Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 818
Filter
1.
Sci Rep ; 14(1): 10741, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730036

ABSTRACT

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Subject(s)
Columbidae , Genome, Viral , Newcastle Disease , Newcastle disease virus , Phylogeny , Animals , Columbidae/virology , China/epidemiology , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Newcastle disease virus/classification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Genotype , Farms , Meat/virology
2.
Virus Res ; 318: 198846, 2022 09.
Article in English | MEDLINE | ID: mdl-35691423

ABSTRACT

To expand our understanding of the epidemiology of pigeon paramyxovirus type 1 (PPMV-1) in China, risk-based active surveillance was undertaken with pigeon swabs collected from live bird markets in 2014-2021. Seventy-six PPMV-1 strains were isolated from 12 provinces (60%) of the 20 provinces surveyed, and the positive rates of PPMV-1 varied from 0.50% to 3.19% annually. The complete genomic sequences of 18 representative viruses were analyzed, revealing a genome of 15,192 nucleotides, with the gene order 3'-NP-P-M-F-HN-L-5'. All isolates contained the 112RRQKRF117 cleavage site in the fusion (F) protein, a characteristic generally associated with virulent Newcastle disease viruses (NDVs), and the intracerebral pathogenicity index values (1.05-1.41) of four isolates indicated their virulence. A challenge experiment also demonstrated that all four isolates are pathogenic to pigeons, with morbidity rates of 60-100% and mortality rates of 0-30%. A further analysis of the functional domains of the F and HN proteins revealed several mutations in the fusion peptide, signal peptide, neutralizing epitopes, heptad repeat region, and transmembrane domains, and the substitution of cysteine residue 25 (C25Y) and substitutions in the HRb region (V287I) of the F protein and the transmembrane domain (V45A) of the HN protein may play important roles in PPMV-1 virulence. In a phylogenetic analysis based on the complete sequences of the F gene, all eighteen isolates all clustered into sub-genotype VI.2.1.1.2.2 (VIb) in class II, and shared high nucleotide sequence identity, indicating that the PPMV-1 strains in sub-genotype VI.2.1.1.2.2 are the predominant PPMV-1 viruses in pigeons in China and that the variations in these viruses have been relatively stable over the past 8 years. This study identifies the genetic and pathogenicity characteristics of the PPMV-1 strains prevalent in China and extends our understanding of the prevalence of this virus in China.


Subject(s)
Columbidae , Epidemiological Monitoring , Newcastle Disease , Newcastle disease virus , Animals , China/epidemiology , Columbidae/virology , Epidemiological Monitoring/veterinary , Genome, Viral , Newcastle Disease/epidemiology , Newcastle disease virus/isolation & purification , Phylogeny , Risk Assessment/methods , Virulence
3.
PLoS One ; 17(2): e0264028, 2022.
Article in English | MEDLINE | ID: mdl-35171961

ABSTRACT

Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a contagious disease that affects a variety of domestic and wild avian species. Though ND is vaccine-preventable, it is a persistent threat to poultry industry across the globe. The disease represents a leading cause of morbidity and mortality in chickens. To better understand the epidemiology of NDV among commercial and backyard chickens of Odisha, where chicken farming is being prioritized to assist with poverty alleviation, a cross-sectional study was conducted in two distinct seasons during 2018. Choanal swabs (n = 1361) from live birds (commercial layers, broilers, and backyard chicken) and tracheal tissues from dead birds (n = 10) were collected and tested by real-time reverse transcription polymerase chain reaction (RT-PCR) for the presence of matrix (M) and fusion (F) genes of NDV. Risk factors at the flock and individual bird levels (health status, ND vaccination status, geographical zone, management system, and housing) were assessed using multivariable logistic regression analyses. Of the 1371 samples tested, 160 were positive for M gene amplification indicating an overall apparent prevalence of 11.7% (95% CI 10.1-13.5%). Circulation of virulent NDV strains was also evident with apparent prevalence of 8.1% (13/160; 95% CI: 4.8-13.4%). In addition, commercial birds had significantly higher odds (75%) of being infected with NDV as compared to backyard poultry (p = 0.01). This study helps fill a knowledge gap in the prevalence and distribution of NDV in apparently healthy birds in eastern India, and provides a framework for future longitudinal research of NDV risk and mitigation in targeted geographies-a step forward for effective control of ND in Odisha.


Subject(s)
Antibodies, Viral/blood , Newcastle Disease/epidemiology , Newcastle disease virus/isolation & purification , Poultry Diseases/epidemiology , Viral Proteins/genetics , Animals , Antibodies, Viral/immunology , Chickens , Cross-Sectional Studies , Female , India/epidemiology , Male , Newcastle Disease/genetics , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Poultry Diseases/genetics , Poultry Diseases/immunology , Poultry Diseases/virology , Risk Factors
4.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: mdl-35216008

ABSTRACT

Avian influenza virus (AIV) variants emerge frequently, which challenges rapid diagnosis. Appropriate diagnosis reaching the sub- and pathotype level is the basis of combatting notifiable AIV infections. Real-time RT-PCR (RT-qPCR) has become a standard diagnostic tool. Here, a total of 24 arrayed RT-qPCRs is introduced for full subtyping of 16 hemagglutinin and nine neuraminidase subtypes of AIV. This array, designated Riems Influenza A Typing Array version 2 (RITA-2), represents an updated and economized version of the RITA-1 array previously published by Hoffmann et al. RITA-2 provides improved integration of assays (24 instead of 32 parallel reactions) and reduced assay volume (12.5 µL). The technique also adds RT-qPCRs to detect Newcastle Disease (NDV) and Infectious Bronchitis viruses (IBV). In addition, it maximizes inclusivity (all sequences within one subtype) and exclusivity (no intersubtypic cross-reactions) as shown in validation runs using a panel of 428 AIV reference isolates, 15 reference samples each of NDV and IBV, and 122 clinical samples. The open format of RITA-2 is particularly tailored to subtyping influenza A virus of avian hosts and Eurasian geographic origin. Decoupling and re-arranging selected RT-qPCRs to detect specific AIV variants causing epizootic outbreaks with a temporal and/or geographic restriction is possible.


Subject(s)
Infectious bronchitis virus/genetics , Influenza A virus/genetics , Newcastle disease virus/genetics , Real-Time Polymerase Chain Reaction/methods , Animals , Birds/virology , Equidae/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Infectious bronchitis virus/isolation & purification , Influenza A virus/classification , Influenza A virus/isolation & purification , Neuraminidase/genetics , Newcastle disease virus/isolation & purification , Sensitivity and Specificity , Swine/virology
5.
Viruses ; 13(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34960715

ABSTRACT

Newcastle disease virus (NDV) can infect over 250 bird species with variable pathogenicity; it can also infect humans in rare cases. The present study investigated an outbreak in feral pigeons in São Paulo city, Brazil, in 2019. Affected birds displayed neurological signs, and hemorrhages were observed in different tissues. Histopathology changes with infiltration of mononuclear inflammatory cells were also found in the brain, kidney, proventriculus, heart, and spleen. NDV staining was detected by immunohistochemistry. Twenty-seven out of thirty-four tested samples (swabs and tissues) were positive for Newcastle disease virus by RT-qPCR test, targeting the M gene. One isolate, obtained from a pool of positive swab samples, was characterized by the intracerebral pathogenicity index (ICPI) and the hemagglutination inhibition (HI) tests. This isolate had an ICPI of 0.99, confirming a virulent NDV strain. The monoclonal antibody 617/161, which recognizes a distinct epitope in pigeon NDV strains, inhibited the isolate with an HI titer of 512. A complete genome of NDV was obtained using next-generation sequencing. Phylogenetic analysis based on the complete CDS F gene grouped the detected isolate with other viruses from subgenotype VI.2.1.2, class II, including one previously reported in Southern Brazil in 2014. This study reports a comprehensive characterization of the subgenotype VI.2.1.2, which seems to have been circulating in Brazilian urban areas since 2014. Due to the zoonotic risk of NDV, virus surveillance in feral pigeons should also be systematically performed in urban areas.


Subject(s)
Columbidae , Disease Outbreaks/veterinary , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Animals , Brazil/epidemiology , Genome, Viral , Genotype , High-Throughput Nucleotide Sequencing , Newcastle Disease/pathology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Newcastle disease virus/pathogenicity , Phylogeny , Virulence , Whole Genome Sequencing
6.
Mol Biol Rep ; 48(11): 7281-7291, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34623594

ABSTRACT

BACKGROUND: Newcastle disease, is one of the most important diseases of the poultry industry, has many economic losses. The aim of this study was to isolate and determine the molecular identity of Newcastle disease virus in 40 broiler flocks with respiratory symptoms in four provinces of Iran. METHODS AND RESULTS: Samples of farms with respiratory symptoms were collected from different regions of Isfahan, East Azerbaijan, Golestan, and Khuzestan provinces and inoculated into 9-day-old embryonated chicken eggs. The Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect the Newcastle disease virus in allantoic fluid. Of the 40 flocks, the virus was isolated and identified in 16 flocks. The PCR products of 16 isolates were sequenced, and a phylogenetic tree was drawn. Accordingly, six isolates were in genotype II and ten isolates were in subgenotype VII.1.1 (VIId) of class II. CONCLUSION: Both genotypes were present in all four provinces. The isolates of Khuzestan province showed the greatest diversity compared to the other three provinces. The similarity of isolates belonging to genotype II in this study was observed with Pakistan, China, and Nigeria, and other isolates were similar to previous isolates in Iran. Also, the highest amino acid sequence in the F-protein cleavage site was 112RRQKR/F117 for VII.1.1 (VIId) genotype isolates and 112GRQGR/L117 for II genotype isolates.


Subject(s)
Newcastle Disease/virology , Newcastle disease virus/isolation & purification , RNA, Viral , Animals , Chick Embryo , Chickens , Iran , Newcastle disease virus/genetics , Phylogeny , Poultry Diseases/virology , Sequence Analysis, RNA
7.
Viruses ; 13(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-34452385

ABSTRACT

Newcastle disease virus (NDV) is a significant pathogen of poultry; however, variants also affect other species, including pigeons. While NDV is endemic in Bangladesh, and poultry isolates have been recently characterized, information about viruses infecting pigeons is limited. Worldwide, pigeon-derived isolates are commonly of low to moderate virulence for chickens. Here, we studied a pigeon-derived NDV isolated in Bangladesh in 2010. To molecularly characterize the isolate, we sequenced its complete fusion gene and performed a comprehensive phylogenetic analysis. We further studied the biological properties of the virus by estimating mean death time (MDT) and by experimentally infecting 5-week-old naïve Sonali chickens. The studied virus clustered in sub-genotype XXI.1.2 with NDV from pigeons from Pakistan isolated during 2014-2018. Deduced amino acid sequence analysis showed a polybasic fusion protein cleavage site motif, typical for virulent NDV. The performed in vivo pathogenicity testing showed a MDT of 40.8 h, and along with previously established intracerebral pathogenicity index of 1.51, these indicated a velogenic pathotype for chickens, which is not typical for pigeon-derived viruses. The experimental infection of chickens resulted in marked neurological signs and high mortality starting at 7 days post infection (dpi). Mild congestion in the thymus and necrosis in the spleen were observed at an advanced stage of infection. Microscopically, lymphoid depletion in the thymus, spleen, and bursa of Fabricius were found at 5 dpi, which progressed to severe in the following days. Mild to moderate proliferation of glial cells was noticed in the brain starting at 2 dpi, which gradually progressed with time, leading to focal nodular aggregation. This study reports the velogenic nature for domestic chickens of a pigeon-derived NDV isolate of sub-genotype XXI.1.2. Our findings show that not all pigeon-derived viruses are of low virulence for chickens and highlight the importance of biologically evaluating the pathogenicity of NDV isolated from pigeons.


Subject(s)
Chickens/virology , Columbidae/virology , Newcastle Disease/mortality , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Poultry Diseases/mortality , Animals , Bangladesh , Eggs/virology , Genome, Viral , Genotype , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Phylogeny , Poultry Diseases/virology , Sequence Analysis, DNA , Virulence
8.
Genes (Basel) ; 12(4)2021 03 29.
Article in English | MEDLINE | ID: mdl-33805275

ABSTRACT

Newcastle disease virus (NDV) causes a highly contagious and devastating disease in poultry. ND causes heavy economic losses to the global poultry industry by decreasing the growth rate, decrease in egg production high morbidity and mortality. Although significant advances have been made in the vaccine development, outbreaks are reported in vaccinated birds. In this study, we report the damage caused by NDV infection in the pancreatic tissues of vaccinated and specific-pathogen-free chickens. The histopathological examination of the pancreas showed severe damage in the form of partial depletion of zymogen granules, acinar cell vacuolization, necrosis, apoptosis, congestion in the large and small vessels, sloughing of epithelial cells of the pancreatic duct, and mild perivascular edema. Increased plasma levels of corticosterone and somatostatin were observed in NDV-infected chicken at three- and five- days post infection (DPI). A slight decrease in the plasma concentrations of insulin was noticed at 5 DPI. Significant changes were not observed in the plasma levels of glucagon. Furthermore, NDV infection decreased the activity and mRNA expression of amylase, lipase, and trypsin from the pancreas. Taken together, our findings highlight that NDV induces extensive tissue damage in the pancreas, decreases the activity and expression of pancreatic enzymes, and increases plasma corticosterone and somatostatin. These findings provide new insights that a defective pancreas may be one of the reasons for decreased growth performance after NDV infection in chickens.


Subject(s)
Islets of Langerhans/pathology , Newcastle Disease/complications , Newcastle disease virus/isolation & purification , Pancreas, Exocrine/pathology , Pancreatitis/veterinary , Poultry Diseases/pathology , Animals , Chickens , Islets of Langerhans/metabolism , Islets of Langerhans/virology , Newcastle Disease/metabolism , Newcastle Disease/virology , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/virology , Pancreatitis/pathology , Pancreatitis/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology
9.
Sci Rep ; 11(1): 8486, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875770

ABSTRACT

Long non-coding RNAs (lncRNAs) are the transcripts of length longer than 200 nucleotides. They are involved in the regulation of various biological activities. Leghorn and Fayoumi breeds of Gallus gallus were known to be having differential resistance against Newcastle Disease Virus (NDV) infection. Differentially expressed genes which were thought to be involved in this pattern of resistance were already studied. Here we report the analysis of the transcriptomic data of Harderian gland of Gallus gallus for studying the lncRNAs involved in regulation of these genes. Using bioinformatics approaches, a total of 37,411 lncRNAs were extracted and 359 lncRNAs were differentially expressing. Functional annotation using co-expression analysis revealed the involvement of lncRNAs in the regulation of various pathways. We also identified 1232 quantitative trait loci (QTLs) associated with the genes interacting with lncRNA. Additionally, we identified the role of lncRNAs as putative micro RNA precursors, and the interaction of differentially expressed Genes with transcription factors and micro RNAs. Our study revealed the role of lncRNAs during host response against NDV infection which would facilitate future experiments in unravelling regulatory mechanisms of development in the genetic improvement of the susceptible breeds of Gallus gallus.


Subject(s)
Chickens/genetics , Disease Resistance , Disease Susceptibility , Newcastle Disease/virology , Newcastle disease virus/isolation & purification , RNA, Long Noncoding/genetics , Transcriptome , Animals , Chickens/virology , Computational Biology/methods , Gene Regulatory Networks
10.
PLoS One ; 16(4): e0247729, 2021.
Article in English | MEDLINE | ID: mdl-33861761

ABSTRACT

This study assessed different methods (tracheal and choanal cleft swabs from individual birds, and poultry dust as a population level measure) to evaluate the shedding kinetics of infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) genome in meat chicken flocks after spray vaccination at hatchery. Dust samples and tracheal and choanal cleft swabs were collected from four meat chicken flocks at 10, 14, 21 and 31 days post vaccination (dpv) and tested for IBV and NDV genome copies (GC) by reverse transcriptase (RT)-PCR. IBV and NDV GC were detected in all sample types throughout the study period. Detection rates for choanal cleft and tracheal swabs were comparable, with moderate and fair agreement between sample types for IBV (McNemar's = 0.27, kappa = 0.44) and NDV (McNemar's = 0.09; kappa = 0.31) GC respectively. There was no significant association for IBV GC in swabs and dust samples (R2 = 0.15, P = 0.13) but NDV detection rates and viral load in swabs were strongly associated with NDV GC in dust samples (R2 = 0.86 and R2 = 0.90, P<0.001). There was no difference in IBV and NDV GC in dust samples collected from different locations within a poultry house. In conclusion, dust samples collected from any location within poultry house show promise for monitoring IBV and NDV GC in meat chickens at a population level and choanal cleft swabs can be used for detection of IBV and NDV GC instead of tracheal swabs in individual birds.


Subject(s)
Coronavirus Infections/veterinary , Infectious bronchitis virus/isolation & purification , Newcastle Disease/diagnosis , Newcastle disease virus/isolation & purification , Poultry Diseases/diagnosis , Animals , Chickens/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Genome, Viral , Infectious bronchitis virus/genetics , Newcastle Disease/prevention & control , Newcastle disease virus/genetics , Poultry Diseases/prevention & control , Vaccination
11.
Arch Virol ; 166(6): 1599-1605, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33755802

ABSTRACT

Pigeon paramyxovirus-1 (PPMV-1) is a strain of Newcastle disease virus (NDV) that has adapted to infect pigeons and poses a constant threat to the commercial poultry industry. Early detection via rapid and sensitive methods, along with timely preventative and mitigating actions, is important for reducing the spread of PPMV-1. Here, we report the development of a TaqMan loop-mediated isothermal amplification assay (TaqMan-LAMP) for rapid and specific detection of PPMV-1 based on the F gene. This system makes use of six novel primers and a TaqMan probe that targets nine distinct regions of the F gene that are highly conserved among PPMV-1 isolates. The results showed that the limit of detection was 10 copies µL-1 for PPMV-1 cDNA and 0.1 ng for PPMV-1 RNA. The reaction was completed within 25 min and was thus faster than conventional RT-PCR. Moreover, no cross-reactions with similar viruses or with peste des petits ruminants virus (PPRV) or NDV LaSota vaccine strains were observed under the same conditions. To evaluate the applicability of the assay, the TaqMan-LAMP assay and a commercial RT-PCR assay were compared using 108 clinical samples, and the concordance rate between two methods was found to be 96.3%. The newly developed PPMV-1 TaqMan-LAMP assay can therefore be used for simple, efficient, rapid, specific, and sensitive diagnosis of PPMV-1 infections.


Subject(s)
Molecular Diagnostic Techniques/veterinary , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Nucleic Acid Amplification Techniques/veterinary , Animals , Columbidae , Feces/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral , Sensitivity and Specificity , Time Factors
12.
Trop Anim Health Prod ; 53(2): 192, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33660073

ABSTRACT

A cross-sectional study was carried out in the period between January and April 2019 with the aim of establishing prevalence of Newcastle disease (ND) in backyard chickens in Banadir region of Somalia using indirect enzyme-linked immunosorbent assay (iELISA). A total of 373 unvaccinated free scavenging backyard chickens were sampled from five districts in Banadir region, namely Dharkenley, Hodan, Wadajir, Hawlwadag, and Daynile. The overall prevalence was found to be 39.4% (95% confidence interval: 34.6-44.4%) with a mean antibody titre of 3844.10 ± 263.3 (standard error). The seroprevalence of ND virus (NDV) antibody in Wadajir district was the highest (66.6%) followed by Hawlwadag, Daynile, Dharkenley, and Hodan with prevalence of 56%, 42.1%, 42.35%, and 10.6%, respectively, with statistically significant differences (P < 0.05). Adult chickens had significantly higher prevalence (43.8%) than growers (19.4%) (P < 0.05). The present study, which is the first of its kind in Somalia to the best of our knowledge, concluded that the disease is highly prevalent in the study area; therefore, molecular studies on the characteristics of circulating strains are to be carried out in order to develop an evidence-based control programme and minimize the economic and social impacts of ND on smallholders.


Subject(s)
Chickens/virology , Newcastle Disease/epidemiology , Poultry Diseases/epidemiology , Animals , Antibodies, Viral/immunology , Cross-Sectional Studies , Female , Male , Newcastle disease virus/immunology , Newcastle disease virus/isolation & purification , Seroepidemiologic Studies , Somalia/epidemiology
13.
J Vet Diagn Invest ; 33(2): 308-312, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33685333

ABSTRACT

Newcastle disease is an avian infectious disease caused by avian orthoavulavirus 1, also known as Newcastle disease virus (NDV). This disease has caused significant economic losses to the poultry industry worldwide. The rapid and simple detection of NDV infection is crucial to inform the appropriate control measures. We developed a reverse-transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow assay (LFA) for NDV detection. The RPA assay can be completed at 37°C within 20 min, and the RPA result can be visualized by the LFA within 5 min. The NDV RT-RPA-LFA detected NDV specifically with no cross-reactivity with other pathogens. The detection limit of NDV cDNA with our RT-RPA-LFA was 3.34 × 10-3 ng/µL. Consequently, the RT-RPA-LFA showed good potential for the detection of NDV infection in the field, especially in resource-limited settings.


Subject(s)
Chickens , Newcastle Disease/diagnosis , Newcastle disease virus/isolation & purification , Poultry Diseases/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
14.
Arch Virol ; 166(4): 1113-1124, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33576898

ABSTRACT

Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.


Subject(s)
Antibodies, Viral/blood , Infectious bronchitis virus/isolation & purification , Influenza A virus/isolation & purification , Newcastle disease virus/isolation & purification , Poultry Diseases/diagnosis , Protein Array Analysis/veterinary , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Immunoassay/standards , Immunoassay/veterinary , Infectious bronchitis virus/immunology , Influenza A virus/immunology , Influenza in Birds/diagnosis , Newcastle Disease/diagnosis , Newcastle disease virus/immunology , Poultry Diseases/virology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sensitivity and Specificity , Serologic Tests/standards , Serologic Tests/veterinary
15.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33507145

ABSTRACT

Newcastle disease virus (NDV) is endemic in Bangladesh and is a major threat to commercial poultry operations. While complete fusion (F) genes are recommended for molecular characterization and classification of NDV isolates, heretofore, only partial F gene data have been available for Bangladeshi NDVs. To this end, we obtained the full-length F gene coding sequences of 11 representative NDVs isolated in Bangladesh between 2010 and 2017. In addition, one of the viruses (MK934289/chicken/Bangladesh/C161/2010) was used in an experimental infection of chickens to establish the viral pathotype and study gross and microscopic lesions. Phylogenetic analysis provided evidence that all studied Bangladeshi isolates belong to genotype XIII.2 of class II NDVs. Six of the viruses were isolated between 2010 and 2017 and grouped together with isolates from neighbouring India during 2013-2016. Another four Bangladeshi isolates (2010-2016) formed a separate monophyletic branch within XIII.2 and showed high nucleotide distance from the isolates from India and the other six Bangladeshi viruses within the sub-genotype; however, none of these groups fulfils all classification criteria to be named as a separate sub-genotype. The eleventh Bangladeshi virus studied here (C162) was genetically more distant from the remaining isolates. It out-grouped the viruses from sub-genotypes XIII.2.1 and XIII.2.2 and showed more than 9.5 % nucleotide distance from all genotype XIII sub-genotypes. This isolate may represent an NDV variant that is evolving independently from the other viruses in the region. The experimental infection in chickens revealed that the tested isolate (C161) is a velogenic viscerotropic virus. Massive haemorrhages, congestion and necrosis in different visceral organs, and lymphoid depletion in lymphoid tissues, typical for infection with velogenic NDV, were observed. Our findings demonstrate the endemic circulation of sub-genotype XIII.2 in Southcentral Asia and further genetic diversification of these viruses in Bangladesh and neighbouring India. This constant evolution of the viruses may lead to the establishment of new genetic groups in the region. Additional historical and prospective virus and surveillance data from the region and neighbouring countries will allow a more detailed epidemiological inference.


Subject(s)
Genetic Variation , Newcastle Disease/virology , Newcastle disease virus/genetics , Animals , Asia , Bangladesh/epidemiology , Chickens/virology , Evolution, Molecular , Genotype , India , Lung/pathology , Newcastle Disease/epidemiology , Newcastle Disease/pathology , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Newcastle disease virus/pathogenicity , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/pathology , Poultry Diseases/virology , RNA, Viral/genetics , Virulence
16.
Viruses ; 13(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498495

ABSTRACT

Newcastle disease (ND) is a highly transmissible and devastating disease that affects poultry and wild birds worldwide. Comprehensive knowledge regarding the characteristics and epidemiological factors of the ND virus (NDV) is critical for the control and prevention of ND. Effective vaccinations can prevent and control the spread of the NDV in poultry populations. For decades, the Democratic Republic of the Congo (DRC) has reported the impacts of ND on commercial and traditional poultry farming systems. The reports were preliminary clinical observations, and few cases were confirmed in the laboratory. However, data on the phylogenetic, genetic, and virological characteristics of NDVs circulating in the DRC are not available. In this study, the whole-genome sequences of three NDV isolates obtained using the next-generation sequencing method revealed two isolates that were a new variant of NDV, and one isolate that was clustered in the subgenotype VII.2. All DRC isolates were velogenic and were antigenically closely related to the vaccine strains. Our findings reveal that despite the circulation of the new variant, ND can be controlled in the DRC using the current vaccine. However, epidemiological studies should be conducted to elucidate the endemicity of the disease so that better control strategies can be implemented.


Subject(s)
Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/genetics , Poultry Diseases/virology , Animals , Democratic Republic of the Congo/epidemiology , Genotype , Newcastle disease virus/isolation & purification , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing
17.
Viruses ; 13(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451125

ABSTRACT

Kenyan poultry consists of ~80% free-range indigenous chickens kept in small flocks (~30 birds) on backyard poultry farms (BPFs) and they are traded via live bird markets (LBMs). Newcastle disease virus (NDV) was detected in samples collected from chickens, wild farm birds, and other domestic poultry species during a 2017-2018 survey conducted at 66 BPFs and 21 LBMs in nine Kenyan counties. NDV nucleic acids were detected by rRT-PCR L-test in 39.5% (641/1621) of 1621 analyzed samples, of which 9.67% (62/641) were NDV-positive by both the L-test and a fusion-test designed to identify the virulent virus, with a majority being at LBMs (64.5%; 40/62) compared to BPFs (25.5%; 22/62). Virus isolation and next-generation sequencing (NGS) on a subset of samples resulted in 32 complete NDV genome sequences with 95.8-100% nucleotide identities amongst themselves and 95.7-98.2% identity with other east African isolates from 2010-2016. These isolates were classified as a new sub-genotype, V.3, and shared 86.5-88.9% and 88.5-91.8% nucleotide identities with subgenotypes V.1 and V.2 viruses, respectively. The putative fusion protein cleavage site (113R-Q-K-R↓F 117) in all 32 isolates, and a 1.86 ICPI score of an isolate from a BPF chicken that had clinical signs consistent with Newcastle disease, confirmed the high virulence of the NDVs. Compared to genotypes V and VI viruses, the attachment (HN) protein of 18 of the 32 vNDVs had amino acid substitutions in the antigenic sites. A time-scaled phylogeographic analysis suggests a west-to-east dispersal of the NDVs via the live chicken trade, but the virus origins remain unconfirmed due to scarcity of continuous and systematic surveillance data. This study reveals the widespread prevalence of vNDVs in Kenyan backyard poultry, the central role of LBMs in the dispersal and possibly generation of new virus variants, and the need for robust molecular epidemiological surveillance in poultry and non-poultry avian species.


Subject(s)
Chickens/virology , Genotype , Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/genetics , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Farms , Genome, Viral , Genomics/methods , Kenya/epidemiology , Molecular Epidemiology , Newcastle disease virus/isolation & purification , Newcastle disease virus/pathogenicity , Phylogeny , Phylogeography , Public Health Surveillance , RNA, Viral , Spatio-Temporal Analysis , Virulence
18.
Avian Pathol ; 50(1): 78-84, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33059461

ABSTRACT

General diagnosis of poultry viruses primarily relies on detection of viruses in samples, but many farms are located in remote areas requiring logistic transportation. Filter paper cards are a useful technology that offer an alternative for collecting and preserving samples without hazardous exposure. The goal of this study was to compare three filter papers: the Flinders Technology Associates filter (FTA®) card, dried blood spot (DBS) card and qualitative filter paper (FP) grade 2 to collect poultry samples. In particular, we have used Newcastle disease virus (NDV) to evaluate safety and a Marek's disease virus (MDV) attenuated vaccine (CVI988) to evaluate stability of viral DNA. This experiment was divided into two parts. The first part was to determine the DNA stability and detection limit of CVI988 in samples collected in different paper supports after four storage times (3, 7, 14 and 30 days post spot). The second part was to determine the safety of papers by evaluating the viral inactivation efficacy using NDV as a representative virus. Results showed that all papers could preserve CVI988 DNA at all times, with a detection limit of 0.5 PFU/5 µl for FTA® and DBS cards, and 5 PFU/5 µl for FP. Our results showed that the NDV remained viable and infectious on the DBS card and FP, while no viable virus was detected on the FTA® card, suggesting that the FTA® card was safest to use. Therefore, the use of the DBS card and FP for infectious sample collection should be discouraged and reconsidered. RESEARCH HIGHLIGHTS The detection limits of the FTA® card, DBS card and FP for CVI988 detection were 0.5, 0.5 and 5 PFU/5 µl, respectively. All three filter papers could preserve viral DNA for at least 30 days of post spot. The DBS card and FP are not suitable for collecting NDV samples, which is one of the major economical threats for the poultry industry worldwide.


Subject(s)
Herpesvirus 2, Gallid/isolation & purification , Marek Disease/virology , Newcastle Disease/virology , Newcastle disease virus/isolation & purification , Poultry Diseases/virology , Specimen Handling/veterinary , Animals , DNA, Viral/genetics , Herpesvirus 2, Gallid/genetics , Limit of Detection , Newcastle disease virus/genetics , Poultry , Virus Inactivation
19.
Virus Genes ; 57(1): 100-105, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33130962

ABSTRACT

The causative agent of Newcastle disease (ND) of poultry is the avian paramyxovirus-1, also commonly known as ND virus (NDV). Like in many developing countries, ND is endemic in Niger and has significant economic impact on commercial and backyard poultry production. NDVs were characterized in Niger between 2006 and 2008 and shown to belong to genotypes XIV.1 and XVII. In order to determine the current situation regarding the virus in Niger, tracheas (n = 384) were collected for the detection of NDV from both healthy (n = 335) and sick (n = 49) backyard poultry in 2019. Of these samples, 24 from sick chickens were positive for NDV by conventional RT-PCR. Sequencing of the fusion protein gene and phylogenetic analysis revealed that the viruses belonged to either genotype XIV.2 or XVIII.2. No NDVs of genotype XIV.1 or XVII were identified in the current study highlighting the dynamic nature of NDV circulation in Niger and the region.


Subject(s)
Newcastle Disease , Newcastle disease virus/isolation & purification , Poultry Diseases , Poultry/virology , Animals , Genotype , Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/genetics , Niger/epidemiology , Poultry Diseases/epidemiology , Poultry Diseases/virology , RNA, Viral , Viral Proteins/genetics
20.
Viruses ; 12(11)2020 11 14.
Article in English | MEDLINE | ID: mdl-33202558

ABSTRACT

Newcastle disease virus (NDV) infections are well known to harbour quasispecies, due to the error-prone nature of the RNA polymerase. Quasispecies variants in the fusion cleavage site of the virus are known to significantly change its virulence. However, little is known about the genomic patterns of diversity and selection in NDV viral swarms. We analyse deep sequencing data from in vitro and in vivo NDV infections to uncover the genomic patterns of diversity and the signatures of selection within NDV swarms. Variants in viruses from in vitro samples are mostly localised in non-coding regions and 3' and 5' untranslated regions (3'UTRs or 5'UTRs), while in vivo samples contain an order of magnitude more variants. We find different patterns of genomic divergence and diversity among NDV genotypes, as well as differences in the genomic distribution of intra-host variants among in vitro and in vivo infections of the same strain. The frequency spectrum shows clear signatures of intra-host purifying selection in vivo on the matrix protein (M) coding gene and positive or diversifying selection on nucleocapsid (NP) and haemagglutinin-neuraminidase (HN). The comparison between within-host polymorphisms and phylogenetic divergence reveals complex patterns of selective pressure on the NDV genome at between- and within-host level. The M sequence is strongly constrained both between and within hosts, fusion protein (F) coding gene is under intra-host positive selection, and NP and HN show contrasting patterns: HN RNA sequence is positively selected between hosts while its protein sequence is positively selected within hosts, and NP is under intra-host positive selection at the RNA level and negative selection at the protein level.


Subject(s)
Evolution, Molecular , Genetic Variation , Newcastle disease virus/genetics , Quasispecies/genetics , Animals , Cell Line , Chick Embryo/virology , Chickens , Genome, Viral , Genomics , Genotype , Hemagglutinins/genetics , Hemagglutinins/metabolism , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Neuraminidase/genetics , Neuraminidase/metabolism , Newcastle Disease , Newcastle disease virus/isolation & purification , Phylogeny , Poultry Diseases/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sequence Analysis, RNA , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...