Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 177: 182-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25490100

ABSTRACT

Rice straw was modified by azide-alkyne click reaction in order to realize selective extraction of noble metal ions. The ability of the modified straw to adsorb Pd(2+) and Pt(4+) was assessed using a batch adsorption technique. It was found that the sorption equilibrium could be reached within 1h and the adsorption capacity increased with temperature for both Pd(2+) and Pt(4+). The maximum sorption capacities for Pd(2+) and Pt(4+) were respectively attained in 1.0 and 0.1 mol/L HCl. The modified straw showed excellent selectivity for noble metal ions in comparison to the pristine straw. In addition, the modified straw was examined as a column packing material for extraction of noble metal ions. It was indicated that 1.0 mL/min was the best flow rate for Pd(2+) and Pt(4+). The modified straw could be repeatedly used for 10 times without any significant loss in the initial binding affinity.


Subject(s)
Click Chemistry/methods , Metals/isolation & purification , Noble Gases/isolation & purification , Oryza/chemistry , Waste Products/analysis , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Temperature , Time Factors
2.
Phys Chem Chem Phys ; 15(23): 9093-106, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23646358

ABSTRACT

The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.


Subject(s)
Noble Gases/isolation & purification , Organometallic Compounds/chemistry , Adsorption , Air/analysis , Computer Simulation , Metal-Organic Frameworks , Models, Chemical , Models, Molecular , Monte Carlo Method , Porosity
3.
Sci Prog ; 95(Pt 1): 23-49, 2012.
Article in English | MEDLINE | ID: mdl-22574384

ABSTRACT

Sir William Ramsay was one of the world's leading scientists at the end of the 19th century, and in a spectacular period of research between 1894 and 1898, he discovered five new elements. These were the noble gases, helium, neon, argon, krypton, and xenon; they added a whole new group to the Periodic Table of the elements, and provided the keystone to our understanding of the electronic structure of atoms, and the way those electrons bind the atoms together into molecules. For this work he was awarded the Nobel Prize in Chemistry in 1904, the first such prize to come to a British subject. He was also a man of great charm, a good linguist, and a composer and performer of music, poetry and song. This review will trace his career, describe his character and give and account of the chemistry which led to the award of the Nobel Prize.


Subject(s)
Noble Gases/chemistry , Noble Gases/isolation & purification , Chemistry/history , Chemistry/instrumentation , History, 19th Century , London , Nobel Prize , Noble Gases/analysis
4.
J Chromatogr A ; 1175(2): 162-73, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-17996877

ABSTRACT

Water-to-polydimethylsiloxane (PDMS) and gas-to-PDMS sorption coefficients have been compiled for 170 gaseous and organic solutes. Both sets of sorption coefficients were analyzed using the Abraham solvation parameter model. Correlations were obtained for both "dry" headspace solid-phase microextraction and conventional "wet" PDMS coated surfaces. The derived equations correlated the experimental water-to-PDMS and gas-to-PDMS data to better than 0.17 and 0.18 log units, respectively. In the case of the gas-to-PDMS sorption coefficients, the experimental values spanned a range of approximately 11 log units.


Subject(s)
Dimethylpolysiloxanes/chemistry , Organic Chemicals/isolation & purification , Silicones/chemistry , Solid Phase Microextraction/methods , Solutions/chemistry , Adsorption , Models, Chemical , Noble Gases/isolation & purification
5.
Ann Biomed Eng ; 25(5): 858-69, 1997.
Article in English | MEDLINE | ID: mdl-9300110

ABSTRACT

Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.


Subject(s)
Mass Spectrometry/methods , Noble Gases/analysis , Animals , Biomedical Engineering , Countercurrent Distribution , Diffusion , Humans , Krypton/analysis , Krypton/blood , Krypton/isolation & purification , Models, Theoretical , Noble Gases/blood , Noble Gases/isolation & purification , Solubility , Sulfur Hexafluoride/analysis , Sulfur Hexafluoride/blood , Sulfur Hexafluoride/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL