Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Oncotarget ; 6(33): 34071-86, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460952

ABSTRACT

Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.


Subject(s)
Antibodies, Monoclonal/immunology , Breast Neoplasms/pathology , Melanoma/pathology , Nodal Protein/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Line, Tumor , Cyclin B1/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/biosynthesis , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Imidazoles/pharmacology , Mice , Nodal Protein/blood , Nodal Protein/immunology , Oximes/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Smad2 Protein/biosynthesis , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL