Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(5): 107273, 2024 May.
Article in English | MEDLINE | ID: mdl-38588806

ABSTRACT

The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.


Subject(s)
DNA, Ribosomal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Unfolded Protein Response , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA, Ribosomal/metabolism , DNA, Ribosomal/genetics , Lipid Bilayers/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Nicotinamidase/metabolism , Nicotinamidase/genetics , Sirtuin 2/metabolism , Sirtuin 2/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Glycoproteins
2.
Microbiol Spectr ; 10(1): e0098521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35171012

ABSTRACT

Nicotinamidase (Nic) (E.C.3.5.1.19) is a representative protein of the isochorismatase superfamily from Escherichia coli. Despite showing no (+) γ-lactamase activity, its active site constellations (ASCs) are very similar to those of two other known (+) γ-lactamases (Mhpg and RutB), indicating that it could be a latent (+) γ-lactamase. In this study, the primary sequences of the five representative proteins of the isochorismatase superfamily from E. coli were aligned, and a "lid"-like unit of a six-residue loop (112GENPLV117) was established. The Nic protein was converted to a (+) γ-lactamase by eliminating the loop. A conversion mechanism was proposed in which a more compact binding pocket is formed after lid deletion. In addition, the "shrunk" binding pocket stabilized the small substrate and the catalysis intermediate, which triggered catalysis. Moreover, we identified another latent (+) γ-lactamase in the E. coli isochorismatase superfamily and successfully converted it into an active (+) γ-lactamase. In summary, the isochorismatase superfamily is potentially a good candidate for obtaining novel (+) γ-lactamases. IMPORTANCE γ-Lactamases are important enzymatic catalysts in preparing optically pure γ-lactam enantiomers, which are high-value chiral intermediates. Different studies have presumed that the isochorismatase superfamily is a candidate to obtain novel (+) γ-lactamases. By engineering its substrate entrance tunnel, Nic, a representative protein of the isochorismatase superfamily, is converted to a (+) γ-lactamase. Tunnel engineering has proven effective in enhancing enzyme promiscuity. Therefore, the latent or active γ-lactamase activities of the isochorismatase superfamily members indicate their evolutionary path positions.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Escherichia coli/enzymology , Hydrolases/genetics , Hydrolases/metabolism , Nicotinamidase/genetics , Nicotinamidase/metabolism , Amidohydrolases/chemistry , Biocatalysis , Escherichia coli/chemistry , Escherichia coli/genetics , Hydrolases/chemistry , Multigene Family , Nicotinamidase/chemistry , Protein Engineering , Substrate Specificity
3.
Plant Mol Biol ; 107(1-2): 63-84, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34460049

ABSTRACT

KEY MESSAGE: Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Droughts , Gene Expression Regulation, Plant , Niacin/physiology , Nicotinamidase/genetics , Adaptation, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Models, Biological , NAD/metabolism , NADP/metabolism , Niacin/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/physiology , Plants, Genetically Modified , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
4.
J Antimicrob Chemother ; 74(11): 3231-3239, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31365085

ABSTRACT

BACKGROUND: For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms. OBJECTIVES: We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony's mode of action and the mechanisms leading to resistance. METHODS: SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT-PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation. RESULTS: NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites. CONCLUSIONS: These results establish that Leishmania SCAMK is a new central hub of antimony's mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.


Subject(s)
Amino Acid Substitution , Antimony/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Nicotinamidase/genetics , Protozoan Proteins/genetics , CRISPR-Cas Systems , Calcium/metabolism , Drug Resistance/genetics , Gene Editing , Leishmania/enzymology , Leishmania/genetics , Mutation , Parasitic Sensitivity Tests
5.
Sci Rep ; 9(1): 3647, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842479

ABSTRACT

A novel Alcaligenes sp. strain P156, which can utilize nicotinamide as its sole source of carbon, nitrogen and energy, was enriched and isolated from soil in a solid waste treatment plant. Aerobic growth and degradation with nicotinamide were characterized. Seven nicotinamide degradation-related genes were obtained by sequence alignment from the genome sequence of strain P156. Four genes, designated naaA, naaD, naaE and naaF, were cloned and heterologously expressed. Nicotinamide degradation is initiated by deamination to form nicotinic acid catalyzed by the nicotinamidase NaaA, which shares highest amino acid sequence identity (27.2%) with nicotinamidase from Arabidopsis thaliana. Nicotinic acid is converted to 6-hydroxynicotinic acid, which is further oxidized to 2,5-dihydroxypyridine (2,5-DHP). 2,5-DHP is then transformed to a ring-cleavage product, N-formylmaleamic acid, by an Fe2+ dependent dioxygenase NaaD. N-formylmaleamic acid is transformed to fumaric acid through maleamic acid and maleic acid by NaaE and NaaF, respectively. To our knowledge, this is the first report of the complete microbial degradation of nicotinamide in bacteria. Nicotinamide is considered as a model compound for the study of microbial degradation of pyridinic compounds, and the nicotinamide degrading related genes in strain P156 were distributed differently from the reported similar gene clusters. Therefore, this study contribute to the knowledge on the degradation of pyridinic compounds.


Subject(s)
Alcaligenes/isolation & purification , Niacinamide/chemistry , Nicotinamidase/genetics , Solid Waste/analysis , Alcaligenes/classification , Alcaligenes/genetics , Alcaligenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cloning, Molecular , Nicotinamidase/metabolism , Phylogeny , Sequence Analysis, DNA , Soil Microbiology
6.
Plant Physiol ; 179(4): 1810-1821, 2019 04.
Article in English | MEDLINE | ID: mdl-30692220

ABSTRACT

DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , DNA Demethylation , Nuclear Proteins/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , DNA Methylation , Epigenomics , Gene Expression Regulation, Plant , Metabolic Networks and Pathways/genetics , Nicotinamidase/genetics , Nicotinamidase/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
7.
J Bacteriol ; 200(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29555696

ABSTRACT

Many organisms possess pathways that regenerate NAD+ from its degradation products, and two pathways are known to salvage NAD+ from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD+, respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD+ salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway.IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD+ from nicotinamide (Nm) in the hyperthermophilic archaeon Thermococcus kodakarensis The organism utilizes a four-step pathway that initially hydrolyzes the amide bond of Nm to generate nicotinic acid (Na), followed by phosphoribosylation, adenylylation, and amidation. Although the two-step pathway, consisting of only phosphoribosylation of Nm and adenylylation, seems to be more efficient, Nm mononucleotide in the two-step pathway is much more thermolabile than Na mononucleotide, the corresponding intermediate in the four-step pathway. Although NAD+ itself is thermolabile, this may represent an example of a metabolism that has evolved to avoid the use of thermolabile intermediates.


Subject(s)
NAD/metabolism , Nicotinamidase/metabolism , Nucleotidyltransferases/metabolism , Pentosyltransferases/metabolism , Thermococcus/metabolism , Deamination , Hot Temperature , Niacinamide/metabolism , Nicotinamidase/genetics , Nicotinamide Mononucleotide/analogs & derivatives , Nicotinamide Mononucleotide/metabolism , Nicotinic Acids/metabolism , Nucleotidyltransferases/genetics , Pentosyltransferases/genetics , Recombinant Proteins , Substrate Specificity , Thermococcus/genetics , Thermococcus/growth & development
8.
J Bacteriol ; 199(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28630126

ABSTRACT

NAD (NAD+) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD+ from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD+de novo synthesis pathway. Herein, we report the importance of the NAD+ salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD+ salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide (Km of 17 µM, kcat of 50 s-1, kcat/Km of 3.0 × 103 s-1 · mM-1). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD+ salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD+ and NADH.IMPORTANCE NAD+ and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD+ decomposition is, in general, more rapid. This study emphasizes that NAD+ instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures.


Subject(s)
Gene Deletion , NAD/metabolism , Nicotinamidase/metabolism , Thermus thermophilus/enzymology , Thermus thermophilus/radiation effects , Hot Temperature , Kinetics , Niacinamide/metabolism , Nicotinamidase/genetics , Thermus thermophilus/genetics , Thermus thermophilus/growth & development
9.
EMBO Rep ; 17(12): 1829-1843, 2016 12.
Article in English | MEDLINE | ID: mdl-27799288

ABSTRACT

Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.


Subject(s)
Caloric Restriction , Gene Expression Regulation, Fungal , Histones/metabolism , N-Terminal Acetyltransferase D/deficiency , N-Terminal Acetyltransferase D/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Acetylation , Chromatin/metabolism , Down-Regulation , Gene Expression Profiling , Histone Acetyltransferases/metabolism , Longevity , N-Terminal Acetyltransferase D/genetics , Nicotinamidase/genetics , Nicotinamidase/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Time Factors , Transcriptional Activation
10.
Genetics ; 204(2): 569-579, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27527516

ABSTRACT

Nicotinamide is both a reaction product and an inhibitor of the conserved sirtuin family of deacetylases, which have been implicated in a broad range of cellular functions in eukaryotes from yeast to humans. Phenotypes observed following treatment with nicotinamide are most often assumed to stem from inhibition of one or more of these enzymes. Here, we used this small molecule to inhibit multiple sirtuins at once during treatment with DNA damaging agents in the Saccharomyces cerevisiae model system. Since sirtuins have been previously implicated in the DNA damage response, we were surprised to observe that nicotinamide actually increased the survival of yeast cells exposed to the DNA damage agent MMS. Remarkably, we found that enhanced resistance to MMS in the presence of nicotinamide was independent of all five yeast sirtuins. Enhanced resistance was also independent of the nicotinamide salvage pathway, which uses nicotinamide as a substrate to generate NAD+, and of a DNA damage-induced increase in the salvage enzyme Pnc1 Our data suggest a novel and unexpected function for nicotinamide that has broad implications for its use in the study of sirtuin biology across model systems.


Subject(s)
DNA Damage/genetics , Group III Histone Deacetylases/genetics , Nicotinamidase/genetics , Saccharomyces cerevisiae Proteins/genetics , Sirtuins/genetics , DNA Damage/drug effects , Gene Expression Regulation, Fungal/drug effects , Gene Silencing , Group III Histone Deacetylases/biosynthesis , Methyl Methanesulfonate/toxicity , Niacinamide/pharmacology , Phenotype , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Sirtuins/biosynthesis
11.
Appl Environ Microbiol ; 82(19): 5815-23, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27451449

ABSTRACT

UNLABELLED: Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD(+) quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. IMPORTANCE: Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the pncA mutant Yb2ΔpncA led to a decrease in the NAD(+) content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence of R. anatipestifer and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate.


Subject(s)
Bacterial Proteins/genetics , Ducks , Flavobacteriaceae Infections/veterinary , Nicotinamidase/genetics , Poultry Diseases/immunology , Riemerella/genetics , Virulence Factors/genetics , Animals , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Vaccines/immunology , Bacterial Vaccines/microbiology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/microbiology , Gene Expression , Immunization/veterinary , Nicotinamidase/immunology , Nicotinamidase/metabolism , Poultry Diseases/microbiology , Riemerella/immunology , Riemerella/metabolism , Sequence Deletion , Vaccines, Attenuated/immunology , Virulence Factors/immunology , Virulence Factors/metabolism
12.
Biochim Biophys Acta ; 1863(1): 148-56, 2016 01.
Article in English | MEDLINE | ID: mdl-26516056

ABSTRACT

Saccharomyces cerevisiae glycerol phosphate dehydrogenase 1 (Gpd1) and nicotinamidase (Pnc1) are two stress-induced enzymes. Both enzymes are predominantly localised to peroxisomes at normal growth conditions, but were reported to localise to the cytosol and nucleus upon exposure of cells to stress. Import of both proteins into peroxisomes depends on the peroxisomal targeting signal 2 (PTS2) receptor Pex7. Gpd1 contains a PTS2, however, Pnc1 lacks this sequence. Here we show that Pnc1 physically interacts with Gpd1, which is required for piggy-back import of Pnc1 into peroxisomes. Quantitative fluorescence microscopy analyses revealed that the levels of both proteins increased in peroxisomes and in the cytosol upon exposure of cells to stress. However, upon exposure of cells to stress we also observed enhanced cytosolic levels of the control PTS2 protein thiolase, when produced under control of the GPD1 promoter. This suggests that these conditions cause a partial defect in PTS2 protein import, probably because the PTS2 import pathway is easily saturated.


Subject(s)
Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Nicotinamidase/metabolism , Peroxisomes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Stress, Physiological/physiology , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Nicotinamidase/genetics , Peroxisomal Targeting Signal 2 Receptor , Peroxisomes/genetics , Protein Transport/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
13.
Biochemistry (Mosc) ; 79(1): 54-61, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24512664

ABSTRACT

Nicotinamidase is involved in the maintenance of NAD+ homeostasis and in the NAD+ salvage pathway of most prokaryotes, and it is considered as a possible drug target. The gene (ASAC_0847) encoding a hypothetical nicotinamidase has been found in the genome of the thermophilic archaeon Acidilobus saccharovorans. The product of this gene, NA_As0847, has been expressed in Escherichia coli, isolated, and characterized as a Fe(2+)-containing nicotinamidase (k(cat)/K(m) = 427 mM(-1)·sec(-1))/pyrazinamidase (k(cat)/K(m) = 331 mM(-1)·sec(-1)). NA_As0847 is a homodimer with molecular mass 46.4 kDa. The enzyme has high thermostability (T(1/2) (60°C) = 180 min, T(1/2) (80°C) = 35 min) and thermophilicity (T(opt) = 90°C, E(a) = 30.2 ± 1.0 kJ/mol) and broad pH interval of activity, with the optimum at pH 7.5. Special features of NA_As0847 are the presence of Fe2+ instead of Zn2+ in the active site of the enzyme and inhibition of the enzyme activity by Zn2+ at micromolar concentrations. Analysis of the amino acid sequence revealed a new motif of the metal-binding site (DXHXXXDXXEXXXWXXH) for homological archaeal nicotinamidases.


Subject(s)
Archaeal Proteins/metabolism , Crenarchaeota/enzymology , Nicotinamidase/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Catalytic Domain , Crenarchaeota/genetics , Dimerization , Escherichia coli/metabolism , Genome, Archaeal , Ions/chemistry , Kinetics , Molecular Sequence Data , Nicotinamidase/chemistry , Nicotinamidase/genetics , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment , Temperature , Zinc/chemistry , Zinc/metabolism
14.
PLoS One ; 8(12): e82705, 2013.
Article in English | MEDLINE | ID: mdl-24340054

ABSTRACT

Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD(+) by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM(-1) s(-1). To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/classification , Bacterial Proteins/genetics , Nicotinamidase/classification , Nicotinamidase/genetics , Phylogeny , Amino Acid Sequence , Bacterial Proteins/chemistry , Molecular Sequence Data , Nicotinamidase/chemistry , Protein Structure, Tertiary
15.
PLoS One ; 8(2): e56727, 2013.
Article in English | MEDLINE | ID: mdl-23451075

ABSTRACT

Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia, an important reaction in the NAD(+) salvage pathway. This paper reports a new nicotinamidase from the deep-sea extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831 (OiNIC). The enzyme was active towards nicotinamide and several analogues, including the prodrug pyrazinamide. The enzyme was more nicotinamidase (kcat/Km  = 43.5 mM(-1)s(-1)) than pyrazinamidase (kcat/Km  = 3.2 mM(-1)s(-1)). Mutational analysis was carried out on seven critical amino acids, confirming for the first time the importance of Cys133 and Phe68 residues for increasing pyrazinamidase activity 2.9- and 2.5-fold, respectively. In addition, the change in the fourth residue involved in the ion metal binding (Glu65) was detrimental to pyrazinamidase activity, decreasing it 6-fold. This residue was also involved in a new distinct structural motif DAHXXXDXXHPE described in this paper for Firmicutes nicotinamidases. Phylogenetic analysis revealed that OiNIC is the first nicotinamidase described for the order Bacillales.


Subject(s)
Bacillaceae/enzymology , Nicotinamidase/metabolism , Bacillaceae/genetics , Niacinamide/metabolism , Nicotinamidase/classification , Nicotinamidase/genetics , Phylogeny , Pyrazinamide/metabolism , Substrate Specificity
16.
Int J Parasitol ; 42(4): 323-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22619752

ABSTRACT

Leishmania infantum nicotinamidase, encoded by the Lipnc1 gene, converts nicotinamide into nicotinicacid to ensure Nicotinamide­Adenine­Dinucleotide (NAD+) biosynthesis. We were curious to explore the role of this enzyme during L. infantum development in its natural sand fly vector, Phlebotomus perniciosus (Diptera, Phlebotominae), using null mutants with a deleted Lipnc1 gene. The null mutants developed as well as the wild type L. infantum at the early time points post their ingestion within the bloodmeal. In contrast, once the blood meal digestion was completed, the null mutants were unable to develop further and establish late-stage infections. Data highlight the importance of the nicotinamide degradation pathway for Leishmania development in sand flies. They indicate that the endogenous nicotinamidase is essential for Leishmania development in the sand fly after the blood meal has been digested and the remnants defecated.


Subject(s)
Leishmania infantum/enzymology , Leishmania infantum/growth & development , Nicotinamidase/metabolism , Phlebotomus/parasitology , Animals , Female , Gene Deletion , Leishmania infantum/genetics , NAD/metabolism , Niacin/metabolism , Niacinamide/metabolism , Nicotinamidase/deficiency , Nicotinamidase/genetics
17.
J Biol Chem ; 287(25): 20957-66, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22539348

ABSTRACT

Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.


Subject(s)
Gene Silencing/drug effects , NAD/metabolism , Niacinamide/pharmacology , Nicotinamidase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Gene Silencing/physiology , Genetic Loci/physiology , NAD/genetics , Niacinamide/metabolism , Nicotinamidase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Sirtuin 2/genetics
18.
Biochemistry ; 51(1): 545-54, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22214383

ABSTRACT

The penultimate reaction in the oxidative degradation of nicotinate (vitamin B(3)) to fumarate in several species of aerobic bacteria is the hydrolytic deamination of maleamate to maleate, catalyzed by maleamate amidohydrolase (NicF). Although it has been considered a model system for bacterial degradation of N-heterocyclic compounds, only recently have gene clusters that encode the enzymes of this catabolic pathway been identified to allow detailed investigations concerning the structural basis of their mechanisms. Here, the Bb1774 gene from Bordetella bronchiseptica RB50, putatively annotated as nicF, has been cloned, and the recombinant enzyme, overexpressed and purified from Escherichia coli, is shown to catalyze efficiently the hydrolysis of maleamate to maleate and ammonium ion. Steady-state kinetic analysis of the reaction by isothermal titration calorimetry (ITC) established k(cat) and K(M) values (pH 7.5 and 25 °C) of 11.7 ± 0.2 s(-1) and 128 ± 6 µM, respectively. The observed K(D) of the NicF·maleate (E·P) complex, also measured by ITC, is approximated to be 3.8 ± 0.4 mM. The crystal structure of NicF, determined at 2.4 Å using molecular replacement, shows that the enzyme belongs to the cysteine hydrolase superfamily. The structure provides insight concerning the roles of potential catalytically important residues, most notably a conserved catalytic triad (Asp29, Lys117, and Cys150) observed in the proximity of a conserved non-proline cis-peptide bond within a small cavity that is likely the active site. On the basis of this structural information, the hydrolysis of maleamate is proposed to proceed by a nucleophilic addition-elimination sequence involving the thiolate side chain of Cys150.


Subject(s)
Ammonia/chemistry , Bordetella bronchiseptica/enzymology , Maleates/chemistry , Nicotinamidase/chemistry , Amino Acid Sequence , Ammonia/metabolism , Bordetella bronchiseptica/genetics , Catalysis , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Hydrolysis , Maleates/metabolism , Molecular Sequence Data , Niacin/chemistry , Nicotinamidase/genetics , Nicotinamidase/physiology , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Structure-Activity Relationship
19.
Biochemistry ; 51(1): 243-56, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22229411

ABSTRACT

Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia. Nicotinamidases are absent in mammals but function in NAD(+) salvage in many bacteria, yeast, plants, protozoa, and metazoans. We have performed structural and kinetic investigations of the nicotinamidase from Saccharomyces cerevisiae (Pnc1). Steady-state product inhibitor analysis revealed an irreversible reaction in which ammonia is the first product released, followed by nicotinic acid. A series of nicotinamide analogues acting as inhibitors or substrates were examined, revealing that the nicotinamide carbonyl oxygen and ring nitrogen are critical for binding and reactivity. X-ray structural analysis revealed a covalent adduct between nicotinaldehyde and Cys167 of Pnc1 and coordination of the nicotinamide ring nitrogen to the active-site zinc ion. Using this structure as a guide, the function of several residues was probed via mutagenesis and primary (15)N and (13)C kinetic isotope effects (KIEs) on V/K for amide bond hydrolysis. The KIE values of almost all variants were increased, indicating that C-N bond cleavage is at least partially rate limiting; however, a decreased KIE for D51N was indicative of a stronger commitment to catalysis. In addition, KIE values using slower alternate substrates indicated that C-N bond cleavage is at least partially rate limiting with nicotinamide to highly rate limiting with thionicotinamide. A detailed mechanism involving nucleophilic attack of Cys167, followed by elimination of ammonia and then hydrolysis to liberate nicotinic acid, is discussed. These results will aid in the design of mechanism-based inhibitors to target pathogens that rely on nicotinamidase activity.


Subject(s)
Nicotinamidase/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Ammonia/chemistry , Animals , Carbon Isotopes/metabolism , Catalysis , Catalytic Domain/genetics , Cattle , Crystallography, X-Ray , Drug Delivery Systems , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Hydrolysis , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Mutagenesis, Site-Directed , Niacin/antagonists & inhibitors , Niacin/chemistry , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Nicotinamidase/antagonists & inhibitors , Nicotinamidase/genetics , Nitrogen Isotopes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Structure-Activity Relationship , Substrate Specificity/genetics
20.
EMBO Rep ; 12(10): 1062-8, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21836634

ABSTRACT

Exposure of yeast to high osmolarity induces a transient activation of the Hog1 stress-activated protein kinase (SAPK), which is required for cell survival under these conditions. However, sustained activation of the SAPK results in a severe growth defect. We found that prolonged SAPK activation leads to cell death, which is not observed in nma111 cells, by causing accumulation of reactive oxygen species (ROS). Mutations of the SCF(CDC4) ubiquitin ligase complex suppress cell death by preventing the degradation of Msn2 and Msn4 transcription factors. Accumulation of Msn2 and Msn4 leads to the induction of PNC1, which is an activator of the Sir2 histone acetylase. Sir2 is involved in protection against Hog1-induced cell death and can suppress Hog1-induced ROS accumulation. Therefore, cell death seems to be dictated by the balance of ROS induced by Hog1 and the protective effect of Sir2.


Subject(s)
Apoptosis , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sirtuin 2/metabolism , Stress, Physiological , Apoptosis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression , Gene Expression Regulation, Fungal , Mutation/genetics , Nicotinamidase/genetics , Nicotinamidase/metabolism , Reactive Oxygen Species/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...