Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 556
Filter
1.
Physiol Rep ; 12(8): e16019, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627220

ABSTRACT

Inactivity can lead to muscle atrophy and capillary regression in skeletal muscle. Niacin (NA), known for inducing hypermetabolism, may help prevent this capillary regression. In this study involving adult female Sprague-Dawley rats, the animals were randomly assigned to one of four groups: control (CON), hindlimb unloading (HU), NA, and HU with NA supplementation (HU + NA). For a period of 2 weeks, the rats in the HU and HU + NA groups underwent HU, while those in the NA and HU + NA groups received NA (750 mg/kg) twice daily through oral administration. The results demonstrated that HU lowered capillary number, luminal diameter, and capillary volume, as well as decreased succinate dehydrogenase activity, slow fiber composition, and PGC-1α expression within the soleus muscle. However, NA supplementation prevented these alterations in capillary structure due to unloading by stimulating PGC-1α factors and inhibiting mitochondrial dysfunction. Therefore, NA supplementation could serve as a potential therapeutic approach for preserving the capillary network and mitochondrial metabolism of muscle fibers during periods of inactivity.


Subject(s)
Niacin , Rats , Female , Animals , Rats, Sprague-Dawley , Niacin/pharmacology , Niacin/metabolism , Niacin/therapeutic use , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Dietary Supplements , Hindlimb Suspension/methods
2.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38637306

ABSTRACT

Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterized, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred premid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the wine-making industry.


Subject(s)
Fermentation , NAD , Niacin , Oxidation-Reduction , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Niacin/metabolism , NAD/metabolism , Ethanol/metabolism , Coenzymes/metabolism
3.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38417847

ABSTRACT

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity. Since niacin deficiency has been reported in alcoholic patients, and niacin coenzyme NAD is used as substrate to dehydrogenate ethanol in the liver, ethanol consumption can be a factor to impair niacin nutritional status. We have recently established the niacin insufficient model mice using kynurenine 3-monooxygenase knock out (KMO-/-) mice with niacin-limited diet, which lack the de novo NAD synthesis pathway from tryptophan. To evaluate the effects of chronic ethanol intake on niacin nutritional status, 4 wk old KMO-/- mice were fed 4 or 30 mg/kg nicotinic acid containing diets with or without 15% ethanol for 35 d. The mice fed 4 mg/kg nicotinic acid diet with ethanol showed lower body weight gain and niacin nutritional markers such as liver and blood NAD, and urine nicotinamide metabolites than the mice without ethanol. These animals did not show any difference in the NAD synthesis, NAD salvage and nicotinamide catabolic pathways. Chronic ethanol intake failed to affect any indices in the mice fed the 30 mg/kg nicotinic acid diet. When the diet was exchanged the 4 mg/kg for 30 mg/kg nicotinic acid diet to the mice showed chronic ethanol-induced growth retardation, their body weight rapidly increased. These results show that chronic ethanol intake impairs niacin nutritional status in the niacin insufficient mice, and enough niacin intake can prevent this impairment. Our findings also suggest that chronic ethanol intake increases niacin requirement by increase of NAD consumption.


Subject(s)
Alcoholism , Niacin , Humans , Mice , Animals , Niacin/metabolism , Nutritional Status , NAD/metabolism , Niacinamide , Body Weight
4.
J Immunol ; 212(5): 771-784, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38197634

ABSTRACT

Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.


Subject(s)
Anaphylaxis , Niacin , Mice , Animals , Anaphylaxis/drug therapy , Anaphylaxis/metabolism , Niacin/pharmacology , Niacin/metabolism , Dinoprostone/metabolism , Butyrates/pharmacology , Butyrates/metabolism , Valerates/metabolism , Mast Cells/metabolism , Epigenesis, Genetic , Immunoglobulin E/metabolism , Cell Degranulation
5.
J Pediatr Urol ; 20(2): 281.e1-281.e7, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212166

ABSTRACT

INTRODUCTION: The testicular ischemia-reperfusion (I/R) injury is characterized by the excessive aggregation of un-scavenged reactive oxygen species, leading to the heightened levels of oxidative stress. This phenomenon plays a pivotal role in the pathophysiology of testicular torsion damage. OBJECTIVE: The current study aimed to detect the prophylactic and therapeutic effects of niacin on testicular I/R injury. STUDY DESIGN: Twenty-four healthy adult male Sprague Dawley rats were randomly allocated into three groups as follows: (1) sham group, (2) torsion/detorsion (T/D) group, and (3) treatment group which received 200 mg/kg niacin along with testicular T/D. Torsion/detorsion was induced by 2 h of torsion followed by 10 days of reperfusion period. In the treatment group, niacin was injected 30 min before the reperfusion period intraperitoneally and continued for 10 days by oral gavage. RESULTS: T/D was associated with marked decreases in terms of sperm count, viability, and kinematic parameters versus the sham group (P < 0.05), which niacin significantly reverted the kinematic parameters (P < 0.05). I/R injury caused a significant increase in the number of abnormal epididymal sperms compared to the sham group (P < 0.05). Niacin decreased the epididymal sperm abnormality significantly compared to the T/D group (P < 0.05). Tissue abnormalities in T/D group, such as edema, hyperemia, inflammation, and necrosis were completely visible histopathologically, while the histological changes in the niacin-treated group were better than those in the T/D group. Regarding the pathological parametric evaluations, I/R injury significantly reduced the mean testicular biopsy score (MTBS), germinal epithelial cell thickness (GECT), and mean seminiferous tubular diameter (MSTD), and increased the tubular hypoplasia/atrophy (THA) compared to the sham group (P < 0.05), which niacin treatment significantly improved the MTBS and GECT compared to the T/D group (P < 0.05). T/D significantly increased the oxidative stress index (OSI) and lipid peroxidation (MDA) (P < 0.05). Niacin significantly reduced the OSI and MDA levels compared to the T/D group (P < 0.05). DISCUSSION: The current study found that niacin has preventive/therapeutic effects against the elevation of oxidative stress markers and depletion of antioxidants during I/R injury. Following administration of niacin, a reduction in histologic injury was observed in rats. In our study, we showed the antioxidant properties of niacin and its capacity to protect against I/R damage. CONCLUSION: The findings of the present investigation revealed that niacin, as an antioxidant agent, can suppress the oxidative stress induced by testicular I/R injury, and can be used as a supplementary agent in the treatment of those undergoing testicular torsion surgery.


Subject(s)
Niacin , Reperfusion Injury , Spermatic Cord Torsion , Male , Rats , Animals , Humans , Testis/pathology , Spermatic Cord Torsion/complications , Spermatic Cord Torsion/drug therapy , Spermatic Cord Torsion/pathology , Niacin/pharmacology , Niacin/therapeutic use , Niacin/metabolism , Antioxidants/therapeutic use , Rats, Sprague-Dawley , Semen , Reperfusion Injury/prevention & control , Oxidative Stress , Ischemia , Malondialdehyde/metabolism
6.
Brain Res ; 1824: 148686, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38008243

ABSTRACT

Alzheimer's disease (AD) is a multifactorial,neurodegenerative disorder linked withextracellular amyloid beta (Aß) plaques deposition and formation of intracellular neurofibrillary tangles (NFTs). Currently, no effective therapies are available to cure AD. Neuroinflammation isa well-known hallmark in the onset and advancement of AD and triggering receptor expressed on myeloid cells-2 (TREM-2), a microglial gene, is responsible for regulating inflammatory responses and clearance of cellular debris. Loss of TREM-2functionincreases neuroinflammation associated expression of pro-inflammatory markersthus resultingin reduced clearance of Aß that further aid in disease progression.Therefore, targeting neuroinflammation is a good therapeutic approach for AD. This study aimed to determine the neuroprotective effect of nicotinic acid (NA) in vitro model of AD-like pathology induced in F-98 cell line using Phytohemagglutinin (PHA). MTT assay was employed for checking the cell viability as well as the proliferation of the cells following treatment with NA. PHA at the concentration of 10 µg/mL produces maximum plaques. The neuroprotective effect of NA was next evaluated against PHA-induced plaques and it was observed that NA reverses the damages induced by PHA i.e., by inhibiting the clustering of the cells and replacing the damaged cells with the new ones. Further, NA also increased the expression of TREM-2/DAP-12 with parallel decreased in the expression of IL-1ß, TNF-α and iNOS. It also successfully altered disease associated ADAM-10 and BACE-1 compared to PHA control. These findings suggest that NA might be considered as a good therapeutic candidate for the treatment of neurodegenerative disorders like AD.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Niacin , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Phytohemagglutinins/metabolism , Phytohemagglutinins/pharmacology , Phytohemagglutinins/therapeutic use , Microglia/metabolism , Niacin/metabolism , Niacin/pharmacology , Niacin/therapeutic use , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases
7.
Nat Commun ; 14(1): 8095, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092728

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) plays a major role in NAD biosynthesis in many cancers and is an attractive potential cancer target. However, factors dictating therapeutic efficacy of NAMPT inhibitors (NAMPTi) are unclear. We report that neuroendocrine phenotypes predict lung and prostate carcinoma vulnerability to NAMPTi, and that NAMPTi therapy against those cancers is enhanced by dietary modification. Neuroendocrine differentiation of tumor cells is associated with down-regulation of genes relevant to quinolinate phosphoribosyltransferase-dependent de novo NAD synthesis, promoting NAMPTi susceptibility in vitro. We also report that circulating nicotinic acid riboside (NAR), a non-canonical niacin absent in culture media, antagonizes NAMPTi efficacy as it fuels NAMPT-independent but nicotinamide riboside kinase 1-dependent NAD synthesis in tumors. In mouse transplantation models, depleting blood NAR by nutritional or genetic manipulations is synthetic lethal to tumors when combined with NAMPTi. Our findings provide a rationale for simultaneous targeting of NAR metabolism and NAMPT therapeutically in neuroendocrine carcinoma.


Subject(s)
Carcinoma, Neuroendocrine , Niacin , Male , Mice , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Niacin/pharmacology , Niacin/metabolism , NAD/metabolism , Cytokines/metabolism , Carcinoma, Neuroendocrine/drug therapy , Cell Line, Tumor
8.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 305-313, 2023.
Article in English | MEDLINE | ID: mdl-37940571

ABSTRACT

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity, and low NAD levels with aging and feeding high fat diets develop and progress age-related diseases. Although recent findings suggest the requirement of niacin insufficient animal model to further study, appropriate animal models have not been established yet because niacin is biosynthesized from tryptophan via tryptophan-nicotinamide pathway. To establish model mice to evaluate niacin nutritional status, we used kynurenine 3-monooxygenase knock out (KMO-/-) mice which lack NAD biosynthesis pathway from tryptophan. To determine the niacin requirement and assess niacin nutritional markers, 4 wk old KMO-/- mice were fed 2-30 mg/kg nicotinic acid containing diets for 28 d. More than 4 mg/kg but not less than 3 mg/kg nicotinic acid containing diets induced maximum growth, and niacin nutritional markers in the blood, liver and urine increased with increase of dietary nicotinic acid. These results showed that several niacin nutritional markers reflect niacin nutritional status, niacin nutritional status can be controlled by dietary nicotinic acid, and niacin requirement for maximum growth is 4 mg/kg nicotinic acid diets in the KMO-/- mice. This animal model useful to investigate pathophysiology and mechanism of niacin deficiency, clarify the relationships between niacin nutritional status and age-related and lifestyle diseases, and evaluate factors affecting niacin nutritional status.


Subject(s)
Niacin , Mice , Animals , Niacin/metabolism , Nutritional Status , Tryptophan/metabolism , NAD/metabolism , Niacinamide
9.
J Nutr Health Aging ; 27(9): 709-718, 2023.
Article in English | MEDLINE | ID: mdl-37754210

ABSTRACT

BACKGROUND AND AIMS: Age-related loss of skeletal muscle mass and strength begins at 40 years of age, and limited evidence suggests that niacin supplementation increases levels of nicotinamide adenine dinucleotide in mouse muscle tissue. In addition, skeletal muscle has a key role in the body's processing of glucose. Therefore, this study aimed to investigate the relationship between dietary niacin and skeletal muscle mass, strength, and glucose homeostasis in people aged 40 years and older. METHODS: This study was an American population-based cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES). Considering that some outcomes are only measured in specific survey cycles and subsamples, we established three data sets: a grip strength dataset (2011-2014, n=3772), a body mass components dataset (2011-2018, n=3279), and a glucose homeostasis dataset (1999-2018, n=9189). Dietary niacin and covariates were measured in all survey cycles. Linear regression or logistic regression models that adjusted for several main covariates, such as physical activity and diet, was used to evaluate the relationship between dietary niacin and grip strength, total lean mass, appendicular lean mass, total fat, trunk fat, total bone mineral content, homeostasis model assessment of insulin resistance (HOMA-IR), fasting blood glycose, fasting insulin and sarcopenia risk. Subgroup analyses, a trend test, an interaction test, and a restricted cubic spline were used for further exploration. RESULTS: Higher dietary niacin intake was significantly correlated with higher grip strength (ß 0.275, 95% confidence intervals [CI] 0.192-0.357), higher total lean mass (ß 0.060, 95% CI 0.045-0.074), higher appendicular lean mass (ß 0.025, 95% CI 0.018-0.033), and higher total bone mineral content (ß 0.005, 95% CI 0.004-0.007). By contrast, higher dietary niacin intake was significantly associated with lower total fat (ß -0.061, 95% CI -0.076 to -0.046), lower trunk fat (ß -0.041, 95% CI -0.050 to -0.032) and lower sarcopenia risk (OR 0.460, 95% CI 0.233 to 0.907). In addition, dietary niacin significantly reduced HOMA-IR, fasting blood glucose (in participants without diabetes), and fasting insulin (p <0.05). CONCLUSION: Niacin is associated with improved body composition (characterized by increased muscle mass and decreased fat content) and improved glucose homeostasis in dietary doses. Dietary niacin supplementation is a feasible way to alleviate age-related muscular loss.


Subject(s)
Niacin , Sarcopenia , Animals , Mice , Humans , Adult , Middle Aged , Sarcopenia/prevention & control , Sarcopenia/complications , Nutrition Surveys , Niacin/metabolism , Cross-Sectional Studies , Muscle Strength , Body Composition/physiology , Muscle, Skeletal/pathology , Insulin , Hand Strength/physiology , Diet , Glucose/metabolism , Homeostasis
10.
Clin Nutr ; 42(11): 2138-2150, 2023 11.
Article in English | MEDLINE | ID: mdl-37774650

ABSTRACT

BACKGROUND & AIM: When considered separately, long-term immediate-release niacin and fatty meals enriched in monounsaturated fatty acids (MUFA) decrease postprandial triglycerides, but their effects on postprandial inflammation, which is common in individuals with metabolic syndrome, are less known. Moreover, successful combination is lacking and its impact on acute disorders of the innate immune cells in the metabolic syndrome remains unclear. Here, we aimed to establish the effects from combination with niacin of different fats [butter, enriched in saturated fatty acids (SFA), olive oil, enriched in MUFA, and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on plasma inflammatory markers and circulating monocyte subsets, activation and priming at the postprandial period in individuals with metabolic syndrome. METHODS: A random-order within-subject crossover experiment was performed, in which 16 individuals with metabolic syndrome and 16 age-matched healthy volunteers took 2 g immediate-release niacin together with the corresponding fatty meal or a meal with no fat as control. In total, 128 postprandial curves were analysed. We sampled hourly over 6 h for plasma concentrations of soluble inflammatory markers and triglycerides. Circulating monocyte subsets (CD14/CD16 balance), activation (CCL2/CCR2 axis) and priming (M1/M2-like phenotype) at the time of postprandial hypertriglyceridemic peak were also addressed. RESULTS: Dietary SFA (combined with niacin) promote postprandial excursions of circulating IL-6, IL-1ß, TNF-α and CD14/CCR2-rich monocytes with a pro-inflammatory M1-like phenotype, particularly in individuals with metabolic syndrome. In contrast, dietary MUFA (combined with niacin) postprandially increased circulating CD16-rich monocytes with an anti-inflammatory M2-like phenotype. Omega-3 PUFA did not add to the effects of MUFA. CONCLUSION: The co-administration of a single-dose of immediate-release niacin with a fatty meal rich in MUFA, in contrast to SFA, suppresses postprandial inflammation at the levels of both secretory profile and monocyte response in individuals with metabolic syndrome. These findings highlight a potential role of combining niacin and dietary MUFA for the homeostatic control of inflammation and the innate immune system, identifying a new search direction for the management of disorders associated with the metabolic syndrome.


Subject(s)
Metabolic Syndrome , Niacin , Male , Humans , Fatty Acids, Monounsaturated/pharmacology , Monocytes/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Dietary Fats/metabolism , Niacin/metabolism , Olive Oil , Postprandial Period , Fatty Acids/metabolism , Triglycerides , Inflammation/drug therapy , Inflammation/metabolism , Meals
11.
PLoS One ; 18(8): e0289409, 2023.
Article in English | MEDLINE | ID: mdl-37535643

ABSTRACT

The objective of our study was to assess the effect of rumen-protected niacin supplementation on the transcriptome of liver tissue in growing Angus × Simmental steers and heifers through RNA-seq analysis. Consequently, we wanted to assess the known role of niacin in the physiological processes of vasodilation, detoxification, and immune function in beef hepatic tissue. Normal weaned calves (~8 months old) were provided either a control diet or a diet supplemented with rumen-protected niacin (6 g/hd/d) for a 30-day period, followed by a liver biopsy. We observed a significant list of changes at the transcriptome level due to rumen-protected niacin supplementation. Several metabolic pathways revealed potential positive effects to the animal's liver metabolism due to administration of rumen-protected niacin; for example, a decrease in lipolysis, apoptosis, inflammatory responses, atherosclerosis, oxidative stress, fibrosis, and vasodilation-related pathways. Therefore, results from our study showed that the liver transcriptional machinery switched several metabolic pathways to a condition that could potentially benefit the health status of animals supplemented with rumen-protected niacin. In conclusion, based on the results of our study, we can suggest the utilization of rumen-protected niacin supplementation as a nutritional strategy could improve the health status of growing beef cattle in different beef production stages, such as backgrounding operations or new arrivals to a feedlot.


Subject(s)
Niacin , Cattle , Animals , Female , Niacin/pharmacology , Niacin/metabolism , Rumen/metabolism , Dietary Supplements , Diet/veterinary , Liver , Animal Feed/analysis
12.
Front Immunol ; 14: 1215329, 2023.
Article in English | MEDLINE | ID: mdl-37465689

ABSTRACT

Hericium erinaceus, berberine, and quercetin are effective in experimental colitis. It is unknown whether they can ameliorate inflammatory bowel diseases in humans. This ex vivo study aimed to evaluate the anti-inflammatory potential of a nutraceutical compound of HBQ-Complex® (H. erinaceus, berberine, and quercetin), biotin, and niacin in inflammatory bowel disease patients. Tissue specimens were obtained either from Normal-Appearing Mucosa (NAM) or from Inflamed Mucosa (IM) in 20 patients with inflammatory bowel disease. mRNA and protein expression of COX-2, IL-10, and TNF-α were determined in NAM and IM biopsy samples (T0). IM samples were then incubated in HBQ-Complex® (with the addition of niacin and biotin), and COX-2, IL-10, and TNF-α tissue levels were evaluated at 120 minutes (T1) and 180 minutes (T2). Incubation with this compound resulted in a progressive decrease in gene and protein COX-2 and TNF-α expression at T1/T2 in the IM. IL-10 showed an opposite trend, with a progressive increase of mRNA and protein expression over the same time window. HBQ-Complex® (with the addition of niacin and biotin) decreased the expression of proinflammatory cytokines at the mRNA and protein levels in IBD tissue. On the contrary, mRNA and protein expression of the anti-inflammatory cytokine IL-10 showed a progressive increase.


Subject(s)
Antineoplastic Agents , Berberine , Inflammatory Bowel Diseases , Niacin , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vitamins/metabolism , Flavonoids , Niacin/metabolism , Biotin/metabolism , Quercetin/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Intestinal Mucosa/metabolism , Inflammatory Bowel Diseases/metabolism , Cytokines/metabolism , RNA, Messenger/metabolism
13.
Microbiol Spectr ; 11(3): e0445722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37014254

ABSTRACT

Burkholderia gladioli strain NGJ1 exhibits mycophagous activity on a broad range of fungi, including Rhizoctonia solani, a devastating plant pathogen. Here, we demonstrate that the nicotinic acid (NA) catabolic pathway in NGJ1 is required for mycophagy. NGJ1 is auxotrophic to NA and it potentially senses R. solani as a NA source. Mutation in the nicC and nicX genes involved in NA catabolism renders defects in mycophagy and the mutant bacteria are unable to utilize R. solani extract as the sole nutrient source. As supplementation of NA, but not FA (fumaric acid, the end product of NA catabolism) restores the mycophagous ability of ΔnicC/ΔnicX mutants, we anticipate that NA is not required as a carbon source for the bacterium during mycophagy. Notably, nicR, a MarR-type of transcriptional regulator that functions as a negative regulator of the NA catabolic pathway is upregulated in ΔnicC/ΔnicX mutant and upon NA supplementation the nicR expression is reduced to the basal level in both the mutants. The ΔnicR mutant produces excessive biofilm and is completely defective in swimming motility. On the other hand, ΔnicC/ΔnicX mutants are compromised in swimming motility as well as biofilm formation, potentially due to the upregulation of nicR. Our data suggest that a defect in NA catabolism alters the NA pool in the bacterium and upregulates nicR which in turn suppresses bacterial motility as well as biofilm formation, leading to mycophagy defects. IMPORTANCE Mycophagy is an important trait through which certain bacteria forage over fungal mycelia and utilize fungal biomass as a nutrient source to thrive in hostile environments. The present study emphasizes that nicotinic acid (NA) is important for bacterial motility and biofilm formation during mycophagy by Burkholderia gladioli strain NGJ1. Defects in NA catabolism potentially alter the cellular NA pool, upregulate the expression of nicR, a negative regulator of biofilm, and therefore suppress bacterial motility as well as biofilm formation, leading to mycophagy defects.


Subject(s)
Burkholderia gladioli , Niacin , Burkholderia gladioli/metabolism , Niacin/metabolism , Bacteria/metabolism , Biofilms , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
14.
Neurotherapeutics ; 20(4): 1037-1054, 2023 07.
Article in English | MEDLINE | ID: mdl-37084148

ABSTRACT

Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Neurology , Niacin , Pellagra , Humans , Niacin/therapeutic use , Niacin/metabolism , Amyloid beta-Peptides , Pellagra/metabolism
15.
Nat Commun ; 14(1): 1849, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012289

ABSTRACT

Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD+ in the pathophysiology of human cancer cachexia. Overall, our results propose NAD+ metabolism as a therapy target for cachectic cancer patients.


Subject(s)
Neoplasms , Niacin , Humans , Mice , Animals , Niacin/pharmacology , Niacin/therapeutic use , Niacin/metabolism , NAD/metabolism , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Niacinamide/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/metabolism , Muscle, Skeletal/metabolism
16.
Food Funct ; 14(6): 2642-2656, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36866679

ABSTRACT

As a crucial receptor of BHBA and niacin, GPR109A is largely expressed in the mammary gland. However, the role of GPR109A in milk synthesis and its underlying mechanism is still largely unknown. In this study, we first investigated the effect of GPR109A agonists (niacin/BHBA) on milk fat and milk protein synthesis in a mouse mammary epithelial cell line (HC11) and PMECs (porcine mammary epithelial cells). The results showed that both niacin and BHBA promote milk fat and milk protein synthesis with the activation of mTORC1 signaling. Importantly, knockdown GPR109A attenuated the niacin-induced increase of milk fat and protein synthesis and the niacin-induced activation of mTORC1 signaling. Furthermore, we found that GPR109A downstream G protein-Gαi and -Gßγ participated in the regulation of milk synthesis and the activation of mTORC1 signaling. Consistent with the finding in vitro, dietary supplementation with niacin increases milk fat and protein synthesis in mice with the activation of GPR109A-mTORC1 signaling. Collectively, GPR109A agonists promote the synthesis of milk fat and milk protein through the GPR109A/Gi/mTORC1 signaling pathway.


Subject(s)
Niacin , Receptors, Nicotinic , Mice , Animals , Swine , Niacin/pharmacology , Niacin/metabolism , 3-Hydroxybutyric Acid , Receptors, G-Protein-Coupled/metabolism , Milk Proteins/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
17.
BMC Geriatr ; 23(1): 97, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792992

ABSTRACT

BACKGROUND: Age-related hearing loss (ARHL) is a common phenomenon observed during aging. On the other hand, the decrease in Nicotinamide adenine dinucleotide (NAD +) levels is reported to be closely related to the age-related declines in physiological functions such as ARHL in animal studies. Moreover, preclinical studies confirmed NAD + replenishment effectively prevents the onset of age-related diseases. However, there is a paucity of studies on the relationship between NAD+ metabolism and ARHL in humans. METHODS: This study was analyzed the baseline results of our previous clinical trial, in which nicotinamide mononucleotide or placebo was administered to 42 older men (Igarashi et al., NPJ Aging 8:5, 2022). The correlations between blood levels of NAD+-related metabolites at baseline and pure-tone hearing thresholds at different frequencies (125, 250, 500, 1000, 2000, 4000, and 8000 Hz) in 42 healthy Japanese men aged > 65 years were analyzed using Spearman's rank correlation. Multiple linear regression analysis was performed with hearing thresholds as the dependent variable and age and NAD+-related metabolite levels as independent variables. RESULTS: Positive associations were observed between levels of nicotinic acid (NA, a NAD+ precursor in the Preiss-Handler pathway) and right- or left-ear hearing thresholds at frequencies of 1000 Hz (right: r = 0.480, p = 0.001; left: r = 0.422, p = 0.003), 2000 Hz (right: r = 0.507, p < 0.001, left: r = 0.629, p < 0.001), and 4000 Hz (left: r = 0.366, p = 0.029). Age-adjusted multiple linear regression analysis revealed that NA was an independent predictor of elevated hearing thresholds (1000 Hz (right): p = 0.050, regression coefficient (ß) = 1610; 1000 Hz (left): p = 0.026, ß = 2179; 2000 Hz (right): p = 0.022, ß = 2317; 2000 Hz (left): p = 0.002, ß = 3257). Weak associations of nicotinic acid riboside (NAR) and nicotinamide (NAM) with hearing ability were observed. CONCLUSIONS: We identified negative correlations between blood concentrations of NA and hearing ability at 1000 and 2000 Hz. NAD+ metabolic pathway might be associated with ARHL onset or progression. Further studies are warranted. TRIAL REGISTRATION: The study was registered at UMIN-CTR (UMIN000036321) on 1st June 2019.


Subject(s)
Niacin , Aged , Animals , Humans , Male , Aging/metabolism , Hearing , NAD/metabolism , Niacin/metabolism , Regression Analysis
18.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119384, 2023 01.
Article in English | MEDLINE | ID: mdl-36302465

ABSTRACT

Adverse effects of spaceflight on the human body are attritubuted to microgravity and space radiation. One of the most sensitive organs affected by them is the eye, particularly the retina. The conditions that astronauts suffer, such as visual acuity, is collectively called a spaceflight-associated neuro-ocular syndrome (SANS); however, the underlying molecular mechanism of the microgravity-induced ocular pathogenesis is not clearly understood. The current study explored how microgravity affects the retina function in ARPE19 cells in vitro under time-averaged simulated microgravity (µG) generated by clinostat. We found multicellular spheroid (MCS) formation and a significantly decreased cell migration potency under µG conditions compared to 1G in ARPE19 cells. We also observed that µG increases intracellular reactive oxygen species (ROS) and causes mitochondrial dysfunction in ARPE19 cells. Subsequently, we showed that µG activates autophagic pathways and ciliogenesis. Furthermore, we demonstrated that mitophagy activation is triggered via the mTOR-ULK1-BNIP3 signaling axis. Finally, we validated the effectiveness of TPP-Niacin in mitigating µG-induced oxidative stress and mitochondrial dysfunction in vitro, which provides the first experimental evidence for TPP-Niacin as a potential therapeutic agent to ameliorate the cellular phenotypes caused by µG in ARPE19 cells. Further investigations are, however, required to determine its physiological functions and biological efficacies in primary human retinal cells, in vivo models, and target identification.


Subject(s)
Niacin , Weightlessness , Humans , Niacin/metabolism , Niacin/pharmacology , Oxidative Stress , Epithelial Cells/metabolism , Retina/metabolism , Mitochondria/metabolism
19.
Cell Host Microbe ; 30(12): 1649-1650, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36521437

ABSTRACT

Recently in Cell Metabolism, Challapa et al. used isotope labeling to track NAD metabolism in host tissues and the gut microbiota. They describe a symbiotic relationship in which the gut microbiota uses host-derived nicotinamide to generate NAD and in return, produces nicotinic acid for host NAD biosynthesis.


Subject(s)
NAD , Niacin , NAD/metabolism , Niacinamide/metabolism , Niacin/metabolism
20.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499106

ABSTRACT

Previous research has indicated that various metabolites belonging to phenolic acids (PAs), produced by gut microflora through the breakdown of polyphenols, help in promoting bone development and protecting bone from degeneration. Results have also suggested that G-protein-coupled receptor 109A (GPR109A) functions as a receptor for those specific PAs such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA). Indeed, HA has a molecular structural similarity with nicotinic acid (niacin) which has been shown previously to bind to GPR109A receptor and to mediate antilipolytic effects; however, the binding pocket and the structural nature of the interaction remain to be recognized. In the present study, we employed a computational strategy to elucidate the molecular structural determinants of HA binding to GPR109A and GPR109B homology models in understanding the regulation of osteoclastogenesis. Based on the docking and molecular dynamics simulation studies, HA binds to GPR109A similarly to niacin. Specifically, the transmembrane helices 3, 4 and 6 (TMH3, TMH4 and TMH6) and Extracellular loop 1 and 2 (ECL1 and ECL2) residues of GRP109A; R111 (TMH3), K166 (TMH4), ECL2 residues; S178 and S179, and R251 (TMH6), and residues of GPR109B; Y87, Y86, S91 (ECL1) and C177 (ECL2) contribute for HA binding. Simulations and Molecular Mechanics Poisson-Boltzmann solvent accessible area (MM-PBSA) calculations reveal that HA has higher affinity for GPR109A than for GPR109B. Additionally, in silico mutation analysis of key residues have disrupted the binding and HA exited out from the GPR109A protein. Furthermore, measurements of time-resolved circular dichroism spectra revealed that there are no major conformational changes in the protein secondary structure on HA binding. Taken together, our findings suggest a mechanism of interaction of HA with both GPR109A and GPR109B receptors.


Subject(s)
Niacin , Receptors, Nicotinic , Niacin/metabolism , Receptors, Nicotinic/metabolism , Receptors, G-Protein-Coupled/metabolism , Hippurates , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...