins
6.
Environ Toxicol ; 38(1): 70-77, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36136913

ABSTRACT

Glioblastoma multiform (GBM) is a malignant tumor cancer that originates from the star-shaped glial support tissues, namely astrocytes, and it is associated with a poor prognosis in the brain. The GBM has no cure, and chemotherapy, radiation therapy, and immunotherapy are all ineffective. A certain dose of Boric acid (BA) has many biochemical effects, conspicuously over antioxidant/oxidant rates. This article sought to investigate the modifies of various doses of BA on the glioblastoma concerning cytotoxicity, ferroptosis, apoptosis, and semaphorin-neuropilin signaling pathway. The Cytotoxic activity and cell viability of BA (0.39-25 mM) in C6 cells were tested at 24, 48, and 72 h using 3-(4,5-dimethylthiazol, 2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The IC50 concentration of BA at 1.56 mM was found and cell lysate used for biochemical analysis. Glutathione peroxidase 4 (GPx4) and ACLS4 levels of ferroptosis, levels of total antioxidant (TAS) and oxidant (TAS) parameters, malondialdehyde (MDA), apoptotic proteins as caspase 3 (CASP3) and caspase 7 (CASP7) were measured. The ferroptosis, semaphoring-neuropilin, apoptotic pathway markers and cell counts were analyzed with flow cytometry, Q-PCR, Western and Elisa technique in the C6 cell lysate. BA triggered ferroptosis in the C6 cells dose-dependently, affecting the semaphorin pathway, so reducing proliferation with apoptotic compared with untreated cell as control group (p < .05). This study revealed that BA, defined as trace element and natural compound, incubated ferroptosis, total oxidant molecules, and caspase protein in a dose-dependently by disrupting SEMA3F in tumor cells.


Subject(s)
Ferroptosis , Glioblastoma , Semaphorins , Humans , Glioblastoma/pathology , Boron/pharmacology , Boron/therapeutic use , Antioxidants/pharmacology , Cell Line, Tumor , Signal Transduction , Oxidants/pharmacology , Oxidants/therapeutic use , Semaphorins/pharmacology , Semaphorins/therapeutic use , Neuropilins , Membrane Proteins , Nerve Tissue Proteins
7.
Elife ; 112022 09 28.
Article in English | MEDLINE | ID: mdl-36169302

ABSTRACT

Hedgehog signaling controls tissue patterning during embryonic and postnatal development and continues to play important roles throughout life. Characterizing the full complement of Hedgehog pathway components is essential to understanding its wide-ranging functions. Previous work has identified neuropilins, established semaphorin receptors, as positive regulators of Hedgehog signaling. Neuropilins require plexin co-receptors to mediate semaphorin signaling, but the role of plexins in Hedgehog signaling has not yet been explored. Here, we provide evidence that multiple plexins promote Hedgehog signaling in NIH/3T3 mouse fibroblasts and that plexin loss of function in these cells results in significantly reduced Hedgehog pathway activity. Catalytic activity of the plexin GTPase-activating protein (GAP) domain is required for Hedgehog signal promotion, and constitutive activation of the GAP domain further amplifies Hedgehog signaling. Additionally, we demonstrate that plexins promote Hedgehog signaling at the level of GLI transcription factors and that this promotion requires intact primary cilia. Finally, we find that plexin loss of function significantly reduces the response to Hedgehog pathway activation in the mouse dentate gyrus. Together, these data identify plexins as novel components of the Hedgehog pathway and provide insight into their mechanism of action.


Subject(s)
Hedgehog Proteins , Semaphorins , Animals , Carrier Proteins , Cell Adhesion Molecules , GTPase-Activating Proteins/metabolism , Hedgehog Proteins/metabolism , Mice , Nerve Tissue Proteins , Neuropilins/metabolism , Semaphorins/metabolism , Transcription Factors/metabolism
8.
Dev Neurobiol ; 82(6): 533-544, 2022 09.
Article in English | MEDLINE | ID: mdl-35929227

ABSTRACT

Axonal connections between the two sides of the brain are essential for processing sensorimotor functions, especially in animals with bilateral symmetry. The anterior commissure and postoptic commissure are two crucial axonal projections that develop early in the zebrafish central nervous system. In this study, we characterized the function of collapsin response mediator protein 2 (CRMP2) and CRMP4 in patterning the development of the anterior and postoptic commissures by analyzing morpholino-knockdown zebrafish morphants and CRISPR/Cas9-edited gene-knockout mutants. We observed a loss of commissural structures or a significant reduction in axon bundles connecting the two hemispheres, but the defects could be largely recovered by co-injecting CRMP2 or CRMP4 mRNA. Loss of both CRMP2 and CRMP4 function resulted in a synergistic increase in the number of commissural defects. To elucidate the mechanism by which CRMP2 and CRMP4 provide guidance cues for the development of the anterior and postoptic commissures, we included neuropilin 1a (Nrp1a) morphants and double morphants (CRMP2/Nrp1a and CRMP4/Nrp1a) for analysis. Our experimental results indicated that CRMP2 and CRMP4 might mediate their activities through the common semaphorin 3/Nrp1a signaling pathway.


Subject(s)
Semaphorins , Zebrafish , Animals , Morpholinos/metabolism , Morpholinos/pharmacology , Neuropilins/metabolism , Prosencephalon/metabolism , RNA, Messenger/metabolism , Semaphorin-3A/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Zebrafish/metabolism
9.
Cancer Metastasis Rev ; 41(3): 771-787, 2022 09.
Article in English | MEDLINE | ID: mdl-35776228

ABSTRACT

Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.


Subject(s)
Neoplasms , Neuropilin-2 , Signal Transduction , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Neuropilin-2/metabolism , Neuropilins/metabolism , Tumor Microenvironment
10.
Biomolecules ; 12(3)2022 02 26.
Article in English | MEDLINE | ID: mdl-35327564

ABSTRACT

Vascular endothelial growth factors (VEGFs) are the key regulators of blood and lymphatic vessels' formation and function. Each of the proteins from the homologous family VEGFA, VEGFB, VEGFC and VEGFD employs a core cysteine-knot structural domain for the specific interaction with one or more of the cognate tyrosine kinase receptors. Additional diversity is exhibited by the involvement of neuropilins-transmembrane co-receptors, whose b1 domain contains the binding site for the C-terminal sequence of VEGFs. Although all relevant isoforms of VEGFs that interact with neuropilins contain the required C-terminal Arg residue, there is selectivity of neuropilins and VEGF receptors for the VEGF proteins, which is reflected in the physiological roles that they mediate. To decipher the contribution made by the C-terminal sequences of the individual VEGF proteins to that functional differentiation, we determined structures of molecular complexes of neuropilins and VEGF-derived peptides and examined binding interactions for all neuropilin-VEGF pairs experimentally and computationally. While X-ray crystal structures and ligand-binding experiments highlighted similarities between the ligands, the molecular dynamics simulations uncovered conformational preferences of VEGF-derived peptides beyond the C-terminal arginine that contribute to the ligand selectivity of neuropilins. The implications for the design of the selective antagonists of neuropilins' functions are discussed.


Subject(s)
Neuropilins , Vascular Endothelial Growth Factor A , Ligands , Neuropilins/chemistry , Neuropilins/genetics , Neuropilins/metabolism , Peptides , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors
12.
Proc Natl Acad Sci U S A ; 118(49)2021 11 16.
Article in English | MEDLINE | ID: mdl-34772761

ABSTRACT

Many phylogenetically distant animal viruses, including the new coronavirus severe acute respiratory syndrome coronavirus 2, have surface proteins with polybasic sites that are cleaved by host furin and furin-like proteases. Other than priming certain viral surface proteins for fusion, cleavage generates a carboxy-terminal RXXR sequence. This C-end Rule (CendR) motif is known to bind to neuropilin (NRP) receptors on the cell surface. NRPs are ubiquitously expressed, pleiotropic cell surface receptors with important roles in growth factor signaling, vascular biology, and neurobiology, as well as immune homeostasis and activation. The CendR-NRP receptor interaction promotes endocytic internalization and tissue spreading of different cargo, including viral particles. We propose that the interaction between viral surface proteins and NRPs plays an underappreciated and prevalent role in the transmission and pathogenesis of diverse viruses and represents a promising broad-spectrum antiviral target.


Subject(s)
COVID-19/virology , Neuropilins/metabolism , Virus Internalization , COVID-19/metabolism , Humans , Neuropilins/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
13.
Cells ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34572076

ABSTRACT

Coronavirus disease 19 (COVID-19) is caused by an enveloped, positive-sense, single-stranded RNA virus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the realm Riboviria, order Nidovirales, family Coronaviridae, genus Betacoronavirus and the species Severe acute respiratory syndrome-related coronavirus. This viral disease is characterized by a myriad of varying symptoms, such as pyrexia, cough, hemoptysis, dyspnoea, diarrhea, muscle soreness, dysosmia, lymphopenia and dysgeusia amongst others. The virus mainly infects humans, various other mammals, avian species and some other companion livestock. SARS-CoV-2 cellular entry is primarily accomplished by molecular interaction between the virus's spike (S) protein and the host cell surface receptor, angiotensin-converting enzyme 2 (ACE2), although other host cell-associated receptors/factors, such as neuropilin 1 (NRP-1) and neuropilin 2 (NRP-2), C-type lectin receptors (CLRs), as well as proteases such as TMPRSS2 (transmembrane serine protease 2) and furin, might also play a crucial role in infection, tropism, pathogenesis and clinical outcome. Furthermore, several structural and non-structural proteins of the virus themselves are very critical in determining the clinical outcome following infection. Considering such critical role(s) of the abovementioned host cell receptors, associated proteases/factors and virus structural/non-structural proteins (NSPs), it may be quite prudent to therapeutically target them through a multipronged clinical regimen to combat the disease.


Subject(s)
COVID-19 , Host Microbial Interactions , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Drug Delivery Systems , Furin/chemistry , Furin/metabolism , Humans , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Molecular Structure , Neuropilins/chemistry , Neuropilins/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Treatment Outcome , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Internalization
14.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361063

ABSTRACT

BACKGROUND: Induced tooth movement during orthodontic therapy requires mechano-induced bone remodeling. Besides various cytokines and growth-factors, neuronal guidance molecules gained attention for their roles in bone homeostasis and thus, potential roles during tooth movement. Several neuronal guidance molecules have been implicated in the regulation of bone remodeling. Amongst them, Semaphorin 3A is particular interesting as it concurrently induces osteoblast differentiation and disturbs osteoclast differentiation. METHODS: Mechano-regulation of Sema3A and its receptors PlexinA1 and Neuropilin (RT-qPCR, WB) was evaluated by applying compressive and tension forces to primary human periodontal fibroblasts (hPDLF) and alveolar bone osteoblasts (hOB). The association of the transcription factor Osterix (SP7) and SEMA3A was studied by RT-qPCR. Mechanisms involved in SEMA3A-mediated osteoblast differentiation were assessed by Rac1GTPase pull-downs, ß-catenin expression analyses (RT-qPCR) and nuclear translocation assays (IF). Osteogenic markers were analyzed by RT-qPCR. RESULTS: SEMA3A, PLXNA1 and NRP1 were differentially regulated by tension or compressive forces in hPDLF. Osterix (SP7) displayed the same pattern of regulation. Recombinant Sema3A induced the activation of Rac1GTPase, the nuclear translocation of ß-catenin and the expression of osteogenic marker genes. CONCLUSION: Sema3A, its receptors and Osterix are regulated by mechanical forces in hPDLF. SEMA3A upregulation was associated with Osterix (SP7) modulation. Sema3A-enhanced osteogenic marker gene expression in hOB might be dependent on a pathway involving Rac1GTPase and ß-catenin. Thus, Semaphorin 3A might contribute to bone remodeling during induced tooth movement.


Subject(s)
Fibroblasts/physiology , Nerve Tissue Proteins/metabolism , Neuropilins/metabolism , Osteoblasts/physiology , Periodontal Ligament/physiology , Receptors, Cell Surface/metabolism , Semaphorin-3A/metabolism , Tooth Movement Techniques/methods , Adolescent , Adult , Bone Remodeling , Cell Differentiation , Cells, Cultured , Child , Fibroblasts/cytology , Humans , Nerve Tissue Proteins/genetics , Neuropilins/genetics , Osteoblasts/cytology , Osteogenesis , Periodontal Ligament/cytology , Receptors, Cell Surface/genetics , Semaphorin-3A/genetics , Young Adult
15.
FEBS J ; 288(17): 5122-5129, 2021 09.
Article in English | MEDLINE | ID: mdl-34185437

ABSTRACT

The SARS-CoV-2 pandemic has significantly impacted global health. Research on viral mechanisms, highly effective vaccines, and other therapies is in progress. Neuropilins have recently been identified as host cell receptors enabling viral fusion. Here, we provide context to neuropilin's tissue-specific role in infection and the potential impact of NRP-based therapeutics. We conclude that the central roles of neuropilins in vascular, neural, and other pathways may render it a less suitable target for treating SARS-CoV-2 than agents that target its binding partner, the viral spike protein.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Neuropilins/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Humans , Neuropilins/immunology , Pandemics , SARS-CoV-2/pathogenicity , Virus Internalization
16.
Biomed Res Int ; 2021: 5546612, 2021.
Article in English | MEDLINE | ID: mdl-33937395

ABSTRACT

BACKGROUND: Neurovascular-related genes have been implicated in the development of cancer. Studies have shown that a high expression of neuropilins (NRPs) promotes tumourigenesis and tumour malignancy. METHOD: A multidimensional bioinformatics analysis was performed to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden (TMB), microsatellite instability (MSI), and immunological features based on public databases and find the potential prognostic value of NRPs in pancancer. RESULTS: Survival analysis revealed that a low NRP1 expression in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), low-grade glioma (LGG), and stomach adenocarcinoma (STAD) was associated with poor prognosis. A high NRP2 expression in bladder urothelial carcinoma (BLCA), kidney renal papillary cell carcinoma (KIRP), and mesothelioma (MESO) was associated with poor prognosis. Moreover, NRP1 and NRP2 were associated with TMB and MSI. Subsequent analyses showed that NRP1 and NRP2 were correlated with immune infiltration and immune checkpoints. Genome-wide association analysis revealed that the NRP1 expression was strongly associated with kidney renal clear cell carcinoma (KIRC), whereas the NRP2 expression was closely associated with BLCA. Ultimately, NRP2 was found to be involved in the development of BLCA. CONCLUSIONS: Neurovascular-related NRP family genes are significantly correlated with cancer prognosis, TME, and immune infiltration, particularly in BLCA.


Subject(s)
Biomarkers, Tumor , Neuropilins , Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Female , Genome-Wide Association Study , Humans , Male , Neoplasms/diagnostic imaging , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/mortality , Neuropilins/genetics , Neuropilins/immunology , Neuropilins/metabolism , Prognosis , Transcriptome/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/mortality
17.
Front Immunol ; 12: 672441, 2021.
Article in English | MEDLINE | ID: mdl-34012455

ABSTRACT

Semaphorins are a group of proteins that have been studied extensively for their critical function in neuronal development. They have been shown to regulate airway development, tumorigenesis, autoimmune diseases, and the adaptive immune response. Notably, emerging literature describes the role of immunoregulatory semaphorins and their receptors, plexins and neuropilins, as modulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart and lungs. In this review we discuss the pathogenic functions of semaphorins in clinical conditions of acute inflammation, including sepsis and acute lung injury, with a focus on regulation of the innate immune response as well as potential future therapeutic targeting.


Subject(s)
Cell Adhesion Molecules/immunology , Immunity, Innate/immunology , Inflammation/immunology , Nerve Tissue Proteins/immunology , Neuropilins/immunology , Semaphorins/immunology , Acute Lung Injury/immunology , Humans , Sepsis/immunology
19.
Theranostics ; 11(7): 3262-3277, 2021.
Article in English | MEDLINE | ID: mdl-33537086

ABSTRACT

Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.


Subject(s)
Biomarkers, Tumor/genetics , Cell Adhesion Molecules/genetics , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Nerve Tissue Proteins/genetics , Neuropilins/genetics , Semaphorins/genetics , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/agonists , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Cell Adhesion Molecules/metabolism , Cell Communication/drug effects , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/mortality , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/mortality , Neovascularization, Pathologic/pathology , Nerve Tissue Proteins/metabolism , Neuropilins/metabolism , Prognosis , Semaphorins/agonists , Semaphorins/antagonists & inhibitors , Semaphorins/metabolism , Signal Transduction , Survival Analysis , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
20.
Neoplasia ; 23(2): 181-188, 2021 02.
Article in English | MEDLINE | ID: mdl-33360508

ABSTRACT

GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging GIPC-targeted cancer therapies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Signal Transduction , Animals , Biomarkers , Cell Line, Tumor , Disease Susceptibility , Humans , Neoplasms/pathology , Neuropilins/metabolism , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL