Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 452
Filter
1.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38631020

ABSTRACT

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Subject(s)
Lignans , Peperomia , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Trypanosoma cruzi/drug effects , El Salvador , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Molecular Structure , Peperomia/chemistry , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Chagas Disease/drug therapy
2.
Z Naturforsch C J Biosci ; 79(3-4): 61-71, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38578162

ABSTRACT

A new series of 4-nitroimidazole bearing aryl piperazines 7-16, tetrazole 17 and 1,3,4-thiadiazole 18 derivatives was synthesized. All derivatives were screened for their anticancer activity against eight diverse human cancer cell lines (Capan-1, HCT-116, LN229, NCI-H460, DND-41, HL-60, K562, and Z138). Compound 17 proved the most potent compound of the series inhibiting proliferation of most of the selected human cancer cell lines with IC50 values in the low micromolar range. In addition, compound 11 exhibited IC50 values ranging 8.60-64.0 µM against a selection of cancer cell lines. These findings suggest that derivative 17 can potentially be a new lead compound for further development of novel antiproliferative agents. Additionally, 17-18 were assessed for their antibacterial and antituberculosis activity. Derivatives 17 and 18 were the most potent compounds of this series against both Staphylococcus aureus strain Wichita and a methicillin resistant strain of S. aureus (MRSA), as well as against Mycobacterium tuberculosis strain mc26230. The antiviral activity of 7-18 was also evaluated against diverse viruses, but no activity was detected. The docking study of compound 17 with putative protein targets in acute myeloid leukemia had been studied. Furthermore, the molecular dynamics simulation of 17 and 18 had been investigated.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Nitroimidazoles , Humans , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Docking Simulation , Staphylococcus aureus/drug effects , Mycobacterium tuberculosis/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/chemical synthesis , Cell Proliferation/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry
3.
Bioorg Med Chem Lett ; 106: 129773, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677561

ABSTRACT

Hypoxia is a common phenomenon in solid tumors, and its presence inhibits the efficacy of tumor chemotherapy and radiotherapy. Accurate measurement of hypoxia before tumor treatment is essential. Three propylene amine oxime (PnAO) derivatives with different substituents attached to 2-nitroimidazole were synthesized in the work, they are 3,3,9,9-tetramethyl-1,11-bis(4-bromo-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Br2P2), 3,3,9,9-tetramethyl-1,11-bis(4-methyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Me2P2) and 3,3,9,9-tetramethyl-1,11-bis(4,5-dimethyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (2Me2P2). The three compounds were radiolabeled with 99mTc to give three complexes([99mTc]Tc-Br2P2, [99mTc]Tc-Me2P2 and [99mTc]Tc-2Me2P2) with good in vitro stability. [99mTc]Tc-Me2P2 with a more suitable reduction potential had the highest hypoxic cellular uptake, compared with [99mTc]Tc-2P2 that have been previously reported, [99mTc]Tc-Br2P2 and [99mTc]Tc-2Me2P2. Biodistribution results in S180 tumor-bearing mice demonstrated that [99mTc]Tc-Me2P2 had the highest tumor-to-muscle (T/M) ratio (12.37 ± 1.16) at 2 h in the four complexes. Autoradiography and immunohistochemical staining results revealed that [99mTc]Tc-Me2P2 specifically targeted tumor hypoxic regions. The SPECT/CT imaging results showed that [99mTc]Tc-Me2P2 could target the tumor site. [99mTc]Tc-Me2P2 may become a potential hypoxia imaging agent.


Subject(s)
Nitroimidazoles , Organotechnetium Compounds , Oximes , Tumor Hypoxia , Oximes/chemistry , Oximes/chemical synthesis , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Animals , Mice , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/chemical synthesis , Tumor Hypoxia/drug effects , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Humans , Tissue Distribution , Molecular Structure , Cell Line, Tumor , Structure-Activity Relationship
4.
Org Lett ; 25(49): 8792-8796, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38059767

ABSTRACT

A heterobifunctional cross-linker with one sulfhydryl-reactive dinitroimidazole end and another amine-reactive N-hydroxysuccinimide (NHS) ester end was designed and synthesized. The two motifs of this cross-linker, dinitroimidazole and NHS ester, proved to react with thiol and amine, respectively, in an orthogonal way. The cross-linker was further applied to construct stapled peptides of different sizes and mono- and dual functionalization (including biotinylation, PEGylation, and fluorescence labeling) of protein.


Subject(s)
Cysteine , Lysine , Nitroimidazoles , Peptides , Amines , Cross-Linking Reagents , Imidazoles/chemistry , Peptides/chemistry , Proteins , Sulfhydryl Compounds , Nitroimidazoles/chemistry
5.
Nucl Med Biol ; 124-125: 108383, 2023.
Article in English | MEDLINE | ID: mdl-37651917

ABSTRACT

BACKGROUND: Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [18F]FBNA (N-(4-[18F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an 18F-labeled analogue of antiparasitic drug benznidazole. The present study aimed to analyze its radio-pharmacological properties and systematically compare its PET imaging profiles with [18F]FMISO and [18F]FAZA in preclinical triple-negative (MDA-MB231) and estrogen receptor-positive (MCF-7) breast cancer models. METHODS: In vitro cellular uptake experiments were carried out in MDA-MB321 and MCF-7 cells under normoxic and hypoxic conditions. Metabolic stability in vivo was determined in BALB/c mice using radio-TLC analysis. Dynamic PET experiments over 3 h post-injection were performed in MDA-MB231 and MCF-7 tumour-bearing mice. Those PET data were used for kinetic modelling analysis utilizing the reversible two-tissue-compartment model. Autoradiography was carried out in tumour tissue slices and compared to HIF-1α immunohistochemistry. Detailed ex vivo biodistribution was accomplished in BALB/c mice, and this biodistribution data were used for dosimetry calculation. RESULTS: Under hypoxic conditions in vitro cellular uptake was elevated in both cell lines, MCF-7 and MDA-MB231, for all three radiotracers. After intravenous injection, [18F]FBNA formed two radiometabolites, resulting in a final fraction of 65 ± 9 % intact [18F]FBNA after 60 min p.i. After 3 h p.i., [18F]FBNA tumour uptake reached SUV values of 0.78 ± 0.01 in MCF-7 and 0.61 ± 0.04 in MDA-MB231 tumours (both n = 3), representing tumour-to-muscle ratios of 2.19 ± 0.04 and 1.98 ± 0.15, respectively. [18F]FMISO resulted in higher tumour uptakes (SUV 1.36 ± 0.04 in MCF-7 and 1.23 ± 0.08 in MDA-MB231 (both n = 4; p < 0.05) than [18F]FAZA (0.66 ± 0.11 in MCF-7 and 0.63 ± 0.14 in MDA-MB231 (both n = 4; n.s.)), representing tumour-to-muscle ratios of 3.24 ± 0.30 and 3.32 ± 0.50 for [18F]FMISO, and 2.92 ± 0.74 and 3.00 ± 0.42 for [18F]FAZA, respectively. While the fraction per time of radiotracer entering the second compartment (k3) was similar within uncertainties for all three radiotracers in MDA-MB231 tumours, it was different in MCF-7 tumours. The ratios k3/(k3 + k2) and K1*k3/(k3 + k2) in MCF-7 tumours were also significantly different, indicating dissimilar fractions of radiotracer bound and trapped intracellularly: K1*k3/(k2 + k3) [18F]FMISO (0.0088 ± 0.001)/min, n = 4; p < 0.001) > [18F]FAZA (0.0052 ± 0.002)/min, n = 4; p < 0.01) > [18F]FBNA (0.003 ± 0.001)/min, n = 3). In contrast, in MDA-MB231 tumours, only K1 was significantly elevated for [18F]FMISO. However, this did not result in significant differences for K1*k3/(k2 + k3) for all three 2-nitroimidazoles in MDA-MB231 tumours. CONCLUSION: Novel 2-nitroimidazole PET radiotracer [18F]FBNA showed uptake into hypoxic breast cancer cells and tumour tissue presumably associated with elevated HIF1-α expression. Systematic comparison of PET imaging performance with [18F]FMISO and [18F]FAZA in different types of preclinical breast cancer models revealed a similar tumour uptake profile for [18F]FBNA with [18F]FAZA and, despite its higher lipophilicity, still a slightly higher muscle tissue clearance compared to [18F]FMISO.


Subject(s)
Breast Neoplasms , Nitroimidazoles , Humans , Mice , Animals , Female , Breast Neoplasms/diagnostic imaging , Heterografts , Tissue Distribution , Nitroimidazoles/chemistry , Hypoxia , Positron-Emission Tomography/methods , Cell Hypoxia , Radiopharmaceuticals
6.
Bioorg Med Chem Lett ; 82: 129154, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36736496

ABSTRACT

Three nitroimidazole propylene amine oxime (PnAO) derivatives with different lengths of ethylene glycol chain were synthesized and radiolabeled with 99mTc. The radiochemical purities of three 99mTc-labeled complexes, oxo[[6,6,12,12-tetramethyl-1,17-bis(2-nitro-1H-imidazol-1-yl)-3,15-dioxa-7,11-diazaheptadecane-5, 13-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O1), oxo[[9,9,15,15-tetramethyl-1,23-bis(2-nitro-1H-imidazol-1-yl)-3,6,18,21-tetraoxa-10, 14-diazatricosane-8,16-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O2) and oxo[[15,15,21,21-tetramethyl-1,35-bis(2-nitro-1H-imidazol-1-yl)-3,6,9,12,24,27,30,33-octaoxa-16,20-diazapentatriacontane-14,22-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O4), were above 90%, and they were all stable both in vitro and in vivo. The hypoxia/normoxia uptake ratios of the three complexes were 2.92 ± 0.61, 2.63 ± 0.64 and 2.29 ± 0.67 in S180 cellular uptake assay (4 h). All of these complexes presented good hypoxia selectivity. The results of biodistribution studies in S180 tumor-bearing mice revealed that the tumor/muscle (T/M) ratios (7.20 ± 2.37, 7.19 ± 1.75, 5.56 ± 1.10) and tumor/blood (T/B) ratios (1.66 ± 0.34, 1.73 ± 0.25, 2.13 ± 0.19) at 4 h of three complexes were significantly higher than those of 99mTc-2P2 (3.24 ± 0.65, 0.81 ± 0.34) without the ethylene glycol chains. Among them, 99mTc-2P2O4 had the best T/B ratio. The new complexes have higher tumor/blood and tumor/muscle ratios by adding suitable length of ethylene glycol chain. It is helpful for the design and optimization of hypoxic imaging agents.


Subject(s)
Nitroimidazoles , Mice , Animals , Nitroimidazoles/chemistry , Oximes/chemistry , Technetium/chemistry , Organotechnetium Compounds/chemistry , Amines , Tissue Distribution , Cell Line, Tumor , Hypoxia , Radiopharmaceuticals/chemistry , Muscles , Ethylene Glycols
7.
J Biomol Struct Dyn ; 41(10): 4421-4443, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35574601

ABSTRACT

In the past decade, TB drugs belonging to the nitroimidazole class, pretomanid and delamanid, have been authorised to treat MDR-TB and XDR-TB. With a novel inhibition mechanism and a reduction in the span of treatment, it is now being administered in various combinations. This approach is not the ultimate remedy since the target protein Deazaflavin dependent nitroreductase (Ddn) has a high mutation frequency, and already pretomanid resistant clinical isolates are reported in various studies. Ddn is essential for M.tuberculosis to emerge from hypoxia, and point mutations in critical residues confer resistance to Nitro-imidazoles. Among the pool of available mutants, we have selected seven mutants viz DdnL49P, DdnY65S, DdnS78Y, DdnK79Q, DdnW88R, DdnY133C, and DdnY136S, all of which exhibited resistance to pretomanid. To address this issue, through computational study primarily by MD simulation, we attempted to elucidate these point mutations' impact and investigate the resistance mechanism. Hence, the DdnWT and mutant (MT) complexes were subjected to all-atom molecular dynamics (MD) simulations for 100 ns. Interestingly, we observed the escalation of the distance between cofactor and ligand in some mutants, along with a significant change in ligand conformation relative to the DdnWT. Moreover, we confirmed that mutations rendered ligand instability and were ejected from the binding pocket as a result. In conclusion, the results obtained provide a new structural insight and vital clues for designing novel inhibitors to combat nitroimidazole resistanceCommunicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Nitroimidazoles , Molecular Dynamics Simulation , Ligands , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Nitroimidazoles/metabolism , Mycobacterium tuberculosis/genetics , Mutation , Nitroreductases/genetics , Nitroreductases/chemistry , Nitroreductases/metabolism , Antitubercular Agents/pharmacology
8.
J Phys Chem B ; 126(49): 10347-10359, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36448964

ABSTRACT

Reactive molecular dynamics simulations (RMD) have been carried out to investigate structural alterations of the dodecamer double-strand B-DNA due to the oxidation/nitration modifications introduced to its guanine bases, including 8-oxoguanine, 8-nitroguanine, and 5-guanidino-4-nitroimidazole, considering two distribution patterns. These modifications may arise in the case of cancer treatment using oxidative/nitrosative reactive nitrogen species as anticancer agents. Results show that these mutations affect structural characteristics of the B-DNA dodecamer in the order 8-nitroguanine > 5-guanidino-4-nitroimidazole ≫ 8-oxoguanine. For instance, the base-pair per turn for these modified B-DNA are changed respectively to 9.79, 10.88 and 10.58 from 10.51 in the native defect-free B-DNA, which is compatible with the experimental value of 10.10. In addition, these mutations allow more water molecules to diffuse into the dodecamer structure and consequently increase the possibility of the penetration of reactive and nonreactive species toward constituting nucleic base-pairs. The largest variation of the B-DNA structure is observed for the mutated B-DNA with 8-nitroguanine modifications applied to its separated CG base-pairs along the dodecamer chain. The structural changes introduced by these nitro-/oxo-modified guanine bases can be considered as a critical step in the damage of the DNA structure and alterations of its function.


Subject(s)
DNA, B-Form , Nitroimidazoles , Molecular Dynamics Simulation , Guanine/chemistry , Nitroimidazoles/chemistry , DNA/chemistry , DNA Damage
9.
ACS Chem Biol ; 17(11): 3077-3085, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36259427

ABSTRACT

Nitroimidazoles such as metronidazole are used as anti-infective drugs against anaerobic bacteria. Upon in vivo reduction of the nitro group, reactive radicals damage DNA and proteins in the absence of oxygen. Unexpectedly, a recent study of nitroimidazoles linked to an indolin-2-one substituent revealed potent activities against aerobic bacteria. This suggests a different, yet undiscovered mode of action (MoA). To decipher this MoA, we first performed whole proteome analysis of compound-treated cells, revealing an upregulation of bacteriophage-associated proteins, indicative of DNA damage. Since DNA binding of the compound was not observed, we applied activity-based protein profiling (ABPP) for direct target discovery. Labeling studies revealed topoisomerase IV, an essential enzyme for DNA replication, as the most enriched hit in pathogenic Staphylococcus aureus cells. Subsequent topoisomerase assays confirmed the inhibition of DNA decatenation in the presence of indolin-2-one nitroimidazole with an activity comparable to ciprofloxacin, a known inhibitor of this enzyme. Furthermore, we determined significantly increased redox potentials of indolin-2-one nitroimidazoles compared to classic 5-nitroimidazoles such as metronidazole, which facilitates in vivo reduction. Overall, this study unravels that indolin-2-one-functionalized nitroimidazoles feature an unexpected dual MoA: first, the direct inhibition of the topoisomerase IV and second the classic nitroimidazole MoA of reductive bioactivation leading to damaging reactive species. Importantly, this dual MoA impairs resistance development. Given the clinical application of this compound class, the new mechanism could be a starting point to mitigate resistance.


Subject(s)
Nitroimidazoles , Nitroimidazoles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metronidazole/metabolism , Metronidazole/pharmacology , DNA Topoisomerase IV , DNA
10.
J Phys Chem Lett ; 13(30): 7001-7008, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35894633

ABSTRACT

Low-energy electrons (LEEs) can very efficiently induce bond breaking via dissociative electron attachment (DEA). While DEA is ubiquitous, the importance of other reactions initiated by LEEs remains much more elusive. Here, we looked into this question by measuring highly accurate total cross sections for electron scattering from 1-methyl-5-nitroimidazole (1M5NI), a model radiosensitizer. The small uncertainty and high energy resolution allow us to identify many resonant features related to the formation of transient anions. In addition to novel insights about DEA reactions through the lower-lying resonances, our key finding is that the higher-lying resonances do not undergo DEA, implying alternative decay channels with significant cross sections. In particular, dissociation into two neutral fragments is probably involved in the case of 1M5NI. This finding has direct implications for the understanding of LEE-induced chemistry, particularly in the fundamental processes underlying the radiosensitization activity.


Subject(s)
Electrons , Nitroimidazoles , Anions , Nitroimidazoles/chemistry
11.
J Nanobiotechnology ; 20(1): 42, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062959

ABSTRACT

Despite considerable progress has been achieved in hypoxia-associated anti-tumor therapy, the efficacy of utilizing hypoxia-activated prodrugs alone is not satisfied owing to the inadequate hypoxia within the tumor regions. In this work, a mitochondrial targeted nanoplatform integrating photodynamic therapy, photothermal therapy and hypoxia-activated chemotherapy has been developed to synergistically treat cancer and maximize the therapeutic window. Polydopamine coated hollow copper sulfide nanoparticles were used as the photothermal nanoagents and thermosensitive drug carriers for loading the hypoxia-activated prodrug, TH302, in our study. Chlorin e6 (Ce6) and triphenyl phosphonium (TPP) were conjugated onto the surface of the nanoplatform. Under the action of TPP, the obtained nanoplatform preferentially accumulated in mitochondria to restore the drug activity and avoid drug resistance. Using 660 nm laser to excite Ce6 can generate ROS and simultaneously exacerbate the cellular hypoxia. While under the irradiation of 808 nm laser, the nanoplatform produced local heat which can increase the release of TH302 in tumor cells, ablate cancer cells as well as intensify the tumor hypoxia levels. The aggravated tumor hypoxia then significantly boosted the anti-tumor efficiency of TH302. Both in vitro and in vivo studies demonstrated the greatly improved anti-cancer activity compared to conventional hypoxia-associated chemotherapy. This work highlights the potential of using a combination of hypoxia-activated prodrugs plus phototherapy for synergistic cancer treatment.


Subject(s)
Cell Hypoxia/drug effects , Drug Delivery Systems/methods , Mitochondria/metabolism , Nanoparticles/chemistry , Photochemotherapy/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Female , Mice , Mice, Inbred C57BL , Nitroimidazoles/chemistry , Nitroimidazoles/pharmacokinetics , Nitroimidazoles/pharmacology , Phosphoramide Mustards/chemistry , Phosphoramide Mustards/pharmacokinetics , Phosphoramide Mustards/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Tissue Distribution
12.
Bioorg Med Chem Lett ; 60: 128583, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35085720

ABSTRACT

Hypoxia imaging agents can play an important role in the tumor treatment by avoiding the worse effect of radiotherapy and chemotherapy due to the tumor hypoxia. Due to the small size and easy coordination, tricarbonyl technetium-99m can be used to label a wide range of imaging agents. In this work, the tricarbonyl 99mTc labeled small-sized hypoxia imaging agents containing 2-nitroimidazoles were prepared, which have different carbon chain lengths between cyclopentadienyl and 2-nitroimidazole, and which have one or two 2-nitroimidazole groups. The results of S180 cell experiment and biodistribution indicated that these molecules have different hypoxic selectivity. When contains one 2-nitroimidazole, as the carbon chain lengthens, which means the molecular volume becomes larger, hypoxia cellular uptake and selectivity decrease in S180 cell uptake experiment. In biodistribution study in mice bearing S180 tumor, Tc-2 (1-cyclopentadienyl-5-(2-nitro-1H-imidazol-1-yl)-pentan-1-one tricarbonyl 99mTc complex), which has intermediate carbon chain, is better due to the more complex factors. Its tumor/blood (T/B) ratio is 3.56 ± 0.25, tumor/muscle(T/M) ratio is 1.73 ± 0.29 and tumor uptake is 2.23 ± 0.24%ID/g at 2 h. Comparing to other tricarbonyl technetium complexes containing one 2-nitroimidazole, the complexes in this work have an advantage in tumor/blood ratio and tumor uptake. This suggests that the small-volume cyclopentadienyl may have an advantage when used as a ligand. When contains two 2-nitroimidazole groups, the complex, 1-cyclopentadienyl-5-di(2-(2-nitro-1H-imidazol-1-yl)ethyl)amino-pentan-1-one tricarbonyl 99mTc complex (Tc-4), has the better results in the cell experiment than those which contain one 2-nitroimidazole group. Thus the hypoxia imaging agent contains two 2-nitroimidazole groups is more advantageous, but further modifications of Tc-4 are needed to improve its clearance rate in the blood, because the increased lipophilicity leads to a decrease in the T/B ratio of Tc-4. In conclusion, small volume hypoxia imaging agents with two 2-nitroimidazole groups may be the trend of development.


Subject(s)
Nitroimidazoles/pharmacology , Organotechnetium Compounds/pharmacology , Radiopharmaceuticals/pharmacology , Tumor Hypoxia/drug effects , Animals , Cell Line, Tumor , Diagnostic Imaging , Dose-Response Relationship, Drug , Mice , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Nitroimidazoles/chemical synthesis , Nitroimidazoles/chemistry , Organotechnetium Compounds/chemical synthesis , Organotechnetium Compounds/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Structure-Activity Relationship , Tissue Distribution
13.
J Am Chem Soc ; 143(34): 13854-13864, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34410694

ABSTRACT

Design of endogenous stimuli-responsive amino acids allows for precisely modulating proteins or peptides under a biological microenvironment and thereby regulating their performance. Herein we report a noncanonical amino acid 2-nitroimidazol-1-yl alanine and explore its functions in creation of the nitroreductase (NTR)-responsive peptide-based supramolecular probes for efficient hypoxia imaging. On the basis of the reduction potential of the nitroimidazole unit, the amino acid was synthesized via the Mitsunobu reaction between 2-nitroimidazole and a serine derivate. We elucidated the relationship between the NTR-responsiveness of the amino acid and the structural feature of peptides involving a series of peptides. This eventually facilitates development of aromatic peptides undergoing NTR-responsive self-assembly by rationally optimizing the sequences. Due to the intrinsic role of 2-nitroimidazole in the fluorescence quench, we created a morphology-transformable supramolecular probe for imaging hypoxic tumor cells based on NTR reduction. We found that the resulting supramolecular probes penetrated into solid tumors, thus allowing for efficient fluorescence imaging of tumor cells in hypoxic regions. Our findings demonstrate development of a readily synthesized and versatile amino acid with exemplified properties in creating fluorescent peptide nanostructures responsive to a biological microenvironment, thus providing a powerful toolkit for synthetic biology and development of novel biomaterials.


Subject(s)
Amino Acids/metabolism , Peptides/metabolism , Alanine/chemistry , Alanine/metabolism , Amino Acids/chemistry , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Fluorescent Dyes/chemistry , Mice , Microscopy, Confocal , Nitroimidazoles/chemistry , Nitroreductases/metabolism , Optical Imaging , Peptides/chemistry , Transplantation, Homologous
14.
J Mater Sci Mater Med ; 32(6): 59, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33999312

ABSTRACT

Chagas disease is a neglected tropical disease caused by the flagellate protozoan Trypanosoma cruzi (T. cruzi). Endemic in underdeveloped and developed countries, due to the migratory movement, it is considered a serious public health problem. Endemic in underdeveloped countries and due to the migratory movement, in developed countries as well, it is considered a serious public health problem. One of the reasons for this is a weak therapeutic arsenal, represented only by the drug benznidazole (BNZ) which, although it promotes significant cure rates in the acute phase of the disease, presents serious problems of toxicity and bioavailability, mainly due to its low aqueous solubility. Several studies have presented several drug delivery systems (DDS) based on BNZ aiming at enhancing its solubility in aqueous medium and, with this, promoting an increase in the dissolution rate and, consequently, in its bioavailability. However, the present work is a pioneer in using a zeolitic imidazolate framework as a carrier agent for a DDS in order to promote a pH-sensitive modulation of the drug. Thus, this work aimed to develop a novel DDS based on BNZ and the ZIF-8 to use it in development of prolonged-release dosage forms to alternative treatment of Chagas disease. The BNZ@ZIF-8 system was obtained through an ex situ method selected due to its higher incorporation efficiency (38%). Different characterization techniques corroborated the obtainment and drug release data were analyzed by in vitro dissolution assay under sink and non-sink conditions and setting the kinetic results through both model dependent and independent methods. Under sink conditions, at pH 4.5, BNZ and BNZ@ZIF-8 showed similar release profile, but the DDS was effective in promoting a prolonged release. At pH 7.6, after 7 h, BNZ showed a lower release than BNZ@ZIF-8. On the other hand, in non-sink conditions at pH 4.5 the BNZ presented 80% of drug release in 3 h, while the DDS in 6 h. At pH 7.6, BNZ presented a release of 80% in 2 h, while the DDS reaches it in only at 12 h. Therefore, at pH 4.5 the DDS BNZ@ZIF-8 showed a faster release with a burst effect, while at pH 7.6 it showed a prolonged and controlled release. Finally, it is evident that a promising DDS pH-sensitive was obtained as a novel carrier that might be able to prolongs BNZ release in dosage forms intended for the alternative treatment of Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Drug Carriers , Drug Delivery Systems , Imidazoles/chemistry , Metal-Organic Frameworks/chemistry , Nitroimidazoles/administration & dosage , Nitroimidazoles/chemistry , Area Under Curve , Biological Availability , Chemistry, Pharmaceutical/methods , Drug Liberation , Excipients , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Kinetics , Microscopy, Electron, Scanning , Solubility , Trypanosoma cruzi/drug effects , X-Ray Diffraction , Zeolites
15.
Bioorg Chem ; 113: 104990, 2021 08.
Article in English | MEDLINE | ID: mdl-34051414

ABSTRACT

Hypoxia is one of key characteristics of microenvironments of solid tumors, and evaluation of hypoxia status in solid tumors is important to determine cancer stage and appropriate treatment. In the present study, novel, multivalent, near-infrared (NIR) fluorescent imaging agents were developed to measure tumor hypoxia. These agents were synthesized using an amino acid as a backbone to connect mono-, bis-, or tris-2-nitroimidazole as a hypoxia-sensitive moiety to enhance uptake by the tumor and to attach sulfo-Cyanine 5.5 as an NIR fluorophore to visualize tumor accumulation. Studies of physical characteristics demonstrated that the novel NIR imaging agents showed suitable optical properties for in vitro and in vivo imaging and were stable in serum. In vitro cellular uptake studies in SK-N-BE(2) and SW620 cell lines demonstrated that NIR imaging agents bearing 2-nitroimidazole structures showed significantly higher tumor uptake in hypoxic cells than in normoxic cells. Moreover, in vivo optical imaging studies using SK-N-BE(2) and SW620 xenografted mice demonstrated that novel, multivalent, 2-nitroimadazole NIR imaging agents with two or three 2-nitroimidazole moieties showed higher uptake in tumor than the control agents with only one 2-nitroimidazole. These observations suggest that novel, multivalent, NIR agents could serve as potential optical imaging agents for evaluating tumor hypoxia.


Subject(s)
Colonic Neoplasms/diagnostic imaging , Fluorescent Dyes/chemistry , Neuroblastoma/diagnostic imaging , Nitroimidazoles/chemistry , Optical Imaging , Cell Line, Tumor , Fluorescent Dyes/chemical synthesis , Humans , Infrared Rays , Molecular Structure , Nitroimidazoles/chemical synthesis
16.
Eur J Pharmacol ; 905: 174187, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34048738

ABSTRACT

To keep fast proliferation, tumor cells are exposed to higher oxidative stress than normal cells and they upregulate the amount of some antioxidants such as glutathione (GSH) against reactive oxygen species to maintain the balance. This phenomenon is severe in hypoxic tumor cells. Although researchers have proposed a series of treatment strategies based on regulating the intracellular reactive oxygen species level, few of them are related to the hypoxic tumor. Herein, a novel organic compound (PLC) was designed by using lysine as a bridge to connect two functional small molecules, a hypoxia-responsive nitroimidazole derivative (pimonidazole) and a pH-responsive cinnamaldehyde (CA) derivative. Then, the oxidative stress amplifying ability of PLC in hypoxic tumor cells was evaluated. The acidic microenvironment of tumor can trigger the release of CA to produce reactive oxygen species. Meanwhile, large amount of nicotinamide adenine dinucleotide phosphate (NADPH) can be consumed to decrease the synthesis of GSH during the bio-reduction process of the nitro group in PLC under hypoxic conditions. Therefore, the lethal effect of CA can be amplified for the decrease of GSH. Our results prove that this strategy can significantly enhance the therapeutic effect of CA in the hypoxic tumor cells.


Subject(s)
Acrolein/analogs & derivatives , Antineoplastic Agents, Phytogenic/pharmacology , Neoplasms/drug therapy , Nitroimidazoles/pharmacology , Oxidative Stress/drug effects , Tumor Hypoxia , Acrolein/chemical synthesis , Acrolein/chemistry , Acrolein/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Glutathione/metabolism , Humans , Hydrogen-Ion Concentration , Mice , NADP/metabolism , Neoplasms/metabolism , Nitroimidazoles/chemical synthesis , Nitroimidazoles/chemistry , Reactive Oxygen Species/metabolism , Tumor Microenvironment
17.
J Nanobiotechnology ; 19(1): 147, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011362

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive tumor with extremely high mortality that results from its lack of effective therapeutic targets. As an adhesion molecule related to tumorigenesis and tumor metastasis, cluster of differentiation-44 (also known as CD44) is overexpressed in TNBC. Moreover, CD44 can be effectively targeted by a specific hyaluronic acid analog, namely, chitosan oligosaccharide (CO). In this study, a CO-coated liposome was designed, with Photochlor (HPPH) as the 660 nm light mediated photosensitizer and evofosfamide (also known as TH302) as the hypoxia-activated prodrug. The obtained liposomes can help diagnose TNBC by fluorescence imaging and produce antitumor therapy by synergetic photodynamic therapy (PDT) and chemotherapy. RESULTS: Compared with the nontargeted liposomes, the targeted liposomes exhibited good biocompatibility and targeting capability in vitro; in vivo, the targeted liposomes exhibited much better fluorescence imaging capability. Additionally, liposomes loaded with HPPH and TH302 showed significantly better antitumor effects than the other monotherapy groups both in vitro and in vivo. CONCLUSION: The impressive synergistic antitumor effects, together with the superior fluorescence imaging capability, good biocompatibility and minor side effects confers the liposomes with potential for future translational research in the diagnosis and CD44-overexpressing cancer therapy, especially TNBC.


Subject(s)
Chitosan/pharmacology , Liposomes/chemistry , Nitroimidazoles/pharmacology , Oligosaccharides/pharmacology , Phosphoramide Mustards/pharmacology , Photochemotherapy/methods , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chitosan/chemistry , Female , Humans , Hyaluronan Receptors , Hyaluronic Acid , Mice , Mice, Inbred BALB C , Mice, Nude , Nanomedicine , Nitroimidazoles/chemistry , Oligosaccharides/chemistry , Optical Imaging , Phosphoramide Mustards/chemistry , Photosensitizing Agents/chemistry , Prodrugs/chemistry , Triple Negative Breast Neoplasms/pathology
18.
Theranostics ; 11(11): 5447-5463, 2021.
Article in English | MEDLINE | ID: mdl-33859757

ABSTRACT

Background: Y-27632 is a potent ophthalmic drug for the treatment of ocular hypertension, a globally prevalent eye disease. However, the sustained delivery of Y-27632 by a therapeutic carrier to lesion sites located in the inner segments of the eye for effectively treating the ocular disorder still remains challenging. Methods: To realize the goal, a strategy based on solvothermal-assisted deposition/infiltration in combination with surface modification is utilized to synthesize hollow mesoporous ceria nanoparticles (HMCNs) with tailorable shell thicknesses and drug release profiles. The shell thickness of HMCNs is rationally exploited for achieving sustained drug release and advanced therapeutic benefits. Results: The shell thickness can regulate release profiles of Y-27632, displaying that thick and thin (~40 nm and ~10 nm) shelled HMCNs reveal burst release characteristics (within 2 days) or limited drug loading content (~10% for the 40 nm thick). As a compromise, the HMCNs with moderate shell thickness (~20 nm) possess the most sustained drug release over a period of 10 days. In a rabbit model of glaucoma, a single instillation of the optimized Y-27632-loaded HMCNs can effectively treat glaucoma for 10 days via simultaneously repairing the defected cornea (recovery of ~93% ATP1A1 mRNA levels), restoring the reduced thickness of outer nuclear layer to normal (~64 µm), and restoring ~86% of the impaired photoreceptor cells. Conclusion: A comprehensive study on the importance of HMCN shell thickness in developing long-acting nano eye drops for the efficient management of glaucoma is proposed. The findings suggest a central role of nanobiomaterial structural engineering in developing the long-life eye drops for pharmacological treatment of intraocular diseases.


Subject(s)
Amides/pharmacology , Nanoparticles/chemistry , Nitroimidazoles/chemistry , Ocular Hypertension/drug therapy , Pyridines/pharmacology , Animals , Cell Line , Delayed-Action Preparations/chemistry , Disease Models, Animal , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation/drug effects , Eye/drug effects , Glaucoma/drug therapy , Humans , Ophthalmic Solutions/pharmacology , Photoreceptor Cells/drug effects , Rabbits
19.
J Med Chem ; 64(9): 5593-5602, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33901402

ABSTRACT

Tumor hypoxia is a major factor responsible for tumor progression, metastasis, invasion, and treatment resistance, leading to low local tumor control and recurrence after radiotherapy in cancers. Here,18F-positron emission tomography (PET) probes are developed for visualizing viable hypoxic cells in biopsies. Pimonidazole derivatives and nitroimidazole-based agents bearing sulfonyl linkers were evaluated. A small-animal PET study showed that the tumor uptake of [18F]-23 [poly(ethylene glycols) (PEG)-sulfonyl linker] of 3.36 ± 0.29%ID/g was significantly higher (P < 0.01) than that of [18F]-20 (piperazine-linker tracer, 2.55 ± 0.49%ID/g) at 2 h postinjection in UPPL tumors. The tumor-to-muscle uptake ratio of [18F]-23 (2.46 ± 0.48 at 2 h pi) was well improved compared with that of [18F]-FMISO (1.25 ± 0.14 at 2 h pi). A comparable distribution pattern was observed between ex vivo autoradiography of [18F]-23 and pimonidazole staining of the neighboring slice, indicating that [18F]-23 is a promising PET agent for hypoxia imaging.


Subject(s)
Neoplasms/diagnostic imaging , Radiopharmaceuticals/chemistry , Tumor Hypoxia , Animals , Cell Line, Tumor , Fluorine Radioisotopes/chemistry , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Nitroimidazoles/chemistry , Polyethylene Glycols/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Sulfinic Acids/chemistry , Transplantation, Heterologous
20.
J Med Chem ; 64(6): 3381-3391, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33688738

ABSTRACT

Nitroimidazoles are one of the most common radiosensitizers investigated to combat hypoxia-induced resistance to cancer radiotherapy. However, due to poor selectivity distinguishing cancer cells from normal cells, effective doses of radiosensitization are much closer to the doses of toxicity induced by nitroimidazoles, limiting their clinical application. In this work, a tumor-targeting near-infrared (NIR) cyanine dye (IR-808) was utilized as a targeting ligand and an NIR fluorophore tracer to chemically conjugate with different structures of hypoxia-affinic nitroimidazoles. One of the NIR fluorophore-conjugated nitroimidazoles (808-NM2) was identified to preferentially accumulate in hypoxic tumor cells, sensitively outline the tumor contour, and effectively inhibit tumor growth synergistically by chemotherapy and radiotherapy. More importantly, nitroimidazoles were successfully taken into cancer cell mitochondria via 808-NM2 conjugate to exert the synergistic effect of chemoradiotherapy. Regarding the important roles of mitochondria on cancer cell survival and metastasis under hypoxia, 808-NM2 may be hopeful to fight against hypoxic tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/therapy , Carbocyanines/therapeutic use , Coloring Agents/therapeutic use , Nitroimidazoles/therapeutic use , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Carbocyanines/chemistry , Chemoradiotherapy , Coloring Agents/chemistry , Female , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Nude , Mitochondria/drug effects , Mitochondria/pathology , Nitroimidazoles/chemistry , Tumor Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...