Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
1.
BMC Psychiatry ; 24(1): 11, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166870

ABSTRACT

BACKGROUND: Norepinephrine transporter (NET) is encoded by the SLC6A2 gene and is a potential target for studying the pathogenesis of PTSD. To the best of our knowledge, no prior investigations have examined SLC6A2 polymorphism-related neuroimaging abnormalities in PTSD patients. METHODS: In 218 Han Chinese adults who had lost their sole child, we investigated the association between the T-182 C SLC6A2 genotype and gray matter volume (GMV). Participants included 57 PTSD sufferers and 161 non-PTSD sufferers, and each group was further separated into three subgroups based on each participant's SLC6A2 genotype (TT, CT, and CC). All participants received magnetic resonance imaging (MRI) and clinical evaluation. To assess the effects of PTSD diagnosis, genotype, and genotype × diagnosis interaction on GMV, 2 × 3 full factorial designs were used. Pearson's correlations were used to examine the association between GMV and CAPS, HAMD, and HAMA. RESULTS: The SLC6A2 genotype showed significant main effects on GMV of the left superior parietal gyrus (SPG) and the bilateral middle cingulate gyrus (MCG). Additionally, impacts of the SLC6A2 genotype-diagnosis interaction were discovered in the left superior frontal gyrus (SFG). The CAPS, HAMA, and HAMD scores, as well as the genotype main effect and diagnostic SLC6A2 interaction, did not significantly correlate with each other. CONCLUSION: These findings indicate a modulatory effect that the SLC6A2 polymorphism exerts on the SPG and MCG, irrespective of PTSD diagnosis. We found evidence to suggest that the SLC6A2 genotype-diagnosis interaction on SFG may potentially contribute to PTSD pathogenesis in adults who lost their sole child.


Subject(s)
Gray Matter , Norepinephrine Plasma Membrane Transport Proteins , Stress Disorders, Post-Traumatic , Adult , Child , Humans , Brain/diagnostic imaging , Brain/pathology , China , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Norepinephrine Plasma Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Prefrontal Cortex , Stress Disorders, Post-Traumatic/genetics
2.
J Chem Inf Model ; 63(6): 1745-1755, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36926886

ABSTRACT

Solute carriers (SLCs) are relatively underexplored compared to other prominent protein families such as kinases and G protein-coupled receptors. However, proteins from the SLC family play an essential role in various diseases. One such SLC is the high-affinity norepinephrine transporter (NET/SLC6A2). In contrast to most other SLCs, the NET has been relatively well studied. However, the chemical space of known ligands has a low chemical diversity, making it challenging to identify chemically novel ligands. Here, a computational screening pipeline was developed to find new NET inhibitors. The approach increases the chemical space to model for NETs using the chemical space of related proteins that were selected utilizing similarity networks. Prior proteochemometric models added data from related proteins, but here we use a data-driven approach to select the optimal proteins to add to the modeled data set. After optimizing the data set, the proteochemometric model was optimized using stepwise feature selection. The final model was created using a two-step approach combining several proteochemometric machine learning models through stacking. This model was applied to the extensive virtual compound database of Enamine, from which the top predicted 22,000 of the 600 million virtual compounds were clustered to end up with 46 chemically diverse candidates. A subselection of 32 candidates was synthesized and subsequently tested using an impedance-based assay. There were five hit compounds identified (hit rate 16%) with sub-micromolar inhibitory potencies toward NET, which are promising for follow-up experimental research. This study demonstrates a data-driven approach to diversify known chemical space to identify novel ligands and is to our knowledge the first to select this set based on the sequence similarity of related targets.


Subject(s)
Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/genetics , Ligands , Phylogeny , Humans , Cell Line , Datasets as Topic , Protein Binding , Models, Biological
3.
Transl Psychiatry ; 13(1): 51, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774338

ABSTRACT

Not everyone who uses drugs loses control over their intake, which is a hallmark of addiction. Although familial risk studies suggest significant addiction heritability, the genetic basis of vulnerability to drug addiction remains largely unknown. In the present study, we investigate the relationship between self-control, cocaine use, and the rs36024 single nucleotide polymorphism of the noradrenaline transporter gene (SLC6A2). We hypothesize that C-allele-carrying adults show impaired self-control, as measured by the stop-signal task and demonstrated previously in adolescents, and further exacerbated by chronic cocaine use. Patients with cocaine use disorder (CUD, n = 79) and healthy unrelated participants with no history of drug abuse (n = 54) completed the stop-signal task. All participants were genotyped for rs36024 allelic variants (CC/TT homozygotes, CT heterozygotes). We measured mean stop-signal reaction time, reflecting the ability to inhibit ongoing motor responses, reaction times to go stimuli, and the proportion of successful stops. CUD patients showed prolonged stop-signal reaction time, however, there was no main effect of rs36024 genotype. Importantly, there was a significant genotype-by-diagnosis interaction such that CUD patients with CC genotype had longer stop-signal reaction time and fewer successful stops compared with CC healthy controls and TT CUD patients. CT CUD patients showed an intermediate performance. Self-control deficits were associated with cocaine use disorder diagnosis, which interacts with the noradrenaline transporter rs36024 polymorphism. Our findings suggest that rs36024 may represent a potential genetic vulnerability marker, which facilitates the transition from first cocaine use to addiction by weakening the inhibitory control over behavior.


Subject(s)
Cocaine-Related Disorders , Norepinephrine Plasma Membrane Transport Proteins , Adult , Humans , Cocaine-Related Disorders/genetics , Genotype , Norepinephrine Plasma Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide
4.
Nat Commun ; 13(1): 7032, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396637

ABSTRACT

Familial dysautonomia (FD), a rare neurodevelopmental and neurodegenerative disorder affects the sympathetic and sensory nervous system. Although almost all patients harbor a mutation in ELP1, it remains unresolved exactly how function of sympathetic neurons (symNs) is affected; knowledge critical for understanding debilitating disease hallmarks, including cardiovascular instability or dysautonomic crises, that result from dysregulated sympathetic activity. Here, we employ the human pluripotent stem cell (hPSC) system to understand symN disease mechanisms and test candidate drugs. FD symNs are intrinsically hyperactive in vitro, in cardiomyocyte co-cultures, and in animal models. We report reduced norepinephrine transporter expression, decreased intracellular norepinephrine (NE), decreased NE re-uptake, and excessive extracellular NE in FD symNs. SymN hyperactivity is not a direct ELP1 mutation result, but may connect to NET via RAB proteins. We found that candidate drugs lowered hyperactivity independent of ELP1 modulation. Our findings may have implications for other symN disorders and may allow future drug testing and discovery.


Subject(s)
Dysautonomia, Familial , Animals , Humans , Dysautonomia, Familial/genetics , Dysautonomia, Familial/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Mutation
5.
Commun Biol ; 5(1): 1259, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396757

ABSTRACT

The plasmalemmal norepinephrine transporter (NET) regulates cardiovascular sympathetic activity by clearing extracellular norepinephrine in the synaptic cleft. Here, we investigate the subunit stoichiometry and function of NET using single-molecule fluorescence microscopy and flux assays. In particular, we show the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) on NET oligomerization and efflux. NET forms monomers (~60%) and dimers (~40%) at the plasma membrane. PIP2 depletion results in a decrease in the average oligomeric state and decreases NET-mediated substrate efflux while not affecting substrate uptake. Mutation of the putative PIP2 binding residues R121, K334, and R440 to alanines does not affect NET dimerization but results in decreased substrate efflux that is not altered upon PIP2 depletion; this indicates that PIP2 interactions with these residues affect NET-mediated efflux. A dysregulation of norepinephrine and PIP2 signaling have both been implicated in neuropsychiatric and cardiovascular diseases. This study provides evidence that PIP2 directly regulates NET organization and function.


Subject(s)
Norepinephrine Plasma Membrane Transport Proteins , Phosphatidylinositols , Norepinephrine Plasma Membrane Transport Proteins/genetics , Dimerization , Biological Transport , Inositol Phosphates , Norepinephrine
6.
Biomolecules ; 12(10)2022 10 14.
Article in English | MEDLINE | ID: mdl-36291693

ABSTRACT

Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype. Prepulse inhibition (PPI) was assessed in DAT-KO and wild type rats after saline and ATX injections, as well as behavioral parameters in the Hebb-Williams maze and power spectra and coherence of electrophysiological activity. DAT-KO rats demonstrated a pronounced behavioral and electrophysiological phenotype, characterized by hyperactivity, increased number of errors in the maze, repetitive behaviors and disrupted PPI, changes in cortical and striatal power spectra and interareal coherence. Atomoxetine significantly improved PPI and decreased repetitive behaviors in DAT-KO rats and influenced behavior of wild-type rats. ATX also led to significant changes in power spectra and coherence of DAT-KO and wild type rats. Assessment of noradrenergic modulation effects in DAT-KO provides insight into the intricate interplay of monoaminergic systems, although further research is still required to fully understand the complexity of this interaction.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Norepinephrine Plasma Membrane Transport Proteins , Rats , Animals , Atomoxetine Hydrochloride/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Cognition , Norepinephrine/pharmacology , Corpus Striatum
7.
PLoS One ; 17(9): e0275182, 2022.
Article in English | MEDLINE | ID: mdl-36170295

ABSTRACT

Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.


Subject(s)
HIV-1 , Symporters , Animals , Cricetinae , Cricetulus , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Fluoxetine/analogs & derivatives , HIV-1/genetics , HIV-1/metabolism , Histidine/metabolism , Humans , Mutation , Norepinephrine/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Phenylalanine/metabolism , Rats , Symporters/metabolism , Trans-Activators/genetics , Tyrosine/metabolism
8.
J Mol Neurosci ; 72(9): 1965-1976, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35852782

ABSTRACT

Altered amine transporter function, phosphorylation, and association with interacting proteins are evident in animals with a history of psychostimulant exposure. Our previous studies have shown that the Thr258/Ser259 motif in the norepinephrine transporter (NET) is involved in amphetamine (AMPH)-mediated NET regulation and behavior. However, the neurobiological consequences of in vivo Thr258/Ser259-dependent NET regulation in an intact animal model are unclear. Therefore, we generated a viable construct-valid NET-Thr258Ala/Ser259Ala (NET-T258A/S259A) mouse model using CRISPR/Cas9 technology by replacing Thr258/Ser259 motif with Ala258/Ala259 motif. NET-T258A/S259A mice have a birth rate consistent with Mendelian inheritance ratios. Both male and female homozygous NET-T258A/S259A mice are viable, display normal growth and general health, and exhibit normal body weight (sex-dependent) and total activity in the open field similar to their wild-type (WT) littermates. NET-T258A/S259A mice showed reduced NET function in the prefrontal cortex (PFC) compared to WT mice while NET function in the nucleus accumbens (NAc) remained unchanged. Compared to respective WT counterparts, NET-T258A/S259A males but not females showed significantly reduced locomotor activation in response to acute AMPH administration and significantly reduced AMPH-induced conditioned place preference (CPP). When tested in the males only, acute AMPH administration inhibited NET function and surface expression in the WT NAc but not in the NET-T258A/S259A NAc while AMPH administration inhibited DAT function and surface expression in the NAc of both WT and NET-T258A/S259A mice. Collectively, our findings reveal that the mice carrying the T258A/S259A mutation in NET gene display brain region-specific differences in NET functional expression and blunted response to AMPH.


Subject(s)
Amphetamine , Norepinephrine Plasma Membrane Transport Proteins , Alanine/genetics , Alanine/metabolism , Amphetamine/pharmacology , Animals , Down-Regulation , Male , Membrane Transport Proteins/genetics , Mice , Mutation , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Serine , Threonine/genetics , Threonine/metabolism
9.
J Psychopharmacol ; 36(6): 715-722, 2022 06.
Article in English | MEDLINE | ID: mdl-33944622

ABSTRACT

OBJECTIVE: Atomoxetine (ATX), one of the most commonly used drugs after stimulants in attention deficit hyperactivity disorder (ADHD) treatment, is an inhibitor of the norepinephrine transporter (NET/SLC6A2), which is also associated with the etiology of ADHD. In this study, we aimed to investigate the effect of NET gene polymorphisms on response to ATX treatment and to find the answers to the questions about whether there is a relationship between the severity of the disorder and the observed side effects in children with ADHD. METHOD: About 100 children with ADHD and 80 healthy controls (HCs) were included in this study. The dose of ATX was started at 0.5 mg/kg/day and titrated at 1.2 mg/kg/day. Response to treatment of 78 patients was evaluated 2 months after the beginning of the treatment. After whole blood samples were obtained, DNAs were isolated, and samples were stored at -80°C. Two single-nucleotide polymorphisms (SNPs) (rs12708954 and rs3785143) were analyzed by real-time quantitative PCR (qRT-PCR). RESULTS: The patients with both rs12708954 and rs3785143 heterozygous genotype had better treatment response and more side effects than patients with wild type. There was not found any association between any of the investigated NET polymorphisms and ADHD severity. CONCLUSION: It was, however, found that the NET rs12708954 and rs3785143 genotypes affect the treatment response to ATX in our study; thus, further studies with a large population are needed to understand the effects of NET polymorphisms on treatment, side effects, and also the severity of ADHD.


Subject(s)
Atomoxetine Hydrochloride , Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Adrenergic Uptake Inhibitors/adverse effects , Atomoxetine Hydrochloride/adverse effects , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/genetics , Central Nervous System Stimulants/therapeutic use , Child , Humans , Norepinephrine Plasma Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Treatment Outcome
10.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681746

ABSTRACT

Noradrenaline (NE) is a catecholamine acting as both a neurotransmitter and a hormone, with relevant effects in modulating feeding behavior and satiety. Several studies have assessed the relationship between the noradrenergic system and Eating Disorders (EDs). This systematic review aims to report the existing literature on the role of the noradrenergic system in the development and treatment of EDs. A total of 35 studies were included. Preclinical studies demonstrated an involvement of the noradrenergic pathways in binge-like behaviors. Genetic studies on polymorphisms in genes coding for NE transporters and regulating enzymes have shown conflicting evidence. Clinical studies have reported non-unanimous evidence for the existence of absolute alterations in plasma NE values in patients with Anorexia Nervosa (AN) and Bulimia Nervosa (BN). Pharmacological studies have documented the efficacy of noradrenaline-modulating therapies in the treatment of BN and Binge Eating Disorder (BED). Insufficient evidence was found concerning the noradrenergic-mediated genetics of BED and BN, and psychopharmacological treatments targeting the noradrenergic system in AN. According to these data, further studies are required to expand the existing knowledge on the noradrenergic system as a potential target for treatments of EDs.


Subject(s)
Brain/metabolism , Feeding and Eating Disorders/drug therapy , Feeding and Eating Disorders/etiology , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine/metabolism , Adrenergic Neurons/drug effects , Adrenergic Neurons/metabolism , Animals , Brain/diagnostic imaging , Feeding Behavior/physiology , Feeding and Eating Disorders/diagnostic imaging , Humans , Norepinephrine Plasma Membrane Transport Proteins/metabolism
11.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34445205

ABSTRACT

The neurobiology of schizophrenia is multifactorial, comprising the dysregulation of several biochemical pathways and molecules. This research proposes a peripheral biomarker for schizophrenia that involves the second extracellular loop of norepinephrine transporter (NEText), the tropomyosin receptor kinase C (TrkC), and the neurotrophin-3 (NT-3) in T cells. The study of NEText, NT-3, and TrkC was performed in T cells and plasma extracted from peripheral blood of 54 patients with schizophrenia and 54 healthy controls. Levels of NT-3, TrkC, and NET were significantly lower in plasma and T cells of patients compared to healthy controls. Co-immunoprecipitation (co-IPs) showed protein interactions with Co-IP NEText-NT-3 and Co-IP NEText-TrkC. Computational modelling of protein-peptide docking by CABS-dock provided a medium-high accuracy model for NT-3-NEText (4.6935 Å) and TrkC-NEText (2.1365 Å). In summary, immunocomplexes reached statistical relevance in the T cells of the control group contrary to the results obtained with schizophrenia. The reduced expression of NT-3, TrkC, and NET, and the lack of molecular complexes in T cells of patients with schizophrenia may lead to a peripheral dysregulation of intracellular signaling pathways and an abnormal reuptake of norepinephrine (NE) by NET. This peripheral molecular biomarker underlying schizophrenia reinforces the role of neurotrophins, and noradrenergic and immune systems in the pathophysiology of schizophrenia.


Subject(s)
Molecular Docking Simulation , Neurotrophin 3/chemistry , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Receptor, trkC/chemistry , Schizophrenia/etiology , Adult , Biomarkers/metabolism , Female , Humans , Male , Middle Aged , Neurotrophin 3/genetics , Neurotrophin 3/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Protein Structure, Secondary , Receptor, trkC/genetics , Receptor, trkC/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
12.
Genes (Basel) ; 12(6)2021 06 15.
Article in English | MEDLINE | ID: mdl-34203885

ABSTRACT

Numerous genetic factors have been shown to influence athletic performance, but the list is far from comprehensive. In this study, we analyzed genetic variants in two genes related to mental abilities, SLC6A2 (rs1805065) and SYNE1 (rs2635438) in a group of 890 athletes (320 endurance, 265 power, and 305 combat athletes) vs. 1009 sedentary controls. Genotyping of selected SNPs was performed using TaqMan SNP genotyping assays. SLC6A2 codes for norepinephrine transporter, a protein involved in modulating mood, arousal, memory, learning, and pain perception, while SYNE1 encodes protein important for the maintenance of the cerebellum-the part of the brain that coordinates complex body movements. Both SNPs (rs2635438 and rs1805065) showed no statistically significant differences between the frequencies of variants in the athletes and the sedentary controls (athletes vs. control group) or in the athlete subgroups (martial vs. control, endurance vs. control, and power vs. control). The rs1805065 T variant of SLC6A2 was found to be overrepresented in male high-elite martial sports athletes when compared to sedentary controls (OR = 6.56, 95%CI = 1.82-23.59, p = 0.010). This supports the hypothesis that genetic variants potentially affecting brain functioning can influence elite athletic performance and indicate the need for further genetic association studies, as well as functional analyses.


Subject(s)
Athletic Performance , Norepinephrine Plasma Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Athletes , Female , Humans , Male , Poland
13.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34061030

ABSTRACT

The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K+ gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP+(4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Potassium/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Aniline Compounds/metabolism , Biological Transport, Active , Dopamine Plasma Membrane Transport Proteins/genetics , HEK293 Cells , Humans , Kinetics , Membrane Potentials , Microscopy, Fluorescence , Microscopy, Video , Models, Biological , Norepinephrine Plasma Membrane Transport Proteins/genetics , Pyridinium Compounds/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics
14.
Int J Mol Sci ; 22(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670813

ABSTRACT

The aim of our study was to assess the sympathetic nervous system's involvement in the evolution of gastric carcinoma in patients by analyzing the mediators of this system (epinephrine and norepinephrine), as well as by analyzing the histological expression of the norepinephrine transporter (NET). We conducted an observational study including 91 patients diagnosed with gastric carcinoma and an additional 200 patients without cancer between November 2017 and October 2018. We set the primary endpoint as mortality from any cause in the first two years after enrolment in the study. The patients were monitored by a 24-h Holter electrocardiogram (ECG) to assess sympathetic or parasympathetic predominance. Blood was also collected from the patients to measure plasma free metanephrine (Meta) and normetanephrine (N-Meta), and tumor histological samples were collected for the analysis of NET expression. All of this was performed prior to the application of any antineoplastic therapy. Each patient was monitored for two years. We found higher heart rates in patients with gastric carcinoma than those without cancer. Regarding Meta and N-Meta, elevated levels were recorded in the patients with gastric carcinoma, correlating with the degree of tumor differentiation and other negative prognostic factors such as tumor invasion, lymph node metastasis, and distant metastases. Elevated Meta and N-Meta was also associated with a poor survival rate. All these data suggest that the predominance of the sympathetic nervous system's activity predicts increased gastric carcinoma severity.


Subject(s)
Epinephrine/metabolism , Norepinephrine/metabolism , Stomach Neoplasms/metabolism , Electrocardiography , Gene Expression Regulation, Neoplastic , Heart Rate , Humans , Metanephrine/blood , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Normetanephrine/blood , Prognosis , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/genetics , Stomach Neoplasms/physiopathology
15.
Biochem Biophys Res Commun ; 545: 1-7, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33529804

ABSTRACT

Mammary epithelial cells synthesize and secrete norepinephrine (NE) into breast milk to regulate ß-casein expression through the adrenergic ß2 receptor. We investigated the expression, localization, and roles of NE transporter (NET) in the mammary epithelium during lactation. mRNA and protein levels of NET were determined in primary normal human mammary epithelial cells (pHMECs) and non-malignant human mammary epithelial MCF-12A cells. In nursing CD1 mice, NET localized to the apical membranes of the mammary epithelium. The intracellular NE content of pHMECs incubated with NE increased. Although the ß-casein concentration in milk was slightly higher at day 10 than at day 2 of lactation, the NE concentration and lactation-related proteins were only slightly changed on days 2-10. Restraint stress increased the NE concentration in milk from nursing mice and NET protein levels were significantly higher than in non-stressed nursing mice. NET is expressed on the apical membrane of mammary epithelial cells and incorporates NE in milk into cells, potentially regulating the NE concentration in milk.


Subject(s)
Mammary Glands, Human/metabolism , Milk, Human/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine/metabolism , Animals , Biological Transport, Active , Caseins/metabolism , Cell Line , Cells, Cultured , Epithelial Cells/metabolism , Female , Humans , Lactation/genetics , Lactation/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Human/cytology , Mice , Milk/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adrenergic, beta-2/metabolism , Restraint, Physical/adverse effects , Stress, Physiological/physiology
16.
J Pharmacol Sci ; 145(2): 198-201, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33451754

ABSTRACT

The orexinergic system plays a significant role in regulating proper sleep/wake maintenance. Dual orexin receptor antagonist (DORA) is widely prescribed for insomnia symptoms. The antagonist acts on orexin 1 and 2 receptors located in certain brain areas, including the locus coeruleus and dorsal raphe. Nevertheless, its effects on monoamine-related gene expression remain unclear. Here, we measured the expression levels of monoamine-related genes in DORA-treated mice. DORA treatment significantly affected overall levels of noradrenalin transporter/monoamine oxidases A mRNA expression in the hippocampus. Our findings suggest that DORA contributes to noradrenalin-related gene expression regulation in the central nervous system.


Subject(s)
Azepines/pharmacology , Benzimidazoles/pharmacology , Gene Expression Regulation/drug effects , Gene Expression/drug effects , Hippocampus/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Orexin Receptor Antagonists/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Male , Mice, Inbred C57BL
17.
Mol Psychiatry ; 26(3): 1009-1018, 2021 03.
Article in English | MEDLINE | ID: mdl-31383926

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a robust genetic influence. The norepinephrine transporter (NET) is of particular interest as it is one of the main targets in treatment of the disorder. As ADHD is a complex and polygenetic condition, the possible regulation by epigenetic processes has received increased attention. We sought to determine possible differences in NET promoter DNA methylation between patients with ADHD and healthy controls. DNA methylation levels in the promoter region of the NET were determined in 23 adult patients with ADHD and 23 healthy controls. A subgroup of 18 patients with ADHD and 18 healthy controls underwent positron emission tomography (PET) with the radioligand (S,S)-[18F]FMeNER-D2 to quantify the NET in several brain areas in vivo. Analyses revealed significant differences in NET methylation levels at several cytosine-phosphate-guanine (CpG) sites between groups. A defined segment of the NET promoter ("region 1") was hypermethylated in patients in comparison with controls. In ADHD patients, a negative correlation between methylation of a CpG site in this region and NET distribution in the thalamus, locus coeruleus, and the raphe nuclei was detected. Furthermore, methylation of several sites in region 1 was negatively associated with the severity of hyperactivity-impulsivity symptoms. Our results point to an epigenetic dysregulation in ADHD, possibly due to a compensatory mechanisms or additional factors involved in transcriptional processing.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Norepinephrine Plasma Membrane Transport Proteins , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Brain/diagnostic imaging , Brain/metabolism , Humans , Impulsive Behavior , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Positron-Emission Tomography
18.
Mol Psychiatry ; 26(8): 4026-4035, 2021 08.
Article in English | MEDLINE | ID: mdl-31595036

ABSTRACT

The norepinephrine transporter gene (SLC6A2) and deficits in visual memory and attention were associated with attention-deficit/hyperactivity disorder (ADHD). The present study aimed to examine whether the SLC6A2 rs36011 (T)/rs1566652 (G) haplotype affected the intrinsic brain activity in children with ADHD and whether these gene-brain modulations were associated with visual memory and attention in this population. A total of 96 drug-naive children with ADHD and 114 typically developing children (TDC) were recruited. We analyzed intrinsic brain activity with regional homogeneity (ReHo) and degree centrality (DC). Visual memory and visual attention were assessed by the delayed matching to sample (DMS) and rapid visual information processing (RVIP) tasks, respectively. The SNP genotyping of rs36011 and rs1566652 was performed. Children with ADHD showed lower ReHo and DC in the cuneus and lingual gyri than TDC. The TG haplotype was associated with significantly increased DC in the right precentral and postcentral gyri. Significant interactions of ADHD status and the TG haplotype were found in the right postcentral gyrus and superior parietal lobule for ReHo. For the ADHD-TG group, we found significant correlations of performance on the DMS and RVIP tasks with ReHo in bilateral precentral-postcentral gyri and the right postcentral gyrus-superior parietal lobule and DC in bilateral precentral-postcentral gyri. A novel gene-brain-behavior association was identified in which the intrinsic brain activity of the sensorimotor and dorsal attention networks was related to visual memory and visual attention in ADHD children with the SLC6A2 rs36011 (T)/rs1566652 (G) haplotype.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Norepinephrine Plasma Membrane Transport Proteins , Attention , Attention Deficit Disorder with Hyperactivity/genetics , Brain/physiology , Child , Humans , Magnetic Resonance Imaging , Memory , Norepinephrine Plasma Membrane Transport Proteins/genetics
19.
Article in English | MEDLINE | ID: mdl-33340618

ABSTRACT

We aimed to investigate the associations between genetic variants of the norepinephrine transporter gene (NET, also known as SLC6A2) and diagnosis of bipolar I disorder. In addition, we examined the relationship between the genetic variants and manic and psychotic symptoms in patients with bipolar I disorder. The three SNPs rs28386840, rs2242446, and rs5569 were genotyped in 326 patients: patients with bipolar I disorder (n = 160) and a control group (n = 166). Subsequently, multivariate logistic regression analysis adjusting for age and sex was conducted to identify independent influences of the SNPs on diagnosis of bipolar I disorder. A possible association between manic and psychotic symptoms and variants of SLC6A2 was also investigated in patients with bipolar I disorder. The rs28836840 SNP in the 5'-UTR of SLC6A2 was significantly associated with bipolar I disorder and with severity of manic and psychotic symptoms in this disorder. Individuals carrying a T allele in the rs28836840 SNP were likely to have a lower risk of bipolar I disorder or lower severity of manic and psychotic symptoms in patients with bipolar I disorder (bipolar I disorder diagnosis: OR = 0.643, 95% Cl = 0.468-0.883, p = 0.006; manic symptoms: ß = -2.457, 95% Cl = -4.674 ~ -0.239, p = 0.031; psychotic symptoms: ß = -2.501, 95% Cl = -4.700 ~ -0.301, p = 0.027). For the rs2242446 and rs5569 SNPs, there were no significant differences between patients with bipolar I disorder and those without. Our results revealed associations of the rs28386840 SNP with bipolar I disorder diagnosis and with severity of manic and psychotic symptoms. However, the findings reported here require replication in larger samples and various ethnic groups.


Subject(s)
Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Genetic Association Studies/methods , Genetic Variation/genetics , Norepinephrine Plasma Membrane Transport Proteins/genetics , Adult , Bipolar Disorder/diagnosis , Female , Humans , Male , Middle Aged , Republic of Korea/epidemiology , Young Adult
20.
Int J Mol Sci ; 21(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322800

ABSTRACT

In the present study, we aim to identify the effect of restrain stress (RS) on the expression of miRNAs in mouse serum. We used three genotypes of animals (mice with knock-out of the gene-encoding norepinephrine transporter, NET-KO; C57BL/6J, and SWR/J) which had previously been shown to display different sensitivity to RS, and focused on miRNAs which were altered by RS in the serum of all three genotypes. An analysis of miRNAs expression allowed for the identification of a set of 25 differentially expressed miRNAs; 10 were down-regulated compared to an appropriate control group of animals, while 15 were up-regulated. The application of DIANA-miRPath v. 3.0 allowed for the identification of selected pathways (KEGG) and Gene Ontology (GO) categories that were significantly controlled by these miRNAs, while miRWalk v. 3.0-the platform that used the machine learning based algorithm, TaRPmiR-was used to find their targets. The results indicate that 25 miRNAs, identified as altered upon RS in three genotypes of mice, are responsible for regulation of mRNA-encoding proteins that are key for the main hypotheses of depression; therefore, they may help to understand the link between stress and depression at the molecular level.


Subject(s)
Depression/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , MicroRNAs/blood , Stress, Physiological/genetics , Algorithms , Animals , Depression/genetics , Down-Regulation , Gene Expression Profiling , Gene Ontology , Machine Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Restraint, Physical/physiology , Signal Transduction/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...