Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.583
Filter
1.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731506

ABSTRACT

The mechanism of ammonia formation during the pyrolysis of proteins in biomass is currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to select proteins (actual proteins) as the model compounds and the amino acids contained within them (assembled amino acids) as the comparative models. ReaxFF molecular dynamics simulations were conducted to explore the nitrogen transformation and NH3 generation mechanisms in three-phase products (char, tar, and gas) during protein pyrolysis. The research results revealed several key findings. Regardless of whether the model compounds are actual proteins or assembled amino acids, NH3 is the primary nitrogen-containing product during pyrolysis. However, as the temperature rises to higher levels, such as 2000 K and 2500 K, the amount of NH3 decreases significantly in the later stages of pyrolysis, indicating that it is being converted into other nitrogen-bearing species, such as HCN and N2. Simultaneously, we also observed significant differences between the pyrolysis processes of actual proteins and assembled amino acids. Notably, at 2000 K, the amount of NH3 generated from the pyrolysis of assembled amino acids was twice that of actual proteins. This discrepancy mainly stems from the inherent structural differences between proteins and amino acids. In proteins, nitrogen is predominantly present in a network-like structure (NH-N), which shields it from direct external exposure, thus requiring more energy for nitrogen to participate in pyrolysis reactions, making it more difficult for NH3 to form. Conversely, assembled amino acids can release NH3 through a simpler deamination process, leading to a significant increase in NH3 production during their pyrolysis.


Subject(s)
Ammonia , Molecular Dynamics Simulation , Proteins , Pyrolysis , Ammonia/chemistry , Proteins/chemistry , Amino Acids/chemistry , Nitrogen/chemistry
2.
Anal Chim Acta ; 1308: 342647, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740456

ABSTRACT

BACKGROUND: Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS: A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE: This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.


Subject(s)
Electrochemical Techniques , Electrodes , Glycine , Glyphosate , Graphite , Nitrogen , Photochemical Processes , Graphite/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Nitrogen/chemistry , Polymers/chemistry , Copper/chemistry , Gels/chemistry , Herbicides/analysis , Limit of Detection , Magnetite Nanoparticles/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry
3.
Sensors (Basel) ; 24(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38733043

ABSTRACT

In this paper, a novel aptamer-modified nitrogen-doped graphene microelectrode (Apt-Au-N-RGOF) was fabricated and used to specifically identify and detect dopamine (DA). During the synthetic process, gold nanoparticles were loaded onto the active sites of nitrogen-doped graphene fibers. Then, aptamers were modified on the microelectrode depending on Au-S bonds to prepare Apt-Au-N-RGOF. The prepared microelectrode can specifically identify DA, avoiding interference with other molecules and improving its selectivity. Compared with the N-RGOF microelectrode, the Apt-Au-N-RGOF microelectrode exhibited higher sensitivity, a lower detection limit (0.5 µM), and a wider linear range (1~100 µM) and could be applied in electrochemical analysis fields.


Subject(s)
Aptamers, Nucleotide , Dopamine , Electrochemical Techniques , Gold , Graphite , Metal Nanoparticles , Microelectrodes , Graphite/chemistry , Dopamine/analysis , Dopamine/chemistry , Aptamers, Nucleotide/chemistry , Gold/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection , Nitrogen/chemistry
4.
Water Res ; 256: 121638, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691899

ABSTRACT

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Subject(s)
Electrodes , Hydrogen Peroxide , Magnesium , Phosphorus , Urea , Urea/chemistry , Phosphorus/chemistry , Magnesium/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Urine/chemistry , Phosphates/chemistry , Struvite/chemistry , Ammonia/chemistry , Magnesium Compounds/chemistry , Nitrogen/chemistry , Humans
5.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38728227

ABSTRACT

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Subject(s)
Forests , Nitrogen , Plant Leaves , Trees , Nitrogen/metabolism , Nitrogen/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Trees/metabolism , Carbon/metabolism , Carbon/chemistry , Ecosystem , Taiga , Carbon Cycle
6.
Biosens Bioelectron ; 258: 116351, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38705074

ABSTRACT

Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Iron , Limit of Detection , Luminescent Measurements , Luminol , Prostate-Specific Antigen , Catalysis , Luminescent Measurements/methods , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Humans , Luminol/chemistry , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Iron/chemistry , Glucose Oxidase/chemistry , Immunoassay/methods , Gold/chemistry , Peroxidase/chemistry , Metal Nanoparticles/chemistry , Nitrogen/chemistry , Carbon/chemistry , Naphthols
7.
Chemosphere ; 358: 142277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719118

ABSTRACT

Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.


Subject(s)
Antiviral Agents , Cobalt , Nanotubes, Carbon , Nitrogen , Peracetic Acid , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Peracetic Acid/chemistry , Catalysis , Antiviral Agents/chemistry , Water Pollutants, Chemical/chemistry , Acyclovir/chemistry , Adsorption
8.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723623

ABSTRACT

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Subject(s)
Hemin , Hydrogen Peroxide , Nanotubes, Carbon , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Hemin/chemistry , Nanotubes, Carbon/chemistry , Electrodes , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry , Surface Properties , Electrochemical Techniques/methods , Catalysis
9.
Cryo Letters ; 45(3): 177-184, 2024.
Article in English | MEDLINE | ID: mdl-38709189

ABSTRACT

BACKGROUND: Ovarian tissue cryopreservation for fertility preservation carries a risk of malignant cell re-seeding. Artificial ovary is a promising method to solve such a problem. However, ovary decellularization protocols are limited. Hence, further studies are necessary to get better ovarian decellularization techniques for the construction of artificial ovary scaffolds. OBJECTIVE: To establish an innovative decellularization technique for whole porcine ovaries by integrating liquid nitrogen with chemical agents to reduce the contact time between the scaffolds and chemical reagents. MATERIALS AND METHODS: Porcine ovaries were randomly assigned to three groups: novel decellularized group, conventional decellularized group and fresh group. The ovaries in the novel decellularized group underwent three cycles of freezing by liquid nitrogen and thawing at temperatures around 37 degree C before decellularization. The efficiency of the decellularization procedure was assessed through histological staining and DNA content analysis. The maintenance of ovarian decellularized extracellular matrix(ODECM) constituents was determined by analyzing the content of matrix proteins. Additionally, we evaluated the biocompatibility of the decellularized extracellular matrix(dECM) by observing the growth of granulosa cells on the ODECM scaffold in vitro. RESULTS: Hematoxylin and eosin staining, DAPI staining and DNA quantification techniques collectively confirm the success of the novel decellularization methods in removing cellular and nuclear components from ovarian tissue. Moreover, quantitative assessments of ODECM contents revealed that the novel decellularization technique preserved more collagen and glycosaminoglycan compared to the conventional decellularized group (P<0.05). Additionally, the novel decellularized scaffold exhibited a significantly higher number of granulosa cells than the conventional scaffold during in vitro co-culture (P<0.05). CONCLUSION: The novel decellularized method demonstrated high efficacy in eliminating DNA and cellular structures while effectively preserving the extracellular matrix. As a result, the novel decellularized method holds significant promise as a viable technique for ovarian decellularization in forthcoming studies. Doi.org/10.54680/fr24310110212.


Subject(s)
Cryopreservation , Decellularized Extracellular Matrix , Nitrogen , Ovary , Tissue Scaffolds , Animals , Female , Nitrogen/chemistry , Swine , Ovary/cytology , Tissue Scaffolds/chemistry , Cryopreservation/methods , Decellularized Extracellular Matrix/chemistry , Tissue Engineering/methods , Granulosa Cells/cytology , Fertility Preservation/methods , Extracellular Matrix/chemistry , DNA/analysis , DNA/chemistry
10.
Mikrochim Acta ; 191(6): 310, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38714566

ABSTRACT

A ratiometric fluorescence sensor has been established based on dual-excitation carbon dots (D-CDs) for the detection of flavonoids (morin is chosen as the typical detecting model for flavonoids). D-CDs were prepared using microwave radiation with o-phenylenediamine and melamine and exhibit controllable dual-excitation behavior through the regulation of their concentration. Remarkably, the short-wavelength excitation of D-CDs can be quenched by morin owing to the inner filter effect, while the long-wavelength excitation remains insensitive, serving as the reference signal. This contributes to the successful design of an excitation-based ratiometric sensor. Based on the distinct and differentiated variation of excitation intensity, morin can be determined from 0.156 to 110 µM with a low detection limit of 0.156 µM. In addition, an intelligent and visually lateral flow sensing device is developed for the determination  of morin content in real samples with satisfying recoveries, which indicates the potential application for human health monitoring.


Subject(s)
Carbon , Flavonoids , Limit of Detection , Nitrogen , Printing, Three-Dimensional , Quantum Dots , Spectrometry, Fluorescence , Flavonoids/analysis , Flavonoids/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Nitrogen/chemistry , Fluorescent Dyes/chemistry , Humans , Flavones
11.
Chem Pharm Bull (Tokyo) ; 72(5): 432-453, 2024.
Article in English | MEDLINE | ID: mdl-38692858

ABSTRACT

We have developed efficient synthetic reactions using enamines and enamides carrying oxygen atom substituent on nitrogen, such as N-alkoxyenamines, N,α-dialkoxyenamines, N-alkoxyanamides, and N-(benzoyloxy)enamides. The umpolung reaction by polarity inversion at the ß-position of N-alkoxyenamines afforded α-alkyl-, α-aryl-, α-alkenyl-, and α-heteroarylketones by using aluminum reagent as nucleophiles. Furthermore, one-pot umpolung α-phenylation of ketones has been also developed. We applied this method to umpolung reaction of N,α-dialkoxyenamine, generated from N-alkoxyamide to afford α-arylamides. The vicinal functionalization of N-alkoxyenamines has been achieved with the formation of two new carbon-carbon bonds by using an organo-aluminum reagent and subsequent allyl magnesium bromide or tributyltin cyanide. A sequential retro-ene arylation has been developed for the conversion of N-alkoxyenamides to the corresponding tert-alkylamines. The [3,3]-sigmatropic rearrangement of N-(benzoyloxy)enamides followed by arylation afforded cyclic ß-aryl-ß-amino alcohols bearing a tetrasubstituted carbon center. The resulting products were converted into the corresponding sterically congested cyclic ß-amino alcohols, as well as the dissociative anesthetic agent Tiletamine.


Subject(s)
Amides , Amines , Amides/chemistry , Amides/chemical synthesis , Amines/chemistry , Amines/chemical synthesis , Molecular Structure , Nitrogen/chemistry , Oxygen/chemistry
12.
Environ Monit Assess ; 196(6): 552, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755295

ABSTRACT

The TiO2 nanocomposite efficiency was determined under optimized conditions with activated carbon to remove ammoniacal nitrogen (NH3-N) from the leachate sample. In this work, the facile impregnation and pyrolysis synthesis method was employed to prepare the nanocomposite, and their formation was confirmed using the FESEM, FTIR, XRD, and Raman studies. In contrast, Raman phonon mode intensity ratio ID/IG increases from 2.094 to 2.311, indicating the increase of electronic conductivity and defects with the loading of TiO2 nanoparticles. The experimental optimal conditions for achieving maximum NH3-N removal of 75.8% were found to be a pH of 7, an adsorbent mass of 1.75 mg/L, and a temperature of 30 °C, with a corresponding time of 160 min. The experimental data were effectively fitted with several isotherms (Freundlich, Hill, Khan, Redlich-Peterson, Toth, and Koble-Corrigan). The notably elevated R2 value of 0.99 and a lower ARE % of 14.61 strongly support the assertion that the pseudo-second-order model compromises a superior depiction of the NH3-N reduction process. Furthermore, an effective central composite design (CCD) of response surface methodology (RSM) was employed, and the lower RMSE value, precisely 0.45, demonstrated minimal disparity between the experimentally determined NH3-N removal percentages and those predicted by the model. The subsequent utilization of the desirability function allowed us to attain actual variable experimental conditions.


Subject(s)
Charcoal , Nitrogen , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Ammonia/chemistry , Adsorption , Models, Chemical , Waste Disposal, Fluid/methods , Nanocomposites/chemistry
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731989

ABSTRACT

Drug candidates must undergo thermal evaluation as early as possible in the preclinical phase of drug development because undesirable changes in their structure and physicochemical properties may result in decreased pharmacological activity or enhanced toxicity. Hence, the detailed evaluation of nitrogen-rich heterocyclic esters as potential drug candidates, i.e., imidazolidinoannelated triazinylformic acid ethyl esters 1-3 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -COOC2H5) and imidazolidinoannelated triazinylacetic acid methyl esters 4-6 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -CH2COOCH3)-in terms of their melting points, melting enthalpy values, thermal stabilities, pyrolysis, and oxidative decomposition course-has been carried out, using the simultaneous thermal analysis methods (TG/DTG/DSC) coupled with spectroscopic techniques (FTIR and QMS). It was found that the melting process (documented as one sharp peak related to the solid-liquid phase transition) of the investigated esters proceeded without their thermal decomposition. It was confirmed that the melting points of the tested compounds increased in relation to R1 and R2 as follows: 2 (R1 = 4-OCH3; R2 = -COOC2H5) < 6 (R1 = 4-Cl; R2 = -CH2COOCH3) < 5 (R1 = 4-OCH3; R2 = -CH2COOCH3) < 3 (R1 = 4-Cl; R2 = -COOC2H5) < 1 (R1 = 4-CH3; R2 = -COOC2H5) < 4 (R1 = 4-CH3; R2 = -CH2COOCH3). All polynitrogenated heterocyclic esters proved to be thermally stable up to 250 °C in inert and oxidising conditions, although 1-3 were characterised by higher thermal stability compared to 4-6. The results confirmed that both the pyrolysis and the oxidative decomposition of heterocyclic ethyl formates/methyl acetates with para-substitutions at the phenyl moiety proceed according to the radical mechanism. In inert conditions, the pyrolysis process of the studied molecules occurred with the homolytic breaking of the C-C, C-N, and C-O bonds. This led to the emission of alcohol (ethanol in the case of 1-3 or methanol in the case of 4-6), NH3, HCN, HNCO, aldehydes, CO2, CH4, HCl, aromatics, and H2O. In turn, in the presence of air, cleavage of the C-C, C-N, and C-O bonds connected with some oxidation and combustion processes took place. This led to the emission of the corresponding alcohol depending on the analysed class of heterocyclic esters, NH3, HCN, HNCO, aldehydes, N2, NO/NO2, CO, CO2, HCl, aromatics, and H2O. Additionally, after some biological tests, it was proven that all nitrogen-rich heterocyclic esters-as potential drug candidates-are safe for erythrocytes, and some of them are able to protect red blood cells from oxidative stress-induced damage.


Subject(s)
Esters , Heterocyclic Compounds , Nitrogen , Esters/chemistry , Nitrogen/chemistry , Heterocyclic Compounds/chemistry , Drug Stability , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Pyrolysis
14.
Chemosphere ; 358: 142204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704044

ABSTRACT

Bisphenol A (BPA) is a typical endocrine disruptor, which can be used as an industrial raw material for the synthesis of polycarbonate and epoxy resins, etc. Recently, BPA has appeared on the list of priority new pollutants for control in various countries and regions. In this study, phenolic resin waste was utilized as a multi-carbon precursor for the electrocatalytic cathode and loaded with cobalt/nitrogen (Co/N) on its surface to form qualitative two-dimensional carbon nano-flakes (Co/NC). The onset potentials, half-wave potentials, and limiting current densities of the nitrogen-doped composite carbon material Co/NC in oxygen saturated 0.5 mol H2SO4 were -0.08 V, -0.61 V, and -0.41 mA cm-2; and those of alkaline conditions were -0.65 V, -2.51 V, and -0.38 mA cm-2, and the corresponding indexes were improved compared with those of blank titanium electrodes, which indicated that the constructed nitrogen-doped composite carbon material Co/NC was superior in oxygen reduction ability. The catalysis by metallic cobalt as well as the N-hybridized active sites significantly improved the efficiency of electrocatalytic degradation of BPA. In the electro-Fenton system, the yield of hydrogen peroxide generated by cathodic reduction of oxygen was 4.012 mg L-1, which effectively promoted the activation of hydroxyl radicals. The removal rate of BPA was above 95% within 180 min. This work provides a new insight for the design and development of novel catalyst to degrade organic pollutants.


Subject(s)
Benzhydryl Compounds , Cobalt , Nitrogen , Phenols , Benzhydryl Compounds/chemistry , Phenols/chemistry , Cobalt/chemistry , Catalysis , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Electrodes , Carbon/chemistry , Hydrogen Peroxide/chemistry , Electrochemical Techniques/methods , Endocrine Disruptors/chemistry
15.
J Phys Chem B ; 128(14): 3350-3359, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38564809

ABSTRACT

Secondary coordination sphere (SCS) interactions have been shown to play important roles in tuning reduction potentials and electron transfer (ET) properties of the Type 1 copper proteins, but the precise roles of these interactions are not fully understood. In this work, we examined the influence of F114P, F114N, and N47S mutations in the SCS on the electronic structure of the T1 copper center in azurin (Az) by studying the hyperfine couplings of (i) histidine remote Nε nitrogens and (ii) the amide Np using the two-dimensional (2D) pulsed electron paramagnetic resonance (EPR) technique HYSCORE (hyperfine sublevel correlation) combined with quantum mechanics/molecular mechanics (QM/MM) and DLPNO-CCSD calculations. Our data show that some components of hyperfine tensor and isotropic coupling in N47SAz and F114PAz (but not F114NAz) deviate by up to ∼±20% from WTAz, indicating that these mutations significantly influence the spin density distribution between the CuII site and coordinating ligands. Furthermore, our calculations support the assignment of Np to the backbone amide of residue 47 (both in Asn and Ser variants). Since the spin density distributions play an important role in tuning the covalency of the Cu-Scys bond of Type 1 copper center that has been shown to be crucial in controlling the reduction potentials, this study provides additional insights into the electron spin factor in tuning the reduction potentials and ET properties.


Subject(s)
Alaska Natives , Azurin , Azurin/genetics , Azurin/chemistry , Copper/chemistry , Nitrogen/chemistry , Mutation , Electron Spin Resonance Spectroscopy/methods , Amides
16.
Biosens Bioelectron ; 255: 116254, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569252

ABSTRACT

Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 µM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.


Subject(s)
Biosensing Techniques , Nitrogenase , Nitrogenase/chemistry , Nitrogenase/metabolism , Ammonia/chemistry , Nitrogen Fixation , Nitrogen/chemistry
17.
J Hazard Mater ; 470: 134271, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608593

ABSTRACT

Rapid and sensitive monitoring of pH and histamine is crucial for bridging biological and food systems and identifying corresponding abnormal situations. Herein, N-doped carbon dots (CDs) are fabricated by a hydrothermal method employing dipicolinic acid and o-phenylenediamine as precursors. The CDs exhibit colorimetric and fluorescent dual-mode responses to track pH and histamine variations in living cells and food freshness, respectively. The aggregation-induced emission enhancement and intramolecular charge transfer result in a decrease in absorbance and an increase in fluorescence, which become readily apparent as the pH changes from acidic to neutral. This property enables precise differentiation between normal and cancerous cells. Furthermore, given the intrinsic basicity of histamine, pH-responsive CDs are advantageous for additional colorimetric and fluorescent monitoring of histamine in food freshness, achieving linearities of 25-1000 µM and 30-1000 µM, respectively, which are broader than those of alternative nanoprobes. Interestingly, the smartphone-integrated sensing platform can portably and visually evaluate pH and histamine changes due to sensitive color changes. Therefore, the sensor not only establishes a dynamic connection between pH and histamine for the purposes of biological and food monitoring, but also presents a novel approach for developing a multifunctional biosensor that can accomplish environmental monitoring and biosensing simultaneously.


Subject(s)
Carbon , Colorimetry , Histamine , Quantum Dots , Histamine/analysis , Carbon/chemistry , Colorimetry/methods , Hydrogen-Ion Concentration , Quantum Dots/chemistry , Humans , Biosensing Techniques/methods , Spectrometry, Fluorescence , Smartphone , Food Analysis/methods , Nitrogen/chemistry , Fluorescence , Fluorescent Dyes/chemistry
18.
Biosens Bioelectron ; 256: 116277, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38613934

ABSTRACT

The field of biosensing would significantly benefit from a disruptive technology enabling flexible manufacturing of uniform electrodes. Inkjet printing holds promise for this, although realizing full electrode manufacturing with this technology remains challenging. We introduce a nitrogen-doped carboxylated graphene ink (NGA-ink) compatible with commercially available printing technologies. The water-based and additive-free NGA-ink was utilized to produce fully inkjet-printed electrodes (IPEs), which demonstrated successful electrochemical detection of the important neurotransmitter dopamine. The cost-effectiveness of NGA-ink combined with a total cost per electrode of $0.10 renders it a practical solution for customized electrode manufacturing. Furthermore, the high carboxyl group content of NGA-ink (13 wt%) presents opportunities for biomolecule immobilization, paving the way for the development of advanced state-of-the-art biosensors. This study highlights the potential of NGA inkjet-printed electrodes in revolutionizing sensor technology, offering an affordable, scalable alternative to conventional electrochemical systems.


Subject(s)
Biosensing Techniques , Dopamine , Electrochemical Techniques , Graphite , Ink , Printing , Biosensing Techniques/instrumentation , Graphite/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Dopamine/analysis , Electrodes , Equipment Design , Nitrogen/chemistry , Humans
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124305, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38657331

ABSTRACT

A new fluorescent sensor for the determination of lemon yellow was developed based on nitrogen-doped carbon quantum dots (N-CQDs), which were prepared via a hydrothermal method with dried pomelo peel and L-tyrosine. The N-CQDs exhibited the blue fluorescence with a quantum yield of 28 %. The sensing principle of N-CQDs was quenched by lemon yellow via static quenching. The potential interfering substances showed no influence on the detection of lemon yellow. The limit of detection was 0.023 mg/L and lower than that of national standard. Furthermore, the synthesized N-CQDs have been successfully applied to the measurement of lemon yellow in real samples. Hence, the N-CQDs would be a promising sensor in food analysis.


Subject(s)
Carbon , Nitrogen , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Carbonated Beverages/analysis , Green Chemistry Technology/methods , Limit of Detection , Citrus/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124347, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38678843

ABSTRACT

At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 µg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 µM, and the detection limit was 3.18 µM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.


Subject(s)
Carbon , Fluorescent Dyes , Limit of Detection , Nitrogen , Quantum Dots , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Nitrogen/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Iron/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...