Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.747
Filter
1.
Food Res Int ; 195: 114969, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277238

ABSTRACT

Nitrites are food additives used in meatfor their bacteriological, technological and sensory properties.However, they are suspected to be involved in the formation of various mutagenic nitroso compounds (NOCs).With a view to reducing the use of nitrite in meat products to improve the healthiness thereof, the formation of NOCs was studied during dynamic in vitro digestion ofcooked and recooked meats preparedwith various levels of nitrite. Residual nitrite and nitrate and NOCs were evaluated in the gastric and ileal compartments.In the absence of added nitrite, basalnitrosation and nitrosylation were detected, probably due to the oxidation of ammonium salts present in the gastric fluid. Nitrosamines, nitrosyl heme and nitrosothiols displayed different kinetics of formation and degradation,reflecting a possible transfer of nitric oxide from one substrate to another. A protective effect of nitrite on lipid oxidation was also observed during digestion.


Subject(s)
Cooking , Digestion , Meat Products , Nitrites , Nitroso Compounds , Oxidation-Reduction , Nitrites/chemistry , Meat Products/analysis , Nitrosation , Animals , Nitroso Compounds/chemistry , Nitrates/chemistry , Swine , Food Handling/methods
2.
Water Res ; 263: 122158, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39088882

ABSTRACT

This study investigated the expediated transformation of halophenols in the presence of nitrite (NO2-) under slightly acidic conditions in ice, whereas such transformation was negligible in liquid water at 4 °C. We proposed that this phenomenon was attributed to the freeze-concentration effect, incurring a pH drop and the aggregation of NO2- and halophenols within the liquid-like grain boundary layer amid ice crystals. Within this micro-environment, NO2- underwent protonation to generate reactive nitrous acid (HNO2) and nitrosonium ions (NO+) that facilitate the nitration and oxidation of halophenols. When 10 µÐœ halophenol was treated by freezing in the presence of 5 µÐœ NO2-, the total yields of nitrated products reached 2.4 µÐœ and 1.4 µÐœ within 12 h for 2-chlorophenol (2CP) and 2-bromophenol (2BP), respectively. NO+ drove oxidative coupling reactions, generating hydroxyl polyhalogenated diphenyl ethers (OH-PBDEs) and hydroxyl polyhalogenated diphenyls via C-O or C-C coupling. These two pathways were intricately intertwined. The presence of natural organic matter (NOM) mitigated the formation of nitrated products and completely suppressed the coupling products. This study offers valuable insights into the fate of halophenols in ice and suggests potential pathways for the formation of nitrophenolic compounds and OH-PBDEs in natural cold environments. These findings also open up a new avenue in environmental chemistry research.


Subject(s)
Ice , Nitrites , Phenols , Nitrites/chemistry , Phenols/chemistry , Freezing , Oxidation-Reduction , Chlorophenols/chemistry , Hydrogen-Ion Concentration
3.
Anal Chim Acta ; 1319: 342963, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39122276

ABSTRACT

BACKGROUND: NO2- and S2- are two kinds of common toxic anions widely distributed in environmental water, soil and food products. Human beings have suffered a lot of diseases from intake of excessive NO2- or S2-, i.e., infantile methemoglobin, cancer and even to death. Although tremendous efforts have been afforded to monitor NO2- and S2-, most were high instrument-depended with complex processing procedures. To keep food safety and to protect human health, it will be a huge challenge to develop a convenient and efficient way to monitor S2- and NO2- in practice. RESULTS: A kind of folic acid capping Bi3+-doped Ag quantum dots (FA@Bi3+-Ag QDs) was developed for the first time by one-pot homogeneous reduced self-assembly. Not only did FA@Bi3+-Ag QDs possess intrinsic fluorescent property, it expressed synergistic peroxidase-like activity to catalyze the redox of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 with Km/vmax of 0.087 mM/6.61 × 10-8 M s-1 and 6.42 mM/6.25 × 10-7 M s-1 respectively. Interestingly, trace S2- could exclusively alter its fluorescent property and peroxidase-like activity, exhibiting significant hypochromic and "turn-on" fluorescent effects. While trace NO2- could make FA@Bi3+-Ag QDs-TMB-H2O2 system hyperchromic. Under the optimized conditions, FA@Bi3+-Ag QDs were applied for dual-mode recognition of S2- and visual sensing of NO2- in real food samples with satisfactory recoveries, i.e., 100.7-107.9 %/95.8-104.7 % and 97.2-104.8 % respectively. The synergistic enzyme-mimic mechanism of FA@Bi3+-Ag QDs and its selective response mechanisms to S2- and NO2- were also proposed. SIGNIFICANCE: This represents the first nanozyme-based FA@Bi3+-Ag QDs system for dual-mode recognition of S2- and visual sensing of NO2-, well meeting the basic requirement in drinking water set by WHO. It will offer a promising way for multi-mode monitoring of different pollution using the same nanozyme-based sensor.


Subject(s)
Folic Acid , Quantum Dots , Silver , Quantum Dots/chemistry , Folic Acid/chemistry , Silver/chemistry , Nitrites/analysis , Nitrites/chemistry , Hydrogen Peroxide/chemistry , Humans , Benzidines/chemistry , Limit of Detection , Oxidation-Reduction
4.
Talanta ; 279: 126649, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098240

ABSTRACT

Small molecules with enzyme-like properties have recently attracted considerable attention. Herein, we discovered that nitrite possesses intrinsic oxidase-mimicking activity upon visible light, catalyzing the oxidation of the typical chromogenic substrate in the absence of H2O2. Notably, nitrite exhibited a markedly high value of Kcat, approximately 4, 7, and 4000-fold greater than that of Acr+-Mes, Eosin Y, and Diacetyl, respectively. Comprehensive investigation elucidated that O2•⁻ and •OH are the primary reactive oxygen species (ROS) responsible for the oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB). Leveraging the linear correlation between the absorbance of oxidized TMB (oxTMB) at 652 nm and nitrite concentration, a simple colorimetric approach for nitrite detection was successfully established in the range of 1-75 µM with a detection limit of 0.14 µM. Moreover, the proposed strategy could be applied to determine the nitrite concentration in saliva, exhibiting a great prospect for clinical diagnosis. This work contributes novel insights into the exploration of small-molecule enzyme mimics.


Subject(s)
Colorimetry , Light , Nitrites , Saliva , Saliva/chemistry , Saliva/enzymology , Nitrites/analysis , Nitrites/chemistry , Colorimetry/methods , Humans , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Benzidines/chemistry , Oxidation-Reduction , Limit of Detection
5.
J Hazard Mater ; 478: 135471, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39146591

ABSTRACT

Functionalized thermosensitive hydrogel materials exhibit excellent properties for the fabrication of sensing devices that enable real-time visual detection of food safety duo to their good plasticity and powerful loading capacity. Here, a ratiometric fluorescent device based on an interpenetrating network (IPN) thermosensitive hydrogel was designed to embed functionalized Au nanoclusters (Au NCs) and Blue Carbon dots (BCDs) composites in a multi-network structure to build a sensitive hazardous material nitrite (NO2-) chemsensor. The hydrogel was utilized poloxamer 407 (P407), lignin and cellulose to form stable IPN structure, which resulted in complementation and synergy, thereby strengthening its porous network structure. The combination of fluorescent nanoprobes with the porous network structure has the potential to enhance stable fluorescence signals and improve sensing sensitivity. Moreover, the thermosensitive liquid-solid transition characteristics of the hydrogel facilitate its preparation into diverse sensing devices following curing at room temperature. The hydrogel device, when combined with a smartphone system, converted image information into data information, thereby enabling the accurate quantification of NO2- with a detection limit of 9.38 nM in 2 s. The designed multi-functional hydrogel device is capable of real-time differentiation of NO2- dosage with the naked eye, offering a high-contrast, rapid-response sensing methodology for visual assessment of food freshness. This research contributes to the expansion of hydrogel materials applications and the detection of hazardous materials in food safety.


Subject(s)
Gold , Hydrogels , Nitrites , Hydrogels/chemistry , Nitrites/analysis , Nitrites/chemistry , Gold/chemistry , Temperature , Metal Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Limit of Detection , Carbon/chemistry , Smartphone
6.
J Hazard Mater ; 478: 135430, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39178773

ABSTRACT

The intensive use of various antibiotics for clinical and agricultural purposes has resulted in their widespread use in wastewater treatment plants. However, little research has been conducted on the effects of antibiotics on nitrite accumulation, antibiotic degradation pathways, or the microbial community structure in nitrification systems. In this study, a laboratory-scale sequencing batch reactor was used to treat wastewater containing cefalexin (CFX) at different doses (5, 10, 15, and 20 mg/L). The results showed that the nitrification performance was gradually inhibited with increasing CFX concentration. Ammonia-oxidizing bacteria (AOB) are more tolerant to CFX than nitrite-oxidizing bacteria (NOB). Under 15 mg/L of CFX, NOB were completely suppressed, whereas AOB were partially inhibited, as evidenced by an ammonium removal efficiency of 60 % and a 90 % of nitrite accumulation ratio. The partial nitritation was achieved. CFX can be degraded into 2-hydroxy-3phenylpyrazine and cyclohexane through bacterial co-metabolism, and CFX degradation gradually diminishes with decreasing nitrification performance. The abundance of Nitrospira gradually decreased with increasing CFX concentration. Ferruginibacter, Hydrogenophaga, Thauera, and Pseudoxanthomonas were detected at relative abundances of 13.2 %, 0.4 %, 0.9 %, and 1.3 %, respectively, indicating their potential roles in antibiotic degradation. These findings provide insight into the interactions between antibiotics and microbial communities, which are beneficial for a better understanding of antibiotic degradation in nitrification systems.


Subject(s)
Anti-Bacterial Agents , Cephalexin , Nitrification , Nitrites , Water Pollutants, Chemical , Nitrification/drug effects , Cephalexin/metabolism , Nitrites/metabolism , Nitrites/chemistry , Anti-Bacterial Agents/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Bacteria/drug effects , Wastewater , Bioreactors , Waste Disposal, Fluid/methods
7.
J Hazard Mater ; 478: 135495, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39181006

ABSTRACT

As a commonly used food additive, excessive nitrite intake seriously affects people's health in daily life. As the stomach is the main organ involved in nitrite intake, achieving fast and in situ detection of nitrite in the stomach is of great significance for avoiding the hazards caused by nitrite. However, owing to the poor stability or low sensitivity of existing fluorescent probes under acidic conditions, their application for nitrite detection within the stomach remains challenging. To solve this problem, we developed novel probes specifically designed to maintain stability and demonstrate high sensitivity to nitrite under acidic conditions. Utilizing the optimized probe (DHUROS-11), nitrite levels in environmental and real samples were successfully quantified. Notably, tracing of nitrite within the stomach of mice in real time was realized by using DHUROS-11 as the probe.


Subject(s)
Fluorescent Dyes , Nitrites , Fluorescent Dyes/chemistry , Animals , Nitrites/analysis , Nitrites/chemistry , Hydrogen-Ion Concentration , Mice , Gastric Mucosa/metabolism
8.
Talanta ; 280: 126695, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39128316

ABSTRACT

Nitrite (NO2-) has been identified as a typical pollutant harmful to the human body and heavily assayed in the fields of food safety and water quality control. The mainstream sensing strategies for detecting NO2- depend on Griess reaction or its improved methods which employ Griess reaction to initiate further inter-or intramolecular interaction to generate readout signals. However, a significant drawback of these methods is the use of strongly acidic media. In this study, we designed and synthesized a new NO2--specific fluorescent probe (ethyl 3-cyano-2-hydroxy-5-imino-8-(3-methoxy-3-oxopropyl)-4-(pyridin-2-yl)-5,8-dihydroquinoline-8-carboxylate, DHQC). DHQC exhibited strong green fluorescence in an acetonitrile-PBS (10 mM) mixed system (pH 7.0). In the neutral medium and at room temperature, the fluorescence of DHQC changed from green to blue with the addition of NO2-. The preliminary mechanistic investigation reveals that NO2- can induce the decarboxylation of the probe DHQC. Based on this finding, a high sensitive and selective method for NO2--detection was established, which showed good linearity in a range of 5∼50 µM with a limit detection of 3.5 nM (3σ). Given the unique properties of DHQC, a DHQC-loaded hydrogel bead device was further developed and employed for rapid monitoring of NO2-, exhibiting the advantages of simple preparation, high sensitivity, and fast response compared with traditional sensing reagents. In addition, DHQC was also used as a fluorescent probe for cell-imaging in live cells, exhibiting good cell permeability and biocompatibility. This study proposes a potential strategy for constructing smart fluorimetric probes used for NO2- detection.


Subject(s)
Fluorescent Dyes , Nitrites , Fluorescent Dyes/chemistry , Nitrites/analysis , Nitrites/chemistry , Humans , Quinolines/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods
9.
J Biosci Bioeng ; 138(4): 345-350, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39107145

ABSTRACT

The anammox reaction simultaneously utilizes ammonia and nitrite as substrates; however, high nitrite concentrations act as strong inhibitors of the reaction. In this study, inhibition by NO2- and free nitrous acid (FNA) was separately evaluated in continuous feeding tests using different biomass carriers. The influent NO2- concentration was increased under pH 7.6, where FNA is less likely to affect anammox activity. A continuous test using polyethylene glycol (PEG) gel carriers containing immobilized anammox bacteria showed that the inhibition ratio was 13% when the NO2--N concentration in the reactor was 350 mg L-1 (FNA ≤0.06 mg L-1). The relationship between NO2- concentration in the reactor and inhibition ratio increased linearly. Evaluation of the inhibitory effect of FNA by increasing the influent NO2- concentration at pH 6.4, where FNA is easily formed, demonstrated that the relationship between FNA and inhibition ratio could be fitted to a sigmoid curve, and the 50% inhibitory concentration (IC50) of FNA was 0.88 mg L-1. A similar test performed using polyvinyl alcohol carriers containing anammox bacteria on their surface showed the same trend as the PEG gel carriers, with the IC50 for FNA at 0.70 mg L-1. These results indicate that the inhibitory effect of FNA on anammox activity was greater than that of NO2-. The evaluation of these two factors helped identify important operational indicators of the stable application of anammox processes.


Subject(s)
Ammonia , Bioreactors , Nitrites , Nitrous Acid , Nitrites/metabolism , Nitrites/chemistry , Nitrous Acid/metabolism , Bioreactors/microbiology , Ammonia/metabolism , Oxidation-Reduction , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Bacteria/metabolism , Bacteria/drug effects , Hydrogen-Ion Concentration , Biomass
10.
Environ Sci Technol ; 58(35): 15722-15731, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39175437

ABSTRACT

Nitrites (NO2-/HONO), as the primary source of hydroxyl radicals (•OH) in the atmosphere, play a key role in atmospheric chemistry. However, the current understanding of the source of NO2-/HONO is insufficient and therefore hinders the accurate quantification of atmospheric oxidation capacity. Herein, we highlighted an overlooked HONO source by the reaction between nitrophenols (NPs) and •OH in the aqueous phase and provided kinetic data to better evaluate the contribution of this process to atmospheric HONO. Three typical NPs, including 4-nitrophenol (4NP), 2-nitrophenol (2NP), and 4-nitrocatechol (4NC), underwent a denitration process to form aqueous NO2- and gaseous HONO through the •OH oxidation, with the yield of NO2-/HONO varied from 15.0 to 33.5%. According to chemical composition and structure analysis, the reaction pathway, where the ipso addition of •OH to the NO2 group on 4NP generated hydroquinone, can contribute to more than 61.9% of the NO2-/HONO formation. The aqueous photooxidation of NPs may account for HONO in the atmosphere, depending on the specific conditions. The results clearly suggest that the photooxidation of NPs should be considered in the field observation and calculation to better evaluate the HONO budget in the atmosphere.


Subject(s)
Nitrophenols , Oxidation-Reduction , Nitrophenols/chemistry , Nitrites/chemistry , Atmosphere/chemistry , Hydroxyl Radical/chemistry , Water/chemistry , Kinetics
11.
Food Chem ; 459: 140353, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39024884

ABSTRACT

This study presents a facial and quick electrochemical sensor platform that offers remarkable water and food safety applications. The present work represents a study of the synthesis and characterization for efficient cerium vanadate (CeVO4) with a functionalized carbon nanofiber (f-CNF) decorated electrode, which is a highly effective electrode modifier for sensitive nitrite detection. The CeVO4 nanoparticles were synthesized using the facial hydrothermal technique, and a composite (CeVO4@f-CNF) was prepared using the sonication method. Afterward, the produced materials were confirmed with spectroscopic and microscopic analysis. The electrochemical behavior of nitrite was studied through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV analysis depicts an excellent linear range of 0.1-1033 µM and a promising detection limit of 0.004 µM for the proposed electrode. The CeVO4@f-CNF electrode was applied to detect nitrite in water and meat samples. The proposed electrochemical sensor attributes the significant results towards the detection of nitrite.


Subject(s)
Carbon , Cerium , Electrochemical Techniques , Electrodes , Limit of Detection , Nanofibers , Nitrites , Vanadates , Nitrites/analysis , Nitrites/chemistry , Vanadates/chemistry , Cerium/chemistry , Nanofibers/chemistry , Carbon/chemistry , Meat/analysis , Animals , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis
12.
Anal Methods ; 16(30): 5288-5295, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39018013

ABSTRACT

The Food and Drug Administration (FDA) recently reported a new nitrosamine impurity in sitagliptin that was named nitroso-STG-19 (NTTP), whose acceptable intake limit was extremely low at 37 ng per day. In addition, NTTP was found to be a degradation impurity in sitagliptin tablets, which was formed by the reaction of 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine hydrochloride and nitrite salts introduced via excipients. Consequently, the NTTP content in tablets was larger than that in active pharmaceutical ingredients (APIs). To control the impurity, an ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) procedure for the detection of NTTP in sitagliptin phosphate tablets and APIs was developed and validated. Furthermore, a derivatization method for the detection of nitrite salts at lower concentration was developed to select applicable excipients to decelerate the generation of NTTP. During validation of the analytical procedure for NTTP, the quantitation limit (LOQ) of NTTP was 56 ppb (0.056 ng mL-1), the linear correlation coefficient was 0.9998, and recoveries of NTTP in spiked samples ranged from 95.5% to 105.2%, indicating that the method is rapid, sensitive and accurate for an NTTP test. In the nitrite salt detection method, the LOQ was 0.21 ng mL-1, and recoveries of NTTP in spiked samples ranged from 87.6% to 107.8%, indicating a sensitive and accurate method, suitable for screening appropriate pharmaceutical excipients.


Subject(s)
Drug Contamination , Excipients , Nitrites , Nitrosamines , Sitagliptin Phosphate , Tablets , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Nitrosamines/analysis , Nitrosamines/chemistry , Sitagliptin Phosphate/analysis , Sitagliptin Phosphate/chemistry , Nitrites/analysis , Nitrites/chemistry , Excipients/chemistry , Excipients/analysis , Chromatography, High Pressure Liquid/methods , Limit of Detection , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
13.
Environ Res ; 261: 119637, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39032620

ABSTRACT

Low-intensity ultrasound, as a form of biological enhancement technology, holds significant importance in the field of biological nitrogen removal. This study utilized low-intensity ultrasound (200 W, 6 min) to enhance partial nitrification and investigated its impact on sludge structure, as well as the internal relationship between structure and properties. The results demonstrated that ultrasound induced a higher concentration of nitrite in the effluent (40.16 > 24.48 mg/L), accompanied by a 67.76% increase in the activity of ammonia monooxygenase (AMO) and a 41.12% increase in the activity of hydroxylamine oxidoreductase (HAO), benefiting the partial nitrification. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theoretical analysis, ultrasonic treatment enhanced the electrostatic interaction energy (WR) between sludge flocs, raising the total interaction energy from 46.26 kT to 185.54 kT, thereby causing sludge dispersion. This structural alteration was primarily attributed to the fact that the tightly bonded extracellular polymer (TB-EPS) after ultrasound was found to increase hydrophilicity and negative charge, weakening the adsorption between sludge cells. In summary, this study elucidated that the change in sludge structure caused by ultrasonic treatment has the potential to enhance the nitrogen removal performance by partial nitrification.


Subject(s)
Nitrification , Nitrogen , Sewage , Sewage/chemistry , Nitrogen/chemistry , Waste Disposal, Fluid/methods , Oxidoreductases/metabolism , Nitrites/chemistry , Ultrasonic Waves , Water Pollutants, Chemical/chemistry
14.
Water Environ Res ; 96(7): e11075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982895

ABSTRACT

Partial nitritation (PN) is a novel treatment for nitrogen removal using aerobic ammonium oxidation with reduced oxygen requirements compared to conventional nitrification. This study evaluated the performance of the PN process and the factors influencing nitrogen removal from landfill leachate. During the reactivation of biomass, the results showed 70% ammonium removal, but only 20% total nitrogen removal. Further analysis showed that low nitrite accumulation and high nitrate production promoted the growth of nitrite-oxidizing bacteria (NOB). The ammonium removal activity after soaking the cultivated biomass in synthetic water and leachate was measured to be 0.57, 0.1, 0.17, and 0.25 g N•g VSS-1•d-1 for synthetic wastewater and leachate soaking for synthetic wastewater, 12 h, 3 days, and 7 days, respectively. The study found abundant ammonium-oxidizing bacteria (AOB) and NOBs in biomass soaked in synthetic wastewater. However, soaking in leachate promoted AOB growth and inhibited NOB growth making leachate suitable for PN. PRACTITIONER POINTS: The study found that with a longer leachate-soaking period for biomass, ammonium removal activity increases, which in turn increases ammonium conversions during the PN process. Ammonium-oxidizing bacteria (AOB) can acclimate to landfill leachate substrate and grow with a longer soaking period. Nitrite-oxidizing bacteria (NOB) were inhibited by landfill leachate substrate, which is beneficial for nitrite accumulation. Anabolized DO can convert nitrite to nitrate rapidly, which results in higher nitrate accumulation compared to nitrite accumulation. Hence, the DO level has to be sufficiently low to prevent nitrite oxidation and nitrate accumulation.


Subject(s)
Ammonium Compounds , Bioreactors , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Ammonium Compounds/metabolism , Ammonium Compounds/chemistry , Bacteria/metabolism , Nitrification , Waste Disposal, Fluid/methods , Nitrites/metabolism , Nitrites/chemistry
15.
Dalton Trans ; 53(30): 12620-12626, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39010726

ABSTRACT

The Ru(II)-nitrite complex, Ru4, is explored to release nitric oxide (NO) under acidic conditions and selectively induce a cytotoxic effect towards SK-MEL-28 cisplatin-resistant malignant melanoma cells. These findings suggest that targeting the tumor-associated pHe level could be an effective strategy for the drug function of Ru(II)-nitrite compounds.


Subject(s)
Antineoplastic Agents , Cisplatin , Coordination Complexes , Cymenes , Drug Resistance, Neoplasm , Melanoma , Nitric Oxide , Nitrites , Ruthenium , Cisplatin/pharmacology , Cisplatin/chemistry , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cymenes/pharmacology , Cymenes/chemistry , Nitrites/chemistry , Nitrites/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Nitric Oxide/metabolism , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Death/drug effects
16.
Water Sci Technol ; 90(1): 270-286, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007319

ABSTRACT

The completely autotrophic nitrogen removal over nitrite (CANON) process is significantly hindered by prolonged start-up periods and unstable nitrogen removal efficiency. In this study, a novel umbrella basalt fiber (BF) carrier with good biological affinity and adsorption performance was used to initiate the CANON process. The CANON process was initiated on day 64 in a sequencing batch reactor equipped with umbrella BF carriers. During this period, the influent NH4+-N concentration gradually increased from 100 to 200 mg·L-1, and the dissolved oxygen was controlled below 0.8 mg L-1. Consequently, an average ammonia nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TNRE) of ∼90 and 80% were achieved, respectively. After 130 days, ARE and TNRE remained stable at 92 and 81.1%, respectively. This indicates a reliable method for achieving rapid start-up and stable operation of the CANON process. Moreover, Candidatus Kuenenia and Candidatus Brocadia were identified as dominant anammox genera on the carrier. Nitrosomonas was the predominant genus among ammonia-oxidizing bacteria. Spatial differences were observed in the microbial population of umbrella BF carriers. This arrangement facilitated autotrophic nitrogen removal in a single reactor. This study indicates that the novel umbrella BF carrier is a highly suitable biocarrier for the CANON process.


Subject(s)
Autotrophic Processes , Bioreactors , Nitrites , Nitrogen , Nitrogen/chemistry , Nitrites/chemistry , Waste Disposal, Fluid/methods , Bacteria/metabolism
17.
Food Chem ; 460(Pt 1): 140395, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39047486

ABSTRACT

Precise monitoring of nitrite from real samples has gained significant attention due to its detrimental impact on human health. Herein, we have fabricated poly(3,4-ethylenedioxythiophene) functionalized carbon matrix suspended Cu nanoparticles (PEDOT-C@Cu-NPs) through a facile green synthesis approach. Additionally, we have used machine learning (ML) to optimize experimental parameters such as pH, drying time, and concentrations to predict current of the designed electrochemical sensor. The ML optimized concentration of fabricated C@Cu-NPs was further functionalized by PEDOT (π-electron mediator). The designed PEDOT functionalized C@Cu-NPs (PEDOT-C@Cu-NPs) electrode has shown excellent electro-oxidation capability towards NO2- ions due to highly exposed Cu facets, defects rich graphitic C and high π-electron density. Additionally, the designed material has shown low detection limit (3.91 µM), high sensitivity (0.6372 µA/µM/cm2), and wide linear range (5-580 µM). Additionally, the designed electrode has shown higher electrochemical sensing efficacy against real time monitoring from pickled vegetables extract.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Copper , Machine Learning , Metal Nanoparticles , Nitrites , Polymers , Vegetables , Polymers/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Vegetables/chemistry , Nitrites/analysis , Nitrites/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques , Carbon/chemistry , Food Contamination/analysis , Limit of Detection
18.
Food Chem ; 457: 140166, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38936123

ABSTRACT

The presence of nitrite in food products has generated significant public concern. A simple and rapid dual-mode surface-enhanced Raman spectroscopy (SERS)/colorimetric detection of nitrite is proposed based on a diazo reaction and multifunctional gold nanoparticle-doped covalent organic framework (Au@COF) composite. Under acidic conditions, the reaction between toluidine blue and nitrite yielded a colorless diazo salt, simultaneously attenuating its characteristic absorption peak and Raman signal. The multifunctional Au@COF materials enhanced the Raman signal and ensured good reproducibility. Additionally, the reaction rates improved, and the sensitivity was enhanced due to the excellent adsorption capacity of the COF. The proposed method demonstrated high sensitivity and excellent recovery rates for nitrite detection in food samples. This approach shows potential for precisely detecting nitrite content in real-world food samples by integrating the simplicity of colorimetric analysis with the enhanced sensitivity of SERS.


Subject(s)
Colorimetry , Food Contamination , Gold , Meat Products , Metal Nanoparticles , Nitrites , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Gold/chemistry , Nitrites/analysis , Nitrites/chemistry , Metal Nanoparticles/chemistry , Meat Products/analysis , Colorimetry/methods , Food Contamination/analysis
19.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792111

ABSTRACT

The study evaluated the effect of adding dandelion extract on the characteristics of raw-ripening pork sausages while reducing the nitrite addition from 150 to 80 mg/kg. The sausages were made primarily from pork ham (80%) and pork jowl (20%). The process involved curing, preparing the meat stuffing, forming the links, and then subjecting the sausages to a 21-day ripening period. Physicochemical parameters such as pH, water activity, and oxidation-reduction potential were compared at the beginning of production and after the ripening process. The study also examined the impact of ripening on protein metabolism in pork sausages and compared the protein profiles of different sausage variants. The obtained research results indicate that dandelion-leaf extract (Taraxacum officinale) were rich in phenolic acids, flavonoids, coumarins, and their derivatives (LC-QTOF-MS method). Antiradical activity test against the ABTS+* and DPPH radical, and the TBARS index, demonstrated that addition of dandelion (0.5-1%) significantly improved the oxidative stability of raw-ripening sausages with nitrite content reduction to 80 mg/kg. A microbiological evaluation of the sausages was also carried out to assess the correctness of the ripening process. The total number of viable bacteria, lactic acid bacteria, and coliforms were evaluated and subsequently identified by mass spectrometry.


Subject(s)
Meat Products , Plant Extracts , Taraxacum , Taraxacum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Meat Products/microbiology , Meat Products/analysis , Animals , Swine , Antioxidants/pharmacology , Antioxidants/chemistry , Oxidation-Reduction , Nitrites/chemistry , Nitrites/analysis
20.
J Hazard Mater ; 472: 134540, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38733787

ABSTRACT

Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.


Subject(s)
Copper , Cyanides , Iron , Nitrites , Oxidation-Reduction , Cyanides/toxicity , Cyanides/chemistry , Nitrites/chemistry , Nitrites/toxicity , Copper/chemistry , Copper/toxicity , Anaerobiosis , Iron/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Wastewater/toxicity , Denitrification/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL