Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
Nat Metab ; 3(9): 1150-1162, 2021 09.
Article in English | MEDLINE | ID: mdl-34531575

ABSTRACT

Macrophages exhibit a spectrum of activation states ranging from classical to alternative activation1. Alternatively, activated macrophages are involved in diverse pathophysiological processes such as confining tissue parasites2, improving insulin sensitivity3 or promoting an immune-tolerant microenvironment that facilitates tumour growth and metastasis4. Recently, the metabolic regulation of macrophage function has come into focus as both the classical and alternative activation programmes require specific regulated metabolic reprogramming5. While most of the studies regarding immunometabolism have focussed on the catabolic pathways activated to provide energy, little is known about the anabolic pathways mediating macrophage alternative activation. In this study, we show that the anabolic transcription factor sterol regulatory element binding protein 1 (SREBP1) is activated in response to the canonical T helper 2 cell cytokine interleukin-4 to trigger the de novo lipogenesis (DNL) programme, as a necessary step for macrophage alternative activation. Mechanistically, DNL consumes NADPH, partitioning it away from cellular antioxidant defences and raising reactive oxygen species levels. Reactive oxygen species serves as a second messenger, signalling sufficient DNL, and promoting macrophage alternative activation. The pathophysiological relevance of this mechanism is validated by showing that SREBP1/DNL is essential for macrophage alternative activation in vivo in a helminth infection model.


Subject(s)
Antioxidants/metabolism , Fatty Acids/biosynthesis , Macrophages/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Dexamethasone/pharmacology , Humans , Interleukin-4/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Activation , Macrophages/drug effects , Mice , Mice, Knockout , Nippostrongylus/isolation & purification , Nippostrongylus/pathogenicity , RAW 264.7 Cells , Sequence Analysis, RNA/methods , Strongylida Infections/immunology , Strongylida Infections/parasitology , Up-Regulation
2.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34283207

ABSTRACT

Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.


Subject(s)
Cytokines/metabolism , Intestinal Mucosa/parasitology , Prostaglandin D2/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Strongylida Infections/parasitology , Animals , Female , Gastroenteritis/parasitology , Gastroenteritis/pathology , Goblet Cells/pathology , Host-Parasite Interactions/physiology , Intestinal Mucosa/pathology , Male , Mice, Inbred C57BL , Nippostrongylus/pathogenicity , Organoids , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , Strongylida Infections/pathology
3.
Life Sci Alliance ; 4(8)2021 08.
Article in English | MEDLINE | ID: mdl-34127548

ABSTRACT

IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.


Subject(s)
Acute Lung Injury/parasitology , Interleukin-13/deficiency , Nippostrongylus/pathogenicity , Strongylida Infections/genetics , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Proteomics , Strongylida Infections/metabolism , Up-Regulation
4.
Nat Immunol ; 22(2): 216-228, 2021 02.
Article in English | MEDLINE | ID: mdl-33462454

ABSTRACT

CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/parasitology , Colon/microbiology , Colon/parasitology , Gastrointestinal Microbiome , Heligmosomatoidea/pathogenicity , Intestinal Diseases, Parasitic/parasitology , Animals , Bacteria/immunology , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colon/immunology , Colon/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Heligmosomatoidea/immunology , Host-Pathogen Interactions , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Nematospiroides dubius/immunology , Nematospiroides dubius/pathogenicity , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Phenotype , Salmonella enterica/immunology , Salmonella enterica/pathogenicity , Single-Cell Analysis , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptome
5.
Immunity ; 52(4): 606-619.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32160524

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) regulate immunity, inflammation, and tissue homeostasis. Two distinct subsets of ILC2s have been described: steady-state natural ILC2s and inflammatory ILC2s, which are elicited following helminth infection. However, how tissue-specific cues regulate these two subsets of ILC2s and their effector functions remains elusive. Here, we report that interleukin-33 (IL-33) promotes the generation of inflammatory ILC2s (ILC2INFLAM) via induction of the enzyme tryptophan hydroxylase 1 (Tph1). Tph1 expression was upregulated in ILC2s upon activation with IL-33 or following helminth infection in an IL-33-dependent manner. Conditional deletion of Tph1 in lymphocytes resulted in selective impairment of ILC2INFLAM responses and increased susceptibility to helminth infection. Further, RNA sequencing analysis revealed altered gene expression in Tph1 deficient ILC2s including inducible T cell co-stimulator (Icos). Collectively, these data reveal a previously unrecognized function for IL-33, Tph1, and ICOS in promoting inflammatory ILC2 responses and type 2 immunity at mucosal barriers.


Subject(s)
Immunity, Cellular , Inducible T-Cell Co-Stimulator Protein/immunology , Interleukin-33/immunology , Nippostrongylus/immunology , Strongylida Infections/immunology , T-Lymphocyte Subsets/immunology , Tryptophan Hydroxylase/immunology , Animals , Cell Lineage/genetics , Cell Lineage/immunology , Disease Susceptibility , Gene Expression Regulation/immunology , Immunity, Innate , Immunity, Mucosal , Inducible T-Cell Co-Stimulator Protein/genetics , Interleukin-33/genetics , Larva/growth & development , Larva/immunology , Larva/pathogenicity , Lymph Nodes/immunology , Lymph Nodes/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nippostrongylus/growth & development , Nippostrongylus/pathogenicity , Primary Cell Culture , Signal Transduction , Strongylida Infections/genetics , Strongylida Infections/parasitology , Strongylida Infections/pathology , T-Lymphocyte Subsets/classification , T-Lymphocyte Subsets/parasitology , Tryptophan Hydroxylase/genetics
6.
Sci Adv ; 5(5): eaav3058, 2019 05.
Article in English | MEDLINE | ID: mdl-31236458

ABSTRACT

Maternal immune transfer is the most significant source of protection from early-life infection, but whether maternal transfer of immunity by nursing permanently alters offspring immunity is poorly understood. Here, we identify maternal immune imprinting of offspring nursed by mothers who had a pre-conception helminth infection. Nursing of pups by helminth-exposed mothers transferred protective cellular immunity to these offspring against helminth infection. Enhanced control of infection was not dependent on maternal antibody. Protection associated with systemic development of protective type 2 immunity in T helper 2 (TH2) impaired IL-4Rα-/- offspring. This maternally acquired immunity was maintained into maturity and required transfer (via nursing) to the offspring of maternally derived TH2-competent CD4 T cells. Our data therefore reveal that maternal exposure to a globally prevalent source of infection before pregnancy provides long-term nursing-acquired immune benefits to offspring mediated by maternally derived pathogen-experienced lymphocytes.


Subject(s)
Animals, Suckling/immunology , Immunity, Cellular , Immunity, Maternally-Acquired , Strongylida Infections/immunology , Animals , Antibodies, Helminth/immunology , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , CD4-Positive T-Lymphocytes/immunology , Female , Lactation/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Pregnancy , Receptors, Cell Surface/genetics , Strongylida Infections/transmission , Th2 Cells/immunology
7.
Cell Rep ; 19(2): 225-234, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28402847

ABSTRACT

In concert with their phagocytic activity, macrophages are thought to regulate the host immunometabolic responses primarily via their ability to produce specific cytokines and metabolites. Here, we show that IL-4-differentiated, M2-like macrophages secrete IGF1, a hormone previously thought to be exclusively produced from liver. Ablation of IGF1 receptors from myeloid cells reduced phagocytosis, increased macrophages in adipose tissue, elevated adiposity, lowered energy expenditure, and led to insulin resistance in mice fed a high-fat diet. The investigation of adipose macrophage phenotype in obese myeloid IGF1R knockout (MIKO) mice revealed a reduction in transcripts associated with M2-like macrophage activation. Furthermore, the MIKO mice infected with helminth Nippostrongylus brasiliensis displayed delayed resolution from infection with normal insulin sensitivity. Surprisingly, cold challenge did not trigger an overt M2-like state and failed to induce tyrosine hydroxylase expression in adipose tissue macrophages of control or MIKO mice. These results show that IGF1 signaling shapes the macrophage-activation phenotype.


Subject(s)
Insulin Resistance/genetics , Insulin-Like Growth Factor I/genetics , Macrophages/immunology , Strongylida Infections/immunology , Adipose Tissue/immunology , Adipose Tissue/metabolism , Adiposity , Animals , Cell Differentiation/immunology , Diet, High-Fat , Insulin Resistance/immunology , Insulin-Like Growth Factor I/immunology , Interleukin-4/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Nippostrongylus/pathogenicity , Phagocytosis/genetics , Signal Transduction/immunology , Strongylida Infections/metabolism , Strongylida Infections/parasitology
8.
Proc Natl Acad Sci U S A ; 113(36): 10139-44, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27551096

ABSTRACT

Natural killer (NK) cells are known to be activated by Th1-type cytokines, such as IL-2, -12, or -18, and they secrete a large amount of IFN-γ that accelerates Th1-type responses. However, the roles of NK cells in Th2-type responses have remained unclear. Because IL-4 acts as an initiator of Th2-type responses, we examined the characteristics of NK cells in mice overexpressing IL-4. In this study, we report that IL-4 overexpression induces distinctive characteristics of NK cells (B220(high)/CD11b(low)/IL-18Rα(low)), which are different from mature conventional NK (cNK) cells (B220(low)/CD11b(high)/IL-18Rα(high)). IL-4 overexpression induces proliferation of tissue-resident macrophages, which contributes to NK cell proliferation via production of IL-15. These IL-4-induced NK cells (IL4-NK cells) produce higher levels of IFN-γ, IL-10, and GM-CSF, and exhibit high cytotoxicity compared with cNK cells. Furthermore, incubation of cNK cells with IL-15 and IL-4 alters their phenotype to that similar to IL4-NK cells. Finally, parasitic infection, which typically causes strong Th2-type responses, induces the development of NK cells with characteristics similar to IL4-NK cells. These IL4-NK-like cells do not develop in IL-4Rα KO mice by parasitic infection. Collectively, these results suggest a novel role of IL-4 in immune responses through the induction of the unique NK cells.


Subject(s)
Cytotoxicity, Immunologic , Interleukin-15/immunology , Interleukin-4/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation , Strongylida Infections/immunology , Animals , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Proliferation , Gene Expression Regulation , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-15/genetics , Interleukin-15/pharmacology , Interleukin-4/genetics , Interleukin-4/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/parasitology , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Receptors, Interleukin-18/genetics , Receptors, Interleukin-18/immunology , Receptors, Interleukin-4/deficiency , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/immunology , Signal Transduction , Strongylida Infections/genetics , Strongylida Infections/parasitology
9.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G130-41, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27173511

ABSTRACT

Despite increased appreciation for the role of nicotinic receptors in the modulation of and response to inflammation, the contribution of muscarinic receptors to mucosal homeostasis, clearance of enteric pathogens, and modulation of immune cell function remains relatively undefined. Uninfected and Nippostrongylus brasiliensis-infected wild-type and type 3 muscarinic receptor (M3R)-deficient (Chrm3(-/-)) mice were studied to determine the contribution of M3R to mucosal homeostasis as well as host defense against the TH2-eliciting enteric nematode N. brasiliensis Intestinal permeability and expression of TH1/TH17 cytokines were increased in uninfected Chrm3(-/-) small intestine. Notably, in Chrm3(-/-) mice infected with N. brasiliensis, small intestinal upregulation of TH2 cytokines was attenuated and nematode clearance was delayed. In Chrm3(-/-) mice, TH2-dependent changes in small intestinal function including smooth muscle hypercontractility, increased epithelial permeability, decreased epithelial secretion and absorption, and goblet cell expansion were absent despite N. brasiliensis infection. These findings identify an important role for M3R in host defense and clearance of N. brasiliensis, and support the expanding role of cholinergic muscarinic receptors in maintaining mucosal homeostasis.


Subject(s)
Cytokines/metabolism , Immunity, Mucosal , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Nippostrongylus/pathogenicity , Receptor, Muscarinic M3/metabolism , Strongylida Infections/metabolism , Th2 Cells/metabolism , Animals , Cells, Cultured , Cytokines/immunology , Disease Models, Animal , Genetic Predisposition to Disease , Homeostasis , Host-Pathogen Interactions , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestine, Small/immunology , Intestine, Small/parasitology , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Nippostrongylus/immunology , Phenotype , Receptor, Muscarinic M3/deficiency , Receptor, Muscarinic M3/genetics , Strongylida Infections/genetics , Strongylida Infections/immunology , Strongylida Infections/parasitology , Th2 Cells/immunology , Th2 Cells/parasitology , Time Factors
10.
Mucosal Immunol ; 9(1): 38-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25921340

ABSTRACT

The roles of macrophages in type 2-driven inflammation and fibrosis remain unclear. Here, using CD11b-diphtheria toxin receptor (DTR) transgenic mice and three models of interleukin 13 (IL-13)-dependent inflammation, fibrosis, and immunity, we show that CD11b(+) F4/80(+) Ly6C(+) macrophages are required for the maintenance of type 2 immunity within affected tissues but not secondary lymphoid organs. Direct depletion of macrophages during the maintenance or resolution phases of secondary Schistosoma mansoni egg-induced granuloma formation caused a profound decrease in inflammation, fibrosis, and type 2 gene expression. Additional studies with CD11c-DTR and CD11b/CD11c-DTR double-transgenic mice suggested that macrophages but not dendritic cells were critical. Mechanistically, macrophage depletion impaired effector CD4(+) T helper type 2 (Th2) cell homing and activation within the inflamed lung. Depletion of CD11b(+) F4/80(+) Ly6C(+) macrophages similarly reduced house dust mite-induced allergic lung inflammation and suppressed IL-13-dependent immunity to the nematode parasite Nippostrongylus brasiliensis. Consequently, therapeutic strategies targeting macrophages offer a novel approach to ameliorate established type 2 inflammatory diseases.


Subject(s)
Interleukin-13/immunology , Macrophages, Alveolar/immunology , Pneumonia/immunology , Schistosomiasis mansoni/immunology , Strongylida Infections/immunology , Th2 Cells/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antigens, Ly/genetics , Antigens, Ly/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Fibrosis , Gene Expression Regulation , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/immunology , Interleukin-13/genetics , Lung/immunology , Lung/parasitology , Lung/pathology , Macrophages, Alveolar/parasitology , Macrophages, Alveolar/pathology , Mice , Mice, Transgenic , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Pneumonia/parasitology , Pneumonia/pathology , Pyroglyphidae/immunology , Schistosoma mansoni/immunology , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Signal Transduction , Strongylida Infections/parasitology , Strongylida Infections/pathology , Th2 Cells/parasitology , Th2 Cells/pathology
11.
Biomed Res Int ; 2015: 983656, 2015.
Article in English | MEDLINE | ID: mdl-25685821

ABSTRACT

The pathogenic potentials of two sibling nematodes Anisakis simplex sensu stricto (s.s.) and A. pegreffii were compared by in vitro and in vivo studies. Live third-stage larvae of each species were subjected to agar blocks made using PBS or RPMI-1640, overlaid with different supernatants (artificial gastric juice, PBS, and RPMI-1640), and their penetration ability was compared. Their tolerance of artificial gastric juice was also tested. Further, they were introduced into rats by gastric intubation, and the in vivo locations of them were investigated. A. pegreffii showed higher penetration ability than A. simplex (s.s.) in most of the experimental conditions, except for the RPMI-1640 agar block overlaid with artificial gastric juice. In an acid tolerance test, the mean survival times were 6.1 days for A. simplex (s.s.) and 4.2 days for A. pegreffii. In an animal experiment, A. simplex (s.s.) stayed for a shorter time in the stomachs of rats than A. pegreffii. Some A. pegreffii and A. simplex (s.s.) were embedded in the gastric mucosa or freely existed in the abdominal cavity. All of these results suggest that A. pegreffii has the pathogenic potential to cause anisakidosis in humans when ingested, as does A. simplex (s.s.).


Subject(s)
Anisakis/pathogenicity , Larva/pathogenicity , Nippostrongylus/pathogenicity , Animals , Gastric Juice/parasitology , Gastric Mucosa/parasitology , In Vitro Techniques , Male , Rats , Rats, Sprague-Dawley , Species Specificity
12.
EMBO J ; 34(2): 218-35, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25398911

ABSTRACT

Mitogen-activated protein kinase (MAPK) activation controls diverse cellular functions including cellular survival, proliferation, and apoptosis. Tuning of MAPK activation is counter-regulated by a family of dual-specificity phosphatases (DUSPs). IL-33 is a recently described cytokine that initiates Th2 immune responses through binding to a heterodimeric IL-33Rα (ST2L)/IL-1α accessory protein (IL-1RAcP) receptor that coordinates activation of ERK and NF-κB pathways. We demonstrate here that DUSP5 is expressed in eosinophils, is upregulated following IL-33 stimulation and regulates IL-33 signaling. Dusp5(-/-) mice have prolonged eosinophil survival and enhanced eosinophil effector functions following infection with the helminth Nippostrongylus brasiliensis. IL-33-activated Dusp5(-/-) eosinophils exhibit increased cellular ERK1/2 activation and BCL-XL expression that results in enhanced eosinophil survival. In addition, Dusp5(-/-) eosinophils demonstrate enhanced IL-33-mediated activation and effector functions. Together, these data support a role for DUSP5 as a novel negative regulator of IL-33-dependent eosinophil function and survival.


Subject(s)
Dual-Specificity Phosphatases/physiology , Eosinophils/immunology , Interleukins/pharmacology , Killer Cells, Natural/immunology , Strongylida Infections/immunology , Animals , Blotting, Western , Cells, Cultured , DNA-Binding Proteins/physiology , Enzyme-Linked Immunosorbent Assay , Eosinophils/cytology , Eosinophils/drug effects , Eosinophils/parasitology , Female , Humans , Interleukin-33 , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/parasitology , Mice , Mice, Knockout , Nippostrongylus/pathogenicity , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Strongylida Infections/drug therapy , Strongylida Infections/mortality , Strongylida Infections/parasitology
13.
J Exp Med ; 210(12): 2583-95, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24166714

ABSTRACT

Once animals have experienced a helminthic infection, they often show stronger protective immunity against subsequent infections. Although helminthic infections are well known to elicit Th2-type immune responses, it remains ill-defined where and how acquired protection is executed. Here we show that skin-invading larvae of the intestinal helminth Nippostrongylus brasiliensis are surrounded by skin-infiltrating cells and are prevented from migrating out of infected skin during the second but not the first infection. B cell- or IgE receptor FcεRI-deficient mice showed impaired larval trapping in the skin. Selective ablation of basophils, but not mast cells, abolished the larval trapping, leading to increased worm burden in the lung and hence severe lung injury. Skin-infiltrating basophils produced IL-4 that in turn promoted the generation of M2-type macrophages, leading to the larval trapping in the skin through arginase-1 production. Basophils had no apparent contribution to worm expulsion from the intestine. This study thus reveals a novel mode of acquired antihelminth immunity, in which IgE-armed basophils mediate skin trapping of larvae, thereby limiting lung injury caused by larval migration.


Subject(s)
Intestinal Diseases, Parasitic/immunology , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Skin/immunology , Skin/parasitology , Strongylida Infections/immunology , Adaptive Immunity , Animals , Antibodies, Helminth/biosynthesis , Arginase/genetics , Arginase/metabolism , Basophils/immunology , Basophils/parasitology , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/parasitology , Larva/immunology , Lung Injury/immunology , Lung Injury/parasitology , Macrophages/classification , Macrophages/immunology , Macrophages/parasitology , Mast Cells/immunology , Mast Cells/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Parasite Load , Receptors, IgG/deficiency , Receptors, IgG/genetics , Receptors, IgG/metabolism , Strongylida Infections/genetics , Strongylida Infections/parasitology
14.
PLoS One ; 7(12): e52211, 2012.
Article in English | MEDLINE | ID: mdl-23284939

ABSTRACT

Gut-dwelling helminthes induce potent IL-4 and IL-13 dominated type 2 T helper cell (T(H)2) immune responses, with IL-13 production being essential for Nippostrongylus brasiliensis expulsion. This T(H)2 response results in intestinal inflammation associated with local infiltration by T cells and macrophages. The resulting increased IL-4/IL-13 intestinal milieu drives goblet cell hyperplasia, alternative macrophage activation and smooth muscle cell hypercontraction. In this study we investigated how IL-4-promoted T cells contributed to the parasite induced effects in the intestine. This was achieved using pan T cell-specific IL-4 receptor alpha-deficient mice (iLck(cre)IL-4Rα(-/lox)) and IL-4Rα-responsive control mice. Global IL-4Rα(-/-) mice showed, as expected, impaired type 2 immunity to N. brasiliensis. Infected T cell-specific IL-4Rα-deficient mice showed comparable worm expulsion, goblet cell hyperplasia and IgE responses to control mice. However, impaired IL-4-promoted T(H)2 cells in T cell-specific IL-4Rα deficient mice led to strikingly reduced IL-4 production by mesenteric lymph node CD4(+) T cells and reduced intestinal IL-4 and IL-13 levels, compared to control mice. This reduced IL-4/IL-13 response was associated with an impaired IL-4/IL-13-mediated smooth muscle cell hypercontractility, similar to that seen in global IL-4Rα(-/-) mice. These results demonstrate that IL-4-promoted T cell responses are not required for the resolution of a primary N. brasiliensis infection. However, they do contribute significantly to an important physiological manifestation of helminth infection; namely intestinal smooth muscle cell-driven hypercontractility.


Subject(s)
Intestinal Mucosa/metabolism , Intestines/parasitology , Nippostrongylus/pathogenicity , Receptors, Interleukin-4/metabolism , T-Lymphocytes/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Enzyme-Linked Immunosorbent Assay , Intestines/immunology , Mice , Muscle Contraction/physiology , Receptors, Interleukin-4/genetics
15.
PLoS One ; 6(11): e27564, 2011.
Article in English | MEDLINE | ID: mdl-22110673

ABSTRACT

Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh)/Kit(W-sh) mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh)/Kit(W-sh) mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.


Subject(s)
Klebsiella Infections/complications , Klebsiella pneumoniae/pathogenicity , Mast Cells/immunology , Nippostrongylus/pathogenicity , Peritonitis/immunology , Peritonitis/parasitology , Sepsis/complications , Animals , Interleukin-6/metabolism , Intestines/microbiology , Intestines/parasitology , Klebsiella pneumoniae/immunology , Likelihood Functions , Mast Cells/microbiology , Mast Cells/parasitology , Mice , Neutrophil Infiltration , Peritoneum/immunology , Peritoneum/microbiology , Peritoneum/parasitology , Peritonitis/complications , Peritonitis/metabolism , Survival Analysis
16.
Br J Nutr ; 106(8): 1207-15, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21736817

ABSTRACT

Periparturient relaxation of immunity (PPRI) to parasites in mammals results in higher worm burden and worm egg excretion and may have a nutritional basis. Nippostrongylus brasiliensis re-infected lactating rats fed low-crude protein (CP) diets show an augmented degree of PPRI compared with their high CP-fed counterparts. However, such effects of CP scarcity have been confounded by metabolisable energy (ME) scarcity due to increased intake of the high-CP foods. Here, we independently assessed the effects of dietary CP and ME scarcity on the degree of PPRI. Second, parity rats were infected with N. brasiliensis larvae before mating. Upon parturition, dams were allocated to one of six feeding treatments (1-6), consisting of two levels of dietary ME supply, each with three levels of CP supply. On day 2 of lactation, dams were either re-infected with 1600 N. brasiliensis larvae or sham-infected with PBS, while litter size was standardised at ten pups. Dams and litters were weighed daily until either day 8 or 11 of lactation, when worm burdens were assessed as a proxy for PPRI. Increased CP and ME supply independently improved lactational performance. While ME supply did not affect parasitism, increasing CP supply reduced worm burden and the percentage of female worms in the small intestine; the latter was especially pronounced at the lower level of ME supply. The present results support the view that PPRI to parasites may be sensitive to CP scarcity, but not to moderate ME scarcity.


Subject(s)
Dietary Proteins/administration & dosage , Energy Intake/immunology , Lactation/immunology , Lactation/physiology , Parasitic Diseases, Animal/immunology , Parasitic Diseases, Animal/physiopathology , Animals , Female , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Parasite Egg Count , Parasitic Diseases, Animal/parasitology , Pregnancy , Rats , Strongylida Infections/immunology , Strongylida Infections/parasitology , Strongylida Infections/physiopathology
17.
Mucosal Immunol ; 4(1): 83-92, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20737001

ABSTRACT

Nippostrongylus brasiliensis infections generate pulmonary pathologies that can be associated with strong T(H)2 polarization of the host's immune response. We present data demonstrating N. brasiliensis-driven airway mucus production to be dependent on smooth muscle cell interleukin 4 receptor-α (IL-4Rα) responsiveness. At days 7 and 10 post infection (PI), significant airway mucus production was found in IL-4Rα(-/lox) control mice, whereas global knockout (IL-4Rα(-/-)) and smooth muscle-specific IL-4Rα-deficient mice (SM-MHC(Cre) IL-4Rα(-/lox)) showed reduced airway mucus responses. Furthermore, interleukin (IL)-13 and IL-5 cytokine production in SM-MHC(Cre) IL-4Rα(-/lox) mice was impaired along with a transient reduction in T-cell numbers in the lung. In vitro treatment of smooth muscle cells with secreted N. brasiliensis excretory-secretory antigen (NES) induced IL-6 production. Decreased protein kinase C (PKC)-dependent smooth muscle cell proliferation associated with cell cycle arrest was found in cells stimulated with NES. Together, these data demonstrate that both IL-4Rα and NES-driven responses by smooth muscle cells make important contributions in initiating T(H)2 responses against N. brasiliensis infections.


Subject(s)
Interleukin-4 Receptor alpha Subunit/immunology , Lung Diseases, Parasitic/immunology , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Nippostrongylus/immunology , Strongylida Infections/immunology , Th2 Cells/immunology , Animals , Cell Cycle/genetics , Flow Cytometry , Interleukin-13/biosynthesis , Interleukin-13/immunology , Interleukin-4 Receptor alpha Subunit/genetics , Interleukin-4 Receptor alpha Subunit/metabolism , Interleukin-5/biosynthesis , Interleukin-5/immunology , Interleukin-6/biosynthesis , Interleukin-6/immunology , Lung Diseases, Parasitic/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Mucus/metabolism , Nippostrongylus/pathogenicity , Protein Kinase C/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Strongylida Infections/pathology
18.
Proc Natl Acad Sci U S A ; 107(25): 11489-94, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20534524

ABSTRACT

Type 2 immunity is a stereotyped host response to allergens and parasitic helminths that is sustained in large part by the cytokines IL-4 and IL-13. Recent advances have called attention to the contributions by innate cells in initiating adaptive immunity, including a novel lineage-negative population of cells that secretes IL-13 and IL-5 in response to the epithelial cytokines IL-25 and IL-33. Here, we use IL-4 and IL-13 reporter mice to track lineage-negative innate cells that arise during type 2 immunity or in response to IL-25 and IL-33 in vivo. Unexpectedly, lineage-negative IL-25 (and IL-33) responsive cells are widely distributed in tissues of the mouse and are particularly prevalent in mesenteric lymph nodes, spleen, and liver. These cells expand robustly in response to exogenous IL-25 or IL-33 and after infection with the helminth Nippostrongylus brasiliensis, and they are the major innate IL-13-expressing cells under these conditions. Activation of these cells using IL-25 is sufficient for worm clearance, even in the absence of adaptive immunity. Widely dispersed innate type 2 helper cells, which we designate Ih2 cells, play an integral role in type 2 immune responses.


Subject(s)
Interleukin-13/chemistry , Nippostrongylus/pathogenicity , Animals , Cell Lineage , Cytokines/metabolism , Eosinophils/parasitology , Immune System , Immunity, Innate , Interleukin-13/metabolism , Interleukin-33 , Interleukin-4/metabolism , Interleukins/metabolism , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nippostrongylus/metabolism
19.
Parasite Immunol ; 32(6): 420-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20500673

ABSTRACT

Nematode infections induce the upregulation of mucin- and glycosylation-related genes in intestinal epithelial cells in vivo. However, the factor(s) that induce these changes in epithelial cells have not been fully elucidated. In the present study, we analysed the effects of the Th2 cytokines IL-4 and IL-13 and the excretory-secretory (ES) product of the nematode Nippostrongylus brasiliensis on the gene expression of the major mucin core peptide MUC2, the sialyltransferase ST3GalIV (Siat4c) and the sulphotransferase HS3ST1 in intestinal epithelium-derived IEC-6 cells by quantitative reverse transcription (RT)-PCR. The administration of IL-4 and IL-13 resulted in a significant upregulation of ST3GalIV and HS3ST1 gene transcription, but had no effect on MUC2, in IEC-6 cells. RT-PCR studies also demonstrated the constitutive expression of IL-13Ralpha1 and IL-4R in IEC-6 cells. On the other hand, the ES product induced upregulation of ST3GalIV, but not HS3ST1 or MUC2, while coadministration of IL-13 and the ES product induced a slight but significant upregulation of MUC2. Co-incubation of live N. brasiliensis adult worms with IEC-6 cells resulted in the upregulation of ST3GalIV and MUC2. These results suggested that HS3ST1 gene expression is strictly regulated by IL-4/IL-13, while ST3GalIV and MUC2 gene expressions are regulated by redundant mechanisms.


Subject(s)
Ileum/parasitology , Interleukin-13/physiology , Interleukin-4/physiology , Mucin-2/biosynthesis , Nippostrongylus/pathogenicity , Sialyltransferases/biosynthesis , Sulfotransferases/biosynthesis , Animals , Antigens, Helminth/physiology , Epithelial Cells/immunology , Epithelial Cells/parasitology , Gene Expression Profiling , Ileum/immunology , Male , Rats , Reverse Transcriptase Polymerase Chain Reaction , beta-Galactoside alpha-2,3-Sialyltransferase
20.
BMC Immunol ; 11: 6, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20163714

ABSTRACT

BACKGROUND: Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed. RESULTS: Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with Plasmodium chabaudi chabaudi and Nippostrongylus brasiliensis or Litomosoides sigmodontis. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-119 (MSP-119) resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-119 may more closely reflect the natural non-glycosylated antigen seen during infection. CONCLUSIONS: In order to utilize antibody isotypes as a measure of immune bias during co-infection studies, it is important to dissect antigen-specific from cross-reactive antibody responses. Calculating antibody titre, rather than using a single dilution of serum, as a measure of the relative strength of the response, largely accomplished this. Elimination of the carbohydrate moiety of an antigen that can often be the target of cross-reactive antibodies also proved useful.


Subject(s)
Antibodies, Helminth/immunology , Antibodies, Protozoan/immunology , Antigens, Helminth/immunology , Cross Reactions , Filariasis/immunology , Malaria/immunology , Merozoite Surface Protein 1/immunology , Peptide Fragments/immunology , Strongylida Infections/immunology , Animals , Carbohydrates/immunology , Carbohydrates/isolation & purification , Female , Filariasis/complications , Filariasis/diagnosis , Filarioidea/immunology , Filarioidea/pathogenicity , Glycosylation , Malaria/complications , Malaria/diagnosis , Mice , Mice, Inbred BALB C , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Periodic Acid/metabolism , Plasmodium chabaudi/immunology , Plasmodium chabaudi/pathogenicity , Strongylida Infections/complications , Strongylida Infections/diagnosis , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL