Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.797
Filter
1.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38708767

ABSTRACT

Newcastle disease (ND) is endemic in Angola. Several outbreaks of ND occurred in small backyard flocks and village chickens with high mortality in the southern provinces of the country, Cunene, Namibe and Huíla, in 2016 and 2018. In those years, 15 virulent ND virus (NDV) strains were isolated and grouped within subgenotype 2 of genotype VII (subgenotype VII.2). We now present a study on the thermostability of the isolates, aiming at the selection of the most thermostable strains that, after being genetically modified to reduce their virulence, can be adapted to the production of vaccines less dependent on cold chain and more adequate to protect native chickens against ND. Heat-inactivation kinetics of haemagglutinin (Ha) activity and infectivity (I) of the isolates were determined by incubating aliquots of virus at 56 °C for different time intervals. The two isolates from Namibe province showed a decrease in infectivity of 2 log10 in ≤ 10 min, therefore belonging to the I-phenotype, but while the NB1 isolate from 2016 maintained the Ha activity up to 30 min and was classified as thermostable virus (I-Ha+), the Ha activity of the 2018 NB2 isolate decreased by 2 log2 in 30 min, being classified as a thermolabile virus (I-Ha-). Of the 13 NDV isolates from Huíla province, 10 isolates were classified as thermostable, eight with phenotype I+Ha+ and 2 with phenotype I-Ha+. The other three isolates from this province were classified as thermolabile viruses (I-Ha-).Contribution: This study will contribute to the control and/or eradication of Newcastle disease virus in Angola. The thermostable viral strains isolated from chickens in the country can be genetically manipulated by reverse genetic technology in order to reduce their virulence and use them as a vaccine in the remote areas of Angola.


Subject(s)
Chickens , Newcastle Disease , Newcastle disease virus , Poultry Diseases , Newcastle disease virus/pathogenicity , Newcastle disease virus/genetics , Newcastle disease virus/classification , Animals , Newcastle Disease/virology , Newcastle Disease/epidemiology , Angola/epidemiology , Virulence , Poultry Diseases/virology , Poultry Diseases/epidemiology , Hot Temperature
2.
Sci Rep ; 14(1): 10741, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730036

ABSTRACT

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Subject(s)
Columbidae , Genome, Viral , Newcastle Disease , Newcastle disease virus , Phylogeny , Animals , Columbidae/virology , China/epidemiology , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Newcastle disease virus/classification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Genotype , Farms , Meat/virology
3.
Vet Res ; 55(1): 58, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715081

ABSTRACT

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Subject(s)
Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
4.
J Virol ; 98(5): e0001624, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563732

ABSTRACT

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Subject(s)
Calcineurin , Calcium , Immunity, Innate , Interferon Type I , Newcastle disease virus , Protein Serine-Threonine Kinases , Virus Replication , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Newcastle disease virus/immunology , Animals , Calcineurin/metabolism , Humans , Calcium/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Phosphorylation , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/metabolism , Calcium Signaling , Cell Line , HEK293 Cells
5.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633149

ABSTRACT

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Subject(s)
Drinking Water , Newcastle Disease , Panax , Plant Oils , Thymol , Thymus Plant , Animals , Newcastle disease virus/genetics , Chickens , Antibodies, Viral , Oils
6.
Open Vet J ; 14(1): 12-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633151

ABSTRACT

Newcastle disease (ND) is a tremendously contagious avian infection with extensive monetary ramifications for the chicken zone. To reduce the effect of ND on the Saudi rooster enterprise, our analysis emphasizes the necessity of genotype-particular vaccinations, elevated surveillance, public recognition campaigns, and stepped-forward biosecurity. Data show that one-of-a-kind bird species, outdoor flocks, and nearby differences in susceptibility are all vulnerable. The pathogenesis consists of tropism in the respiratory and gastrointestinal structures and some genotypes boom virulence. Laboratory diagnostics use reverse transcription-polymerase chain reaction, sequencing, and serotyping among different strategies. Vital records are supplied through immune responses and serological trying out. Vaccination campaigns, biosecurity protocols, and emergency preparedness are all covered in prevention and manipulation techniques. Notably, co-circulating genotypes and disparities in immunization regulations worry Saudi Arabia. The effect of ND in Saudi Arabia is tested in this paper, with precise attention paid to immunological reaction, pathogenesis, susceptibility elements, laboratory analysis, and preventative and manipulation measures. Saudi Arabia can shield its bird region and beef up its defences against Newcastle's ailment, enforcing those hints into its policies.


Subject(s)
Cattle Diseases , Newcastle Disease , Poultry Diseases , Cattle , Animals , Male , Poultry , Chickens , Saudi Arabia , Newcastle disease virus/genetics , Poultry Diseases/epidemiology , Newcastle Disease/epidemiology
7.
Open Vet J ; 14(1): 32-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633185

ABSTRACT

Background: Despite the strict preventive immunization used in Egypt, Newcastle disease remained a prospective risk to the commercial and backyard chicken industries. The severe economic losses caused by the Newcastle disease virus (NDV) highlight the importance of the trials for the improvement and development of vaccines and vaccination programs. Aim: In the present study, we evaluated the effectiveness of two vaccination schemes for protection against the velogenic NDV (vNDV) challenge. Methods: Four groups (A-D) of commercial broiler chickens were used. Two groups (G-A and G-B) were vaccinated with priming live HB1 GII simultaneously with inactivated GVII vaccines at 5 days of age, then boosted with live LaSota GII vaccine in group A and live recombinant NDV GVII vaccine in group B on day 16. Groups A to C were challenged with NDV/Chicken/Egypt/ALEX/ZU-NM99/2019 strain (106 Embryo infective dose 50/0.1 ml) at 28 days of age. Results: Two vaccination schemes achieved 93.3% clinical protection against NDV with body gain enhancement; whereas, 80% of the unvaccinated-challenged birds died. On day 28, the mean HI antibody titers were 4.3 ± 0.33 and 5.3 ± 0.33 log2 in groups A and B, respectively. As well as both programs remarkably reduced virus shedding. The two vaccination schemes displayed close protection efficacy against the vNDV challenge. Conclusion: Therefore, using the combination of a live attenuated vaccine with an inactivated genetically matched strain vaccine and then boosting it with one of the available live vaccines could be considered one of the most effective programs against current field vNDV infection in Egypt.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus/genetics , Chickens , Egypt , Prospective Studies , Vaccination/veterinary , Viral Vaccines/genetics , Vaccines, Synthetic/genetics , Genotype
8.
Viruses ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675926

ABSTRACT

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Subject(s)
Newcastle disease virus , Viral Proteins , Virus Replication , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Newcastle disease virus/metabolism , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Newcastle Disease/virology , Newcastle Disease/metabolism , Cell Line , Gene Expression Regulation, Viral , RNA, Viral/genetics , RNA, Viral/metabolism , Chickens , Virulence , Protein Binding , Mutation
9.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473888

ABSTRACT

Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat stress resilience in chickens, a genome-wide association study (GWAS) was conducted using Hy-Line Brown layer chicks subjected to either high ambient temperature or combined high temperature and Newcastle disease virus infection. Hematochemical parameters were measured during three treatment phases: acute heat stress, chronic heat stress, and chronic heat stress combined with NDV infection. Significant changes in blood parameters were recorded for 11 parameters (sodium (Na+, potassium (K+), ionized calcium (iCa2+), glucose (Glu), pH, carbon dioxide partial pressure (PCO2), oxygen partial pressure (PO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (sO2)) across the three treatments. The GWAS revealed 39 significant SNPs (p < 0.05) for seven parameters, located on Gallus gallus chromosomes (GGA) 1, 3, 4, 6, 11, and 12. The significant genomic regions were further investigated to examine if the genes within the regions were associated with the corresponding traits under heat stress. A candidate gene list including genes in the identified genomic regions that were also differentially expressed in chicken tissues under heat stress was generated. Understanding the correlation between genetic variants and resilience to heat stress is an important step towards improving heat tolerance in poultry.


Subject(s)
Chickens , Newcastle Disease , Animals , Chickens/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Carbon Dioxide , Heat-Shock Response , Newcastle Disease/genetics , Genomics , Newcastle disease virus/genetics
10.
Poult Sci ; 103(5): 103662, 2024 May.
Article in English | MEDLINE | ID: mdl-38547539

ABSTRACT

Hatchery performance is often evaluated based on descriptors such as hatchability, 7-d mortality, and cost. In addition to these descriptors, it is useful to include in this analysis aspects of chick quality through post-hatch performance. Realizing the bird's complete genetic potential necessitates meeting various criteria, with effective support for the chick's immune system being among the pivotal factors. To be effective, in ovo vaccination systems must deliver the vaccines to specific sites in the egg, a circumstance that directly depends on when the injection is made. We examined production data to evaluate the impact of in ovo vaccination time on performance parameters of male Ross308AP chicks. A comprehensive survey was conducted examining records from 3,722 broiler flocks produced and raised by the same company under standard nutrition and management conditions. The selected data specifically pertained to flocks that underwent slaughter between 41 and 45 d. In our analysis, 4 different linear models were built, one for each response variable: mean weight (MW), body weight gain (BWG), corrected feeding conversion rate (cFCR), and total mortality (TM). The linear models used in the analyses included as main predictor the timing of in ovo vaccination (440, 444, 448, 452, 456, 458, and 460 h of incubation), and as additional predictors: age of the breeding flock (26-35, 36-55 and 56-66 wks old), slaughter age, identity of the hatchery, and the season at which the data was collected. Our results showed that the timing of in ovo vaccination significantly affected BWG and cFCR, with procedures performed at 460 h of incubation showing the best outcomes. Breeding flock age affected all response variables, with older breeding flocks delivering increased MW, BWG and TM, and middle-aged flocks increased cFCR. Increasing slaughter age reduced BWG while MW, cFCR and TM were all increased. These data emphasize the benefits of performing in ovo vaccination as close as possible to 460 h of incubation to extract the best BWG and cFCR from Ross308AP male broiler.


Subject(s)
Chickens , Vaccination , Animals , Chickens/physiology , Chickens/growth & development , Male , Vaccination/veterinary , Ovum/physiology , Time Factors , Poultry Diseases/prevention & control , Newcastle Disease/prevention & control
11.
Poult Sci ; 103(5): 103609, 2024 May.
Article in English | MEDLINE | ID: mdl-38547541

ABSTRACT

Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.


Subject(s)
Cecum , Chickens , Gastrointestinal Microbiome , Newcastle disease virus , Viral Vaccines , Animals , Chickens/immunology , Chickens/genetics , Chickens/microbiology , Female , Newcastle disease virus/immunology , Viral Vaccines/immunology , Cecum/microbiology , Cecum/immunology , Poultry Diseases/microbiology , Poultry Diseases/immunology , Newcastle Disease/immunology , Vaccination/veterinary , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
12.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334327

ABSTRACT

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Subject(s)
Macrophages , Newcastle Disease , Newcastle disease virus , Signal Transduction , Virus Internalization , Animals , Endocytosis , Gangliosides/metabolism , Macrophages/metabolism , Macrophages/virology , Newcastle Disease/virology , Newcastle disease virus/physiology , rho GTP-Binding Proteins/metabolism
13.
J Vet Sci ; 25(1): e3, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38311318

ABSTRACT

The Newcastle disease virus (NDV) outbreak was first reported in Java Island, Indonesia, in 1926, which was then reported further in Newcastle-upon-Tyne, England. Nevertheless, the NDV is still endemic in Indonesia, with outbreaks occurring in free-range and commercial chicken farms. The dynamic evolution of the NDV has led to the further development of vaccines and diagnostic tools for more effective control of this virus. This paper discusses the history of the NDV occurrence, vaccines, the development of diagnostic tools, and the epidemiological condition of the NDV in Indonesia. Indonesia, which has the largest poultry population in the world after China, has challenges in preventing and controlling this virus that causes economic losses to the farmers and has an impact on the welfare of the poultry farming community in Indonesia.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Newcastle disease virus , Newcastle Disease/epidemiology , Newcastle Disease/prevention & control , Indonesia/epidemiology , Chickens , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control
14.
BMC Vet Res ; 20(1): 76, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413949

ABSTRACT

BACKGROUND: Newcastle Disease Virus (NDV) causes severe economic losses in the poultry industry worldwide. Hence, this study aimed to discover a novel bioactive antiviral agent for controlling NDV. Streptomyces misakiensis was isolated from Egyptian soil and its secondary metabolites were identified using infrared spectroscopy (IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The inhibitory activity of bioactive metabolite against NDV were examined. Three experimental groups of 10-day-old specific pathogen-free embryonated chicken eggs (SPF-ECEs), including the bioactive metabolite control group, NDV control positive group, and α-sitosterol and NDV mixture-treated group were inoculated. RESULTS: α-sitosterol (Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol), a secondary metabolite of S. misakiensis, completely inhibited hemagglutination (HA) activity of the NDV strain. The HA activity of the NDV strain was 8 log2 and 9 log2 for 0.5 and 0.75% RBCs, respectively. The NDV HA activity for the two concentrations of RBCs was significantly (P < 0.0001) inhibited after α-sitosterol treatment. There was a significant (P < 0.0001) decrease in the log 2 of HA activity, with values of - 0.500 (75%, chicken RBCs) before inoculation in SPF-ECEs and - 1.161 (50%, RBCs) and - 1.403 (75%, RBCs) following SPF-ECE inoculation. Compared to ECEs inoculated with NDV alone, the α-sitosterol-treated group showed improvement in histological lesion ratings for chorioallantoic membranes (CAM) and hepatic tissues. The CAM of the α-sitosterol- inoculated SPF-ECEs was preserved. The epithelial and stromal layers were noticeably thicker with extensive hemorrhages, clogged vasculatures, and certain inflammatory cells in the stroma layer in the NDV group. However, mild edema and inflammatory cell infiltration were observed in the CAM of the treated group. ECEs inoculated with α-sitosterol alone showed normal histology of the hepatic acini, central veins, and portal triads. Severe degenerative alterations, including steatosis, clogged sinusoids, and central veins, were observed in ECEs inoculated with NDV. Mild hepatic degenerative alterations, with perivascular round cell infiltration, were observed in the treated group. CONCLUSION: To the best of our knowledge, this is the first study to highlight that the potentially bioactive secondary metabolite, α-sitosterol, belonging to the terpene family, has the potential to be a biological weapon against virulent NDV. It could be used for the development of innovative antiviral drugs to control NDV after further clinical investigation.


Subject(s)
Newcastle Disease , Poultry Diseases , Streptomycetaceae , Animals , Newcastle disease virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Sitosterols/pharmacology , Sitosterols/therapeutic use , Chickens , Newcastle Disease/drug therapy , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
15.
Vet Res ; 55(1): 16, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317245

ABSTRACT

Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.


Subject(s)
Avulavirus , Cattle Diseases , Newcastle Disease , Rodent Diseases , Rotavirus , Viral Vaccines , Animals , Cattle , Humans , Mice , Newcastle disease virus/genetics , Chickens , Antibodies, Viral , Genetic Vectors , Avulavirus/genetics , Viral Proteins/genetics , Vaccines, Inactivated , Immunity
16.
Virus Genes ; 60(2): 126-133, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289523

ABSTRACT

Newcastle disease virus (NDV) belongs to the Avulavirus genus and Paramyxoviridae family virus that causes acute, highly infectious Newcastle disease in poultry. The two proteins of haemagglutinin neuraminidase (HN) and fusion (F) are key virulence factors with an important role in its immunogenicity. Genotype VII NDV is still among the most serious viral hazards to the poultry industry worldwide. In this study, a commercial vector vaccine (HVT-NDV) was evaluated compared to the conventional vaccination strategy against Iranian genotype VII. This experiment showed that the group receiving the conventional vaccination strategy had higher antibodies, fewer clinical signs, and lower viral loads in tracheal swabs and feces. Also, two vaccine groups showed significant difference, which could have resulted from two extra vaccine doses in the conventional group. However, except for antibody levels in commercial chickens in the Iran new-generation vaccine, this difference was minor. Further, both groups showed 100% protection in the challenge study. Despite the phylogenetic gap between the NDV-F gene placed in the vector vaccine and the challenge virus (genotypes I and VII, respectively), the rHVT-NDV vaccine offered strong clinical protection and decreased challenge virus shedding considerably.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Newcastle disease virus , Chickens , Phylogeny , Convection , Iran , Vaccines, Synthetic/genetics , Vaccination/veterinary , Genotype , Antibodies, Viral
17.
Microb Pathog ; 188: 106542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199445

ABSTRACT

Oil-based inactivated ND vaccines are a commonly used control strategy for this endemic disease in Egypt. One of the major limitations of these inactivated vaccines is the time taken to develop a protective response in vaccinated birds. In the present study, we aimed to formulate an inactivated oil-based ND vaccine incorporated with lipopolysaccharide (LPS) that stimulates the early onset innate response to inactivated vaccines via proinflammatory cytokine production. Five groups of 21-day old SPF chicks were reared in isolators and were treated as follows: G1: Montanoid ISA71 adjuvanted NDV vaccinated group, G2: LPS and Montanoid ISA71 adjuvanted NDV vaccinated group, G3: LPS and Montanoid ISA71 with phosphate buffer saline received group and two non-vaccinated control groups. NDV specific antibodies and cell mediated immune responses were evaluated by hemagglutination inhibition and lymphocyte proliferation tests, respectively. Transcriptional responses of the TLR4, IFN-γ and IL-2 genes were analyzed in peripheral blood mononuclear cells (PBMCs) following vaccination by qRT-PCR. Protection % was determined after challenge with a lethal strain of NDV 106 EID50/0.5 ml. Viral shedding was assessed on oropharyngeal swabs by qRT-PCR and infectivity titration on SPF-ECE. The results revealed that the incorporation of LPS with ISA71 in the oil-based ND vaccine induced a synergistic response confirmed by significant humoral and lymphoproliferative responses with a significant increase in Th1 cytokine transcripts. The simultaneous use of both adjuvants in G2 demonstrated complete protection and a significant reduction in viral shedding compared to the ISA71-adjuvated ND vaccine in G1, which conferred 90 % protection.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Newcastle Disease/prevention & control , Newcastle disease virus/genetics , Lipopolysaccharides , Cytokines , Leukocytes, Mononuclear , Chickens , Adjuvants, Immunologic , Vaccines, Inactivated , Antibodies, Viral , Virus Shedding , Poultry Diseases/prevention & control
18.
Vet Microbiol ; 290: 109986, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244394

ABSTRACT

Newcastle disease (ND) is a disease that threatens the world's poultry industry, which is caused by virulent Newcastle disease virus (NDV). As its pathogenic mechanism remains not fully clear, the proteomics of NDV-infected cells were analyzed. The results revealed that coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) protein displayed a significant decrease at the late stage of NDV infection. To investigate the function of CHCHD10 in NDV infection, its expression after NDV infection was detected both in vivo and in vitro. Besides, the tissue viral loads and pathological damage of C57BL/6 mice with CHCHD10 differently expressed were also investigated. The results showed that the CHCHD10 expression was significantly decreased both in vivo and in vitro at the late stage of NDV infection. The viral loads were significantly higher in CHCHD10 silenced C57BL/6 mice, along with more severe pathological damage and vice versa.


Subject(s)
Newcastle Disease , Poultry Diseases , Rodent Diseases , Mice , Animals , Newcastle disease virus/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mice, Inbred C57BL , Poultry , Chickens
19.
Virus Res ; 341: 199309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181903

ABSTRACT

Newcastle disease virus (NDV) is an avian virus and a promising vector for the development of vaccines for veterinary and human use. The optimal vaccine vector performance requires a stable high-level expression of a transgene. The foreign genes are usually incorporated in the genome of NDV as individual transcription units, whose transcription and subsequent translation of the mRNA are regulated by the 5' and 3' untranslated regions (UTRs) flanking the open reading frame of the transgene. Here, we investigated if the UTRs derived from the cognate NDV genes would increase the expression of a model protective antigene from an NDV vector. Our results show that in chicken DF1 cells, none of the UTRs tested significantly outperformed generic short sequences flanking the transgene, while in human HeLa cells, UTRs derived from the M gene of NDV statistically significantly increased the expression of the transgene. The UTRs derived from the HN gene significantly downregulated the transgene expression in both cell cultures. Further experiments demonstrated that NDV UTRs differently affect the mRNA abundance and translation efficacy. While both M and HN UTRs decreased the level of the transgene mRNA in infected cells compared to the mRNA flanked by generic UTRs, M, and particularly, HN UTRs strongly increased the mRNA translation efficacy. The major determinants of translation enhancement are localized in the 5'UTR of HN. Thus, our data reveal a direct role of NDV UTRs in translational regulation, and inform future optimization of NDV vectors for vaccine and therapeutic use.


Subject(s)
Newcastle Disease , Vaccines , Viral Vaccines , Animals , Humans , Newcastle disease virus/genetics , HeLa Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , Vaccines/metabolism , Transgenes , Chickens , Newcastle Disease/genetics
20.
Avian Pathol ; 53(2): 134-145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037737

ABSTRACT

RESEARCH HIGHLIGHTS: Virulent NDV genotypes were repeatedly isolated from pigeons.Evidence of epidemiological links among viruses isolated from various locations.Distinct phylogenetic branches suggest separate, simultaneous evolution of NDVs.Study information could be helpful in the development of an effective vaccine.


Subject(s)
Newcastle Disease , Newcastle disease virus , Animals , Columbidae , Genetic Variation , Genotype , Newcastle Disease/epidemiology , Pakistan , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...