Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755437

ABSTRACT

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Subject(s)
Base Composition , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Fatty Acids/metabolism , Bacterial Typing Techniques , China , Phospholipids/analysis , Nitrogen Fixation , Sequence Analysis, DNA , Nitrogen-Fixing Bacteria/classification , Nitrogen-Fixing Bacteria/genetics , Nitrogen-Fixing Bacteria/isolation & purification , Nitrogen-Fixing Bacteria/metabolism
2.
BMC Plant Biol ; 24(1): 285, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627617

ABSTRACT

Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.


Subject(s)
Nitrogen-Fixing Bacteria , Oryza , Plant Roots/metabolism , Nitrogen/metabolism , Nitrogen-Fixing Bacteria/metabolism , Soil , Rhizosphere , Citric Acid , Soil Microbiology
3.
Bioresour Technol ; 400: 130681, 2024 May.
Article in English | MEDLINE | ID: mdl-38599350

ABSTRACT

Excavating nitrogen-fixing bacteria with high-temperature tolerance is essential for the efficient composting of animal dung. In this study, two strains of thermophilic nitrogen-fixing bacteria, NF1 (Bacillus subtilis) and NF2 (Azotobacter chroococcum), were added to cow dung compost both individually (NF1, NF2) and mixed together (NF3; mixing NF1 and NF2 at a ratio of 1:1). The results showed that NF1, NF2, and NF3 inoculants increased the total Kjeldahl nitrogen level by 38.43%-55.35%, prolonged the thermophilic period by 1-13 d, increased the seed germination index by 17.81%, and the emissions of NH3 and N2O were reduced by 25.11% and 42.75%, respectively. Microbial analysis showed that Firmicutes were the predominant bacteria at the thermophilic stage, whereas Chloroflexi, Proteobacteria, and Bacteroidetes were the predominant bacteria at the mature stage. These results confirmed that the addition of the isolated strains to cow dung composting improved the bacterial community structure and benefited nitrogen retention.


Subject(s)
Composting , Nitrogen , Animals , Cattle , Manure/microbiology , Feces/microbiology , Nitrogen-Fixing Bacteria/metabolism , Bacillus subtilis , Temperature , Germination
4.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38637314

ABSTRACT

Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.


Subject(s)
Crops, Agricultural , Malus , Nitrogen Fixation , Soil Microbiology , Malus/microbiology , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Nitrogen-Fixing Bacteria/genetics , Nitrogen-Fixing Bacteria/metabolism , Citrus/microbiology , Ecosystem , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/growth & development , Soil/chemistry , Agriculture , Nitrogen/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Proteobacteria/genetics , Seasons
5.
Article in English | MEDLINE | ID: mdl-38323900

ABSTRACT

Three microaerophilic bacterial strains, designated SG22T, SG63T and SG29T were isolated from paddy soils in PR China. Cells of these strains were Gram-staining-negative and long rod-shaped. SG22T, SG63T and SG29T showed the highest 16S rRNA gene sequence similarities with the members of the genus Anaeromyxobacter. The results of phylogenetic and phylogenomic analysis also indicated that these strains clustered with members of the genus Anaeromyxobacter. The main respiratory menaquinone of SG22T, SG63T and SG29T was MK-8 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. SG22T, SG29T and SG63T not only possessed iron reduction ability but also harboured genes (nifHDK) encoding nitrogenase. The genomic DNA G+C contents of SG22T, SG63T and SG29T ranged from 73.3 to 73.5 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between SG22T, SG63T and SG29T and the closely related species of the genus Anaeromyxobacter were lower than the cut-off values (dDDH 70 % and ANI 95-96 %) for prokaryotic species delineation. On the basis of these results, strains SG22T, SG63T and SG29T represent three novel species within the genus Anaeromyxobacter, for which the names Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., are proposed. The type strains are SG22T (= GDMCC 1.3185T = JCM 35581T), SG63T (= GDMCC 1.2914T = JCM 35124T) and SG29T (= GDMCC 1.2911T = JCM 35123T).


Subject(s)
Myxococcales , Nitrogen-Fixing Bacteria , Ferric Compounds , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Nucleotides , Soil
6.
J Microbiol Biotechnol ; 34(3): 570-579, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38213271

ABSTRACT

Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.


Subject(s)
Fabaceae , Nitrogen-Fixing Bacteria , Rhizobium , Fabaceae/microbiology , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Nitrogen-Fixing Bacteria/genetics , Nitrogen-Fixing Bacteria/metabolism , Legumins , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis/genetics , Nitrogen Fixation , Glycine max , Bacteria/genetics , Rhizobium/genetics , Rhizobium/metabolism , Vegetables , Nitrogen/metabolism
7.
J Hazard Mater ; 466: 133553, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266589

ABSTRACT

Vanadium dioxide (VO2) has been used in a variety of products due to its outstanding phase transition properties. However, as potential heavy metal contaminants, the environmental hazards and risks of VO2 should be systematically investigated. Biological nitrogen fixation is one of the most dominant processes in biogeochemical cycle, which is associated with nitrogen-fixing bacteria. In this study, we reported the environmental bio-effects of VO2 micro/nanoparticles on the nitrogen-fixing bacterium Azotobacter vinelandii. VO2 at 10 and 30 mg/L caused severe hazards to A. vinelandii, such as cell apoptosis, oxidative damage, physical damage, genotoxicity, and the loss of nitrogen fixation activity. The up-regulated differentially expressed genes of A. vinelandii were related to stress response, and the down-regulated genes were mainly related to energy metabolism. Surprisingly, VO2 of 10 mg/L decreased the nif gene expression but elevated the vnf gene expression, which enhanced the ability of A. vinelandii to reduce acetylene in anaerobic environment. In addition, under tested conditions, VO2 nanoparticles exhibited insignificantly higher toxicity than VO2 microparticles.


Subject(s)
Azotobacter vinelandii , Nitrogen-Fixing Bacteria , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Nitrogen Fixation/genetics , Nitrogen/metabolism
8.
Methods Mol Biol ; 2751: 237-245, 2024.
Article in English | MEDLINE | ID: mdl-38265721

ABSTRACT

Nod factors (NF) are lipochitooligosaccharides produced by nitrogen-fixing rhizobia bacteria. They are key components of the rhizobia-plant signaling exchange required for symbiosis. Thus, techniques to extract, detect, characterize, and purify NF are crucial for the identification of both rhizobial and plant mechanisms underlying nitrogen-fixing symbiosis. Here, we describe a method for NF detection using radiolabeling and thin-layer chromatography. Furthermore, we describe a technique for purifying NF for downstream analyses.


Subject(s)
Fabaceae , Nitrogen-Fixing Bacteria , Rhizobium , Symbiosis , Lipopolysaccharides , Vegetables , Nitrogen
9.
Methods Mol Biol ; 2741: 363-380, 2024.
Article in English | MEDLINE | ID: mdl-38217663

ABSTRACT

The activity mechanism and function of bacterial base-pairing small non-coding RNA regulators (sRNAs) are largely shaped by their main interacting cellular partners, i.e., proteins and mRNAs. We describe here an MS2 affinity chromatography-based procedure adapted to unravel the sRNA interactome in nitrogen-fixing legume endosymbiotic bacteria. The method consists of tagging of the bait sRNA at its 5'-end with the MS2 aptamer followed by pulse overexpression and immobilization of the chimeric transcript from cell lysates by an MS2-MBP fusion protein conjugated to an amylose resin. The sRNA-binding proteins and target mRNAs are further profiled by mass spectrometry and RNAseq, respectively.


Subject(s)
Nitrogen-Fixing Bacteria , RNA, Small Untranslated , Rhizobium , RNA, Small Untranslated/genetics , Rhizobium/genetics , Rhizobium/metabolism , Nitrogen/metabolism , Bacteria/genetics , Nitrogen-Fixing Bacteria/genetics , Chromatography, Affinity/methods , RNA, Bacterial/genetics , Gene Expression Regulation, Bacterial
10.
Bioresour Technol ; 394: 130183, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092076

ABSTRACT

Hypersaline organic wastewater is characterized as being nitrogen-deficient, and is easily prone to sludge bulking. In this study, the stability of halophilic aerobic granular sludge (HAGS) for the treatment of hypersaline organic wastewater is explored. Along with the decrease of influent ammonium, the bacterial population substantially reduced, whereas the fungal population continuously increased in HAGS. Saccharomycetales in fungi become the dominant sequence (99.78%) in HAGS bulking. Additionally, Halanaerobium (77.47%) remained prevalent in HAGS despite bacterial washout. Halanaerobium, a nitrogen-fixing genus of bacteria, provided nitrogen for ammonium-assimilating fungi. Saccharomycetales encapsulating HAGS reduced the transfer efficiency of dissolved oxygen, thereby creating favorable growth conditions for Halanaerobium. This paper for the first time highlights the mutualistic symbiosis of fungi and bacteria in HAGS treating the hypersaline organic wastewater. The study lays the foundation for the control and recovery of HAGS bulking.


Subject(s)
Ammonium Compounds , Nitrogen-Fixing Bacteria , Wastewater , Sewage/microbiology , Waste Disposal, Fluid , Nitrogen/analysis , Symbiosis , Bioreactors/microbiology , Bacteria , Bacteria, Anaerobic , Firmicutes , Fungi
11.
BMC Plant Biol ; 23(1): 573, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978424

ABSTRACT

BACKGROUND: Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity. RESULTS: In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated. Sugarcane samples inoculated with GXS16 exhibited significantly higher leaf relative water content than those without GXS16 inoculation during the drought stages. Sugarcane treated with GXS16 had lower levels of H2O2 and higher levels of abscisic acid than sugarcane not treated with GXS16 in the non-watering groups. Transcriptomic analysis of sugarcane roots identified multiple differentially expressed genes between adjacent stages under different treatments. Moreover, both trend and weighted correlation network analyses revealed that carotenoid biosynthesis, terpenoid backbone biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction strongly contributed to the drought-tolerant phenotype of sugarcane induced by GXS16 treatment. Accordingly, a gene regulatory network including four differentially regulated genes from carotenoid biosynthesis (crtB, crtZ, ZEP and CYP707A) and three genes from terpenoid backbone biosynthesis (dxs, dxr, and PCME) was constructed. CONCLUSIONS: This study provides insights into the molecular mechanisms underlying the application of GXS16 treatment to enhance drought tolerance in sugarcane, which will lay the foundation for crop development and improve productivity.


Subject(s)
Nitrogen-Fixing Bacteria , Saccharum , Saccharum/metabolism , Drought Resistance , Nitrogen-Fixing Bacteria/metabolism , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Droughts , Water/metabolism , Gene Expression Regulation, Plant
12.
BMC Microbiol ; 23(1): 292, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845638

ABSTRACT

BACKGROUND: Astragalus mongolicus Bunge is used in traditional Chinese medicine and is thus cultivated in bulk. The cultivation of A. mongolicus requires a large amount of nitrogen fertilizer, increasing the planting cost of medicinal materials and polluting the environment. Isolation and screening of plant growth-promoting rhizobacteria (PGPR) and exploring the nitrogen fixation potential of A. mongolicus rhizosphere microorganisms would effectively reduce the production cost of A. mongolicus. RESULTS: This study used A. mongolicus roots and rhizosphere soil samples from Longxi County of Gansu Province, Jingle County, and Hunyuan County of Shanxi Province, China, to isolate and identify nitrogen-fixing bacteria. Through nitrogen fixation efficiency test, single strain inoculation test, and plant growth-promoting characteristics, three strains, Bacillus sp. J1, Arthrobacter sp. J2, and Bacillus sp. G4 were selected from 86 strains of potential nitrogen-fixing bacteria, which were the most effective in promoting the A. mongolicus growth and increasing the nitrogen, phosphorus, and potassium content in plants. The antagonistic test showed that these bacteria could grow smoothly under the co-culture conditions. The J1, J2, and G4 strains were used in a mixed inoculum and found to enhance the biomass of A. mongolicus plants and the accumulation of the main medicinal components in the field experiment. Mixed bacterial agent inoculation also increased bacterial diversity and changed the structure of the bacterial community in rhizosphere soil. Meanwhile, the relative abundance of Proteobacteria increased significantly after inoculation, suggesting that Proteobacteria play an important role in plant growth promotion. CONCLUSIONS: These findings indicate that specific and efficient PGPRs have a significant promoting effect on the growth of A. mongolicus, while also having a positive impact on the structure of the host rhizosphere bacteria community. This study provides a basis for developing a nitrogen-fixing bacterial fertilizer and improving the ecological planting efficiency of A. mongolicus.


Subject(s)
Bacillus , Nitrogen-Fixing Bacteria , Rhizosphere , Fertilizers/microbiology , Medicine, Chinese Traditional , Bacteria , Nitrogen , Soil/chemistry , Soil Microbiology , Plant Roots/microbiology
13.
Sci Rep ; 13(1): 16020, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749152

ABSTRACT

Non-specific lipid transfer proteins (nsLTPs) are antimicrobial peptides, involved in several plant biological processes including root nodule nitrogen fixation (RNF). Nodulating plants belonging to the RNF clade establish symbiosis with the nitrogen-fixing bacteria rhizobia (legumes symbiosis model) and Frankia (actinorhizal symbiosis model) leading to root nodule formation. nsLTPs are involved in processes active in early step of symbiosis and functional nodule in both models. In legumes, nsLTPs have been shown to regulate symbiont entry, promote root cortex infection, membrane biosynthesis, and improve symbiosis efficiency. More recently, a nsLTP, AgLTP24 has been described in the context of actinorhizal symbiosis between Alnus glutinosa and Frankia alni ACN14a. AgLTP24 is secreted at an early step of symbiosis on the deformed root hairs and targets the symbiont in the nitrogen-fixing vesicles in functional nodules. nsLTPs are involved in RNF, but their functions and evolutionary history are still largely unknown. Numerous putative nsLTPs were found up-regulated in functional nodules compared to non-infected roots in different lineages within the RNF clade. Here, results highlight that nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have independently specialized nsLTPs for this interaction, suggesting a possible convergence of function, which opens perspectives to investigate nsLTPs functions in RNF.


Subject(s)
Fabaceae , Frankia , Nitrogen-Fixing Bacteria , Nitrogen Fixation , Biological Transport , Nitrogen , Vegetables
14.
Chemosphere ; 336: 139223, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327828

ABSTRACT

The potential effects of engineered metal oxide nanoparticles (MONPs) on bacterial nitrogen fixation are of great concern. Herein, the impact and mechanism of the increasing-used MONPs, including TiO2, Al2O3, and ZnO nanoparticles (TiO2NP, Al2O3NP, and ZnONP, respectively), on nitrogenase activity was studied at the concentrations ranging from 0 to 10 mg L-1 using associative rhizosphere nitrogen-fixing bacteria Pseudomonas stutzeri A1501. Nitrogen fixation capacity was inhibited by MONPs in an increasing degree of TiO2NP < Al2O3NP < ZnONP. Realtime qPCR analysis showed that the expressions of nitrogenase synthesis-related genes, including nifA and nifH, were inhibited significantly when MONPs were added. MONPs could cause the explosion of intracellular ROS, and ROS not only changed the permeability of the membrane but also inhibited the expression of nifA and biofilm formation on the root surface. The repressed nifA gene could inhibit transcriptional activation of nif-specific genes, and ROS reduced the biofilm formation on the root surface which had a negative effect on resisting environmental stress. This study demonstrated that MONPs, including TiO2NP, Al2O3NP, and ZnONP, inhibited bacterial biofilm formation and nitrogen fixation in the rice rhizosphere, which might have a negative effect on the nitrogen cycle in bacteria-rice system.


Subject(s)
Nanoparticles , Nitrogen-Fixing Bacteria , Pseudomonas stutzeri , Nitrogen Fixation , Pseudomonas stutzeri/metabolism , Reactive Oxygen Species/metabolism , Nitrogen-Fixing Bacteria/metabolism , Rhizosphere , Oxides/metabolism , Nitrogenase/genetics , Bacterial Proteins/metabolism , Nitrogen/metabolism
15.
Appl Environ Microbiol ; 89(7): e0081223, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37338413

ABSTRACT

Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.


Subject(s)
Nitrogen-Fixing Bacteria , Animals , RNA, Ribosomal, 16S/genetics , Insecta , Bacteria/genetics , Nitrogen/analysis , Alkynes
16.
Appl Environ Microbiol ; 89(5): e0037823, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37154716

ABSTRACT

The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.


Subject(s)
Electrons , Nitrogen-Fixing Bacteria , Ecosystem , Bacteria/metabolism , Nitrogenase/metabolism , Nitrogen Fixation , Ferredoxins/metabolism , Nitrogen/metabolism
17.
Tree Physiol ; 43(8): 1354-1364, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37073466

ABSTRACT

Endophytic nitrogen-fixing bacteria have been detected and isolated from the needles of conifer trees growing in North American boreal forests. Because boreal forests are nutrient-limited, these bacteria could provide an important source of nitrogen for tree species. This study aimed to determine their presence and activity in a Scandinavian boreal forest, using immunodetection of nitrogenase enzyme subunits and acetylene-reduction assays of native Scots pine (Pinus sylvestris L.) needles. The presence and rate of nitrogen fixation by endophytic bacteria were compared between control plots and fertilized plots in a nitrogen-addition experiment. In contrast to the expectation that nitrogen-fixation rates would decline in fertilized plots, as seen, for instance, with nitrogen-fixing bacteria associated with bryophytes, there was no difference in the presence or activity of nitrogen-fixing bacteria between the two treatments. The extrapolated calculated rate of nitrogen fixation relevant for the forest stand was 20 g N ha-1 year-1, which is rather low compared with Scots pine annual nitrogen use but could be important for the nitrogen-poor forest in the long term. In addition, of 13 colonies of potential nitrogen-fixing bacteria isolated from the needles on nitrogen-free media, 10 showed in vitro nitrogen fixation. In summary, 16S rRNA sequencing identified the species as belonging to the genera Bacillus, Variovorax, Novosphingobium, Sphingomonas, Microbacterium and Priestia, which was confirmed by Illumina whole-genome sequencing. Our results confirm the presence of endophytic nitrogen-fixing bacteria in Scots pine needles and suggest that they could be important for the long-term nitrogen budget of the Scandinavian boreal forest.


Subject(s)
Nitrogen-Fixing Bacteria , Pinus sylvestris , Taiga , RNA, Ribosomal, 16S , Acetylene , Nitrogen
18.
Arch Microbiol ; 205(5): 190, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055599

ABSTRACT

The use of commercial bacterial inoculants formulated with plant-growth promoting bacteria (PGPB) in agriculture has shown significant prominence in recent years due to growth-promotion benefits provided to plants through different mechanisms. However, the survival and viability of bacterial cells in inoculants are affected during use and may decrease their effectiveness. Physiological adaptation strategies have attracted attention to solve the viability problem. This review aims to provide an overview of research on selecting sublethal stress strategies to increase the effectiveness of bacterial inoculants. The searches were performed in November 2021 using Web of Science, Scopus, PubMed, and Proquest databases. The keywords "nitrogen-fixing bacteria", "plant growth-promoting rhizobacteria", "azospirillum", "pseudomonas", "rhizobium", "stress pre-conditioning", "adaptation", "metabolic physiological adaptation", "cellular adaptation", "increasing survival", "protective agent" and "protective strategy" were used in the searches. A total of 2573 publications were found, and 34 studies were selected for a deeper study of the subject. Based on the studies analysis, gaps and potential applications related to sublethal stress were identified. The most used strategies included osmotic, thermal, oxidative, and nutritional stress, and the primary cell response mechanism to stress was the accumulation of osmolytes, phytohormones, and exopolysaccharides (EPS). Under sublethal stress, the inoculant survival showed positive increments after lyophilization, desiccation, and long-term storage processes. The effectiveness of inoculant-plants interaction also had positive increments after sublethal stress, improving plant development, disease control, and tolerance to environmental stresses compared to unappealed inoculants.


Subject(s)
Agricultural Inoculants , Nitrogen-Fixing Bacteria , Bacteria , Plant Growth Regulators , Plant Development
19.
Microbiome ; 11(1): 48, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36895023

ABSTRACT

BACKGROUND: Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS: The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS: Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.


Subject(s)
Microbiota , Nematoda , Nitrogen-Fixing Bacteria , Solanum lycopersicum , Animals , Plant Diseases/parasitology , Plants , Bacteria/genetics , Nitrogen , Plant Roots/microbiology
20.
Elife ; 122023 03 01.
Article in English | MEDLINE | ID: mdl-36856086

ABSTRACT

Host-controlled intracellular accommodation of nitrogen-fixing bacteria is essential for the establishment of a functional Root Nodule Symbiosis (RNS). In many host plants, this occurs via transcellular tubular structures (infection threads - ITs) that extend across cell layers via polar tip-growth. Comparative phylogenomic studies have identified RPG (RHIZOBIUM-DIRECTED POLAR GROWTH) among the critical genetic determinants for bacterial infection. In Medicago truncatula, RPG is required for effective IT progression within root hairs but the cellular and molecular function of the encoded protein remains elusive. Here, we show that RPG resides in the protein complex formed by the core endosymbiotic components VAPYRIN (VPY) and LUMPY INFECTION (LIN) required for IT polar growth, co-localizes with both VPY and LIN in IT tip- and perinuclear-associated puncta of M. truncatula root hairs undergoing infection and is necessary for VPY recruitment into these structures. Fluorescence Lifetime Imaging Microscopy (FLIM) of phosphoinositide species during bacterial infection revealed that functional RPG is required to sustain strong membrane polarization at the advancing tip of the IT. In addition, loss of RPG functionality alters the cytoskeleton-mediated connectivity between the IT tip and the nucleus and affects the polar secretion of the cell wall modifying enzyme NODULE PECTATE LYASE (NPL). Our results integrate RPG into a core host machinery required to support symbiont accommodation, suggesting that its occurrence in plant host genomes is essential to co-opt a multimeric protein module committed to endosymbiosis to sustain IT-mediated bacterial infection.


Subject(s)
Nitrogen-Fixing Bacteria , Rhizobium , Symbiosis , Cell Nucleus , Cell Wall
SELECTION OF CITATIONS
SEARCH DETAIL
...