Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.972
Filter
1.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731553

ABSTRACT

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Charcoal/chemistry , Adsorption , Drugs, Chinese Herbal/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Thermodynamics , Water Purification/methods , Hydrogen-Ion Concentration
2.
J Hazard Mater ; 470: 133740, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569335

ABSTRACT

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.


Subject(s)
Anti-Bacterial Agents , Biodegradation, Environmental , Microbiota , Norfloxacin , Water Pollutants, Chemical , Wetlands , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/metabolism , Norfloxacin/pharmacology , Microbiota/drug effects , Hydrocharitaceae/metabolism , Hydrocharitaceae/genetics , Drug Resistance, Microbial/genetics , Ofloxacin , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects , Genes, Bacterial , Fluoroquinolones/metabolism
3.
Eur J Med Chem ; 270: 116392, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38608408

ABSTRACT

The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 µg/mL) and hydroxyethyl IDO 10e (0.25-1 µg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.


Subject(s)
Anti-Bacterial Agents , Norfloxacin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Norfloxacin/pharmacology , Bacteria , Cell Membrane Permeability , DNA/pharmacology , Microbial Sensitivity Tests
4.
J Hazard Mater ; 471: 134287, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38653132

ABSTRACT

Antibiotics can generally be detected in the water-sediment systems of lakes. However, research on the migration and transformation of antibiotics in water-sediment systems based on the influences of light and wind waves is minimal. To address this research gap, we investigated the specific impacts of light and wind waves on the migration and transformation of three antibiotics, norfloxacin (NOR), trimethoprim (TMP), and sulfamethoxazole (SMX), under simulated light and wind waves disturbance conditions in a water-sediment system from Taihu Lake, China. In the overlying water, NOR was removed the fastest, followed by TMP and SMX. Compared to the no wind waves groups, the disturbance of big wind waves reduced the proportion of antibiotics in the overlying water. The contributions of light and wind waves to TMP and SMX degradation were greater than those of microbial degradation. However, the non-biological and biological contributions of NOR to degradation were almost equal. Wind waves had a significant impact on the microbial community changes in the sediment, especially in Methylophylaceae. These results verified the influence of light and wind waves on the migration and transformation of antibiotics, and provide assistance for the risk of antibiotic occurrence in water and sediments.


Subject(s)
Anti-Bacterial Agents , Geologic Sediments , Sulfamethoxazole , Water Pollutants, Chemical , Wind , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/radiation effects , Sulfamethoxazole/chemistry , Geologic Sediments/chemistry , Norfloxacin/chemistry , Trimethoprim/chemistry , Lakes/chemistry , China , Light
5.
J Hazard Mater ; 471: 134309, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38653133

ABSTRACT

This study addresses antibiotic pollution in global water bodies by integrating machine learning and optimization algorithms to develop a novel reverse synthesis strategy for inorganic catalysts. We meticulously analyzed data from 96 studies, ensuring quality through preprocessing steps. Employing the AdaBoost model, we achieved 90.57% accuracy in classification and an R²value of 0.93 in regression, showcasing strong predictive power. A key innovation is the Sparrow Search Algorithm (SSA), which optimizes catalyst selection and experimental setup tailored to specific antibiotics. Empirical experiments validated SSA's efficacy, with degradation rates of 94% for Levofloxacin and 97% for Norfloxacin, aligning closely with predictions within a 2% margin of error. This research advances theoretical understanding and offers practical applications in material science and environmental engineering, significantly enhancing catalyst design efficiency and accuracy through the fusion of advanced machine learning techniques and optimization algorithms.


Subject(s)
Anti-Bacterial Agents , Cobalt , Machine Learning , Oxides , Water Pollutants, Chemical , Cobalt/chemistry , Catalysis , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Oxides/chemistry , Levofloxacin/chemistry , Norfloxacin/chemistry , Algorithms
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124186, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593536

ABSTRACT

The detection of trace antibiotic residues holds significant importance because it's related to food safety and human health. In this study, we developed a new high-yield red-emitting carbon dots (R-CDs) with aggregation-induced emission properties for ratiometric sensing of norfloxacin. R-CDs were prepared in 30 min using an economical and efficient microwave-assisted method with tartaric acid and o-phenylenediamine as precursors, achieving a high yield of 34.4 %. R-CDs showed concentration-dependent fluorescence and aggregation-induced-emission properties. A ratiometric fluorescent probe for detecting the norfloxacin was developed. In the range of 0-40 µM, the intensity ratio of two emission peaks (I445 nm/I395 nm) towards norfloxacin show good linear relationship with its concentrations and a low detection limit was obtained (36.78 nM). In addition, complex patterns were developed for anti-counterfeiting based on different emission phenomenon at different concentrations. In summary, this study designed a novel ratiometric fluorescent probe for detection of norfloxacin, which greatly shortens the detection time and improves efficiency compared with high-performance liquid chromatography and other methods. The study will promote the application of carbon dots in anti-counterfeiting and other related fields, laying the foundation for the preparation of low-cost photosensitive anti-counterfeiting materials.


Subject(s)
Carbon , Fluorescent Dyes , Limit of Detection , Norfloxacin , Quantum Dots , Spectrometry, Fluorescence , Norfloxacin/analysis , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Anti-Bacterial Agents/analysis
7.
Sci Total Environ ; 930: 172511, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38641106

ABSTRACT

The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.


Subject(s)
Norfloxacin , Polystyrenes , Norfloxacin/chemistry , Adsorption , Polystyrenes/chemistry , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Models, Chemical
8.
Talanta ; 274: 126003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569374

ABSTRACT

Antibiotics in aquatic environments raise health concerns. Therefore, the rapid, on-site, and accurate detection of antibiotic residues is crucial for protecting the environment and human health. Herein, a dumbbell-shaped iron (Fe3+)-dopamine coordination nanozyme (Fe-DCzyme) was developed via an iron-driven self-assembly strategy. It exhibited excellent peroxidase-like activity, which can be quenched by adding l-cysteine to prevent Fe3+/Fe2+ electron transfer but restored by adding norfloxacin. Given the 'On-Off-On' effect of peroxidase-like activity, Fe-DCzyme was used as a colourimetric sensor for norfloxacin detection, and showed a wide linear range from 0.05 to 6.00 µM (R2 = 0.9950) and LOD of 27.0 nM. A portable smartphone-assisted detection platform using Fe-DCzyme was also designed to convert norfloxacin-induced color changes into RGB values as well as to realise the rapid, on-site and quantitative detection of norfloxacin. A good linear relation (0.10-6.00 µM) and high sensitivity (LOD = 79.3 nM) were achieved for the smartphone-assisted Fe-DCzyme detection platform. Its application was verified using norfloxacin spiking methods with satisfactory recoveries (92.66%-119.65%). Therefore, the portable smartphone-assisted Fe-DCzyme detection platform with low cost and easy operation can be used for the rapid, on-site and visual quantitative detection of antibiotic residues in water samples.


Subject(s)
Colorimetry , Dopamine , Iron , Norfloxacin , Smartphone , Norfloxacin/analysis , Norfloxacin/chemistry , Iron/chemistry , Dopamine/analysis , Dopamine/chemistry , Colorimetry/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/analysis , Limit of Detection , Nanostructures/chemistry
9.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641555

ABSTRACT

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Subject(s)
Bismuth , Ferric Compounds , Light , Norfloxacin , Peroxides , Vanadates , Vanadates/chemistry , Vanadates/radiation effects , Bismuth/chemistry , Norfloxacin/chemistry , Norfloxacin/radiation effects , Catalysis/radiation effects , Ferric Compounds/chemistry , Peroxides/chemistry , Photochemical Processes , Triticum/chemistry , Triticum/radiation effects
10.
Environ Sci Pollut Res Int ; 31(20): 29088-29100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568303

ABSTRACT

Biochar, as a potential adsorbent, has been widely employed to remove pollutants from sewage. In this study, a lignin-based biochar (CB-800) was prepared by a simple high-temperature pyrolysis using urban green waste (Cinnamomum camphora leaves) as a feedstock to remove norfloxacin (NOR) from water. Batch adsorption test results indicated that CB-800 had a strong removal capacity for NOR at a wide range of pH values. The maximum adsorption achieved in the study was 50.90 ± 0.64 mg/g at 298 K. The pseudo-first and second-order kinetic models and the Dubinin-Radushkevich isotherm fitted the experimental data well, indicating that NOR adsorption by CB-800 was a complex process involving both physi-sorption and chemi-sorption. The physical properties of CB-800 were characterized by SEM and BET. The mesoporous structures were formed hierarchically on the surface of CB-800 (with an average pore size of 2.760 nm), and the spatial structure of NOR molecules was more easily adsorbed by mesoporous structures. Combined with Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, it was showed that the main NOR adsorption mechanisms by CB-800 included ion exchange, π-electron coordination, hydrogen bonding, and electrostatic adsorption. Meanwhile, the reduction of C = O and pyridine nitrogen, and the presence of C-F2, also indicated the occurrence of substitution, addition, and redox. This study not only determined the reaction mechanism between biochar and NOR, but also provides guidance to waste managers for the removal of NOR from water by biochar. It is envisaged that the results will broaden the utilization of urban green waste.


Subject(s)
Charcoal , Norfloxacin , Charcoal/chemistry , Norfloxacin/chemistry , Kinetics , Adsorption , Water Pollutants, Chemical/chemistry , Spectroscopy, Fourier Transform Infrared
11.
Inorg Chem ; 63(14): 6514-6525, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38547361

ABSTRACT

The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that •OH, •O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.


Subject(s)
Ciprofloxacin , Norfloxacin , Norfloxacin/chemistry , Norfloxacin/radiation effects , Anti-Bacterial Agents/chemistry , Light , Catalysis
12.
Environ Pollut ; 347: 123668, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38442820

ABSTRACT

The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 µgL-1 with some exception for CIP (50-100 µgL-1) and CTZ (100-150 µgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.


Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Adult , Child , Humans , Himalayas , Environmental Monitoring , Ciprofloxacin/toxicity , Norfloxacin , Cetirizine , Risk Assessment , Water , Pharmaceutical Preparations , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
13.
Chemosphere ; 355: 141788, 2024 May.
Article in English | MEDLINE | ID: mdl-38548088

ABSTRACT

N/S co-doping has emerged as a prevailing strategy for carbon-based adsorbents to facilitate the antibiotic removal efficiency. Nevertheless, the underlying interplay among N, S, and their adjacent vacancy defects remains overlooked. Herein, we present a novel in situ strategy for fabricating pyridinic-N dominated and S dual-doped porous carbon adsorbent with rich vacancy defects (VNSC). The experimental results revealed that N (acting as the electron donor) and S (acting as the electron acceptor) form an internal electric field (IEF), with a stronger IEF generated between pyridinic-N and S, while their adjacent vacancy defects activate carbon π electrons, thus enhancing the charge transfer of the IEF. Density functional theory (DFT) calculations further demonstrated that the rich charge transfer in the IEF facilitated the π-π electron donor-acceptor (EDA) interaction between VNSC and tetracycline (TC) as well as norfloxacin (NOR), and thus is the key to adsorption performance of VNSC. Consequently, VNSC exhibited high adsorption capacities toward TC (573.1 mg g-1) and NOR (517.0 mg g-1), and its potential for environmental applications was demonstrated by interference, environmentally relevant concentrations, fixed-bed column, and regeneration tests. This work discloses the natures of adsorption capacity for N/S dual-doped carbon-based materials for antibiotics.


Subject(s)
Anti-Bacterial Agents , Norfloxacin , Porosity , Tetracycline , Adsorption , Carbon , Oxidants
14.
PLoS One ; 19(3): e0299709, 2024.
Article in English | MEDLINE | ID: mdl-38551994

ABSTRACT

Marbofloxacin (MBF) was once widely used as a veterinary drug to control diseases in animals. MBF residues in animal food endanger human health. In the present study, an immunochromatographic strip assay (ICSA) utilizing a competitive principle was developed to rapidly detect MBF in beef samples. The 50% inhibitory concentration (IC50) and the limit of detection (LOD) of the ICSAs were 2.5 ng/mL and 0.5 ng/mL, respectively. The cross-reactivity (CR) of the MBF ICSAs to Ofloxacin (OFL), enrofloxacin (ENR), norfloxacin (NOR), and Ciprofloxacin (CIP) were 60.98%, 32.05%, 22.94%, and 23.58%, respectively. The CR for difloxacin (DIF) and sarafloxacin (SAR) was less than 0.1%. The recovery rates of MBF in spiked beef samples ranged from 82.0% to 90.4%. The intra-assay and interassay coefficients of variation (CVs) were below 10%. In addition, when the same authentic beef samples were detected in a side-by-side comparison between the ICSAs and HPLC‒MS, no statistically significant difference was observed. Therefore, the proposed ICSAs can be a useful tool for monitoring MBF residues in beef samples in a qualitative and quantitative manner.


Subject(s)
Drug Residues , Fluoroquinolones , Animals , Cattle , Humans , Fluoroquinolones/analysis , Enrofloxacin , Norfloxacin , Ofloxacin , Drug Residues/analysis
15.
Talanta ; 273: 125935, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38503123

ABSTRACT

Target specificity, one of aptamer characteristics that determine recognition efficiency of biosensors, is generally considered to be an intrinsic property of aptamer. However, a high-affinity aptamer may have additional target binding specificity, little is known about the specificity of aptamer binding to multiple targets, which may result in false-positive results that hinder the accuracy of detection. Herein, an aptamer OBA3 with dual target ochratoxin A (OTA) and norfloxacin (NOR) was used as an example to explore the binding specificity mechanism and developed rapid fluorescent aptasensing methods. The nucleotide 15th T of aptamer OBA3 was demonstrated to be critical for specificity and affinity binding of target OTA via site-saturation mutagenesis. Substituting the 15th T base for C base could directly improve recognition specificity of aptamer for NOR and remove the binding affinity for OTA. The combination of π-π stacking interactions, salt bridges and hydrogen bonds between loop pocket of aptamer and quinolone skeleton, piperazinyl group may contributes to the fluoroquinolone antibiotics (NOR and difloxacin)-aptamer recognition interaction. Based on this understanding, a dual-aptamer fluorescent biosensor was fabricated for simultaneous detection of OTA and NOR, which has a linear detection range of 50-6000 nM with a detection limit of 31 nM for OTA and NOR. Combined with T15C biosensor for eliminating interference of OTA, the assay was applied to milk samples with satisfactory recovery (94.06-100.93%), which can achieve detection of OTA and NOR individually within 40 min.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Animals , Norfloxacin , Milk/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry , Ochratoxins/analysis , Coloring Agents , Biosensing Techniques/methods
16.
Bioorg Med Chem Lett ; 103: 129709, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38494040

ABSTRACT

A class of unique hydrazyl hydroxycoumarins (HHs) as novel structural scaffold was developed to combat dreadful bacterial infections. Some HHs could effectively suppress bacterial growth at low concentrations, especially, pyridyl HH 7 exhibited a good inhibition against Pseudomonas aeruginosa 27853 with a low MIC value of 0.5 µg/mL, which was 8-fold more active than norfloxacin. Furthermore, pyridyl HH 7 with low hemolytic activity and low cytotoxicity towards NCM460 cells showed much lower trend to induce the drug-resistant development than norfloxacin. Preliminarily mechanism exploration indicated that pyridyl HH 7 could eradicate the integrity of bacterial membrane, result in the leakage of intracellular proteins, and interact with bacterial DNA gyrase via non-covalent binding, and ADME analysis manifested that compound 7 gave good pharmacokinetic properties. These results suggested that the newly developed hydrazyl hydroxycoumarins as potential multitargeting antibacterial agents should be worthy of further investigation for combating bacterial infection.


Subject(s)
Norfloxacin , Pseudomonas aeruginosa , Norfloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase , Microbial Sensitivity Tests
17.
ACS Appl Mater Interfaces ; 16(12): 14595-14604, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38469717

ABSTRACT

Herein, we report the preparation of bifunctional silica nanoparticles by covalent attachment of both an anti-inflammatory drug (ibuprofen) and an antibiotic (levofloxacin or norfloxacin) through amide groups. We also describe the coating of cotton fabrics with silica nanoparticles containing both ibuprofen and norfloxacin moieties linked by amide groups by using a one-step coating procedure under ultrasonic conditions. The functionalized nanoparticles and cotton fabrics have been characterized using spectroscopic and microscopic techniques. The functionalized nanoparticles and textiles have been treated with model proteases for the in situ release of the drugs by the amide bond enzymatic cleavage. Topical dermal applications in medical bandages are expected, which favor wound healing.


Subject(s)
Nanoparticles , Norfloxacin , Silicon Dioxide/chemistry , Ibuprofen/pharmacology , Cotton Fiber , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Textiles , Wound Healing , Anti-Inflammatory Agents/chemistry , Amides
18.
Sci Total Environ ; 922: 171328, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38428600

ABSTRACT

The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.


Subject(s)
Anti-Bacterial Agents , Wastewater , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Sewage/microbiology , Norfloxacin , Nitrates/metabolism , Denitrification , Bacteria/genetics , Bacteria/metabolism , Sulfur/metabolism , Bioreactors/microbiology , Nitrogen/metabolism
19.
Am J Trop Med Hyg ; 110(3): 596-608, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38350137

ABSTRACT

The prevalence of substandard and falsified (SF) antimicrobial drugs is increasing around the globe. This poses a great concern for the healthcare system. The consumption of SF antimicrobial drugs has the potential to result in treatment failure, emergence and development of antimicrobial resistance, and ultimately a rise in mortality rate. The objective of this study was to assess the quality of four commonly used antimicrobials marketed in the cities of Dire Dawa and Jijiga and the town of Togo-Wuchale, which have high potential for illegal drug trade activities in Ethiopia because they are located near the border with Somalia. A total of 54 brands/samples of amoxicillin, amoxicillin/clavulanic acid, ciprofloxacin, and norfloxacin formulations were collected covertly from 43 facilities using a convenience sampling strategy from March 16 to March 29, 2022. The samples were first screened using Global Pharma Health Fund (GPHF)-Minilab protocols and then analyzed using U.S. Pharmacopoeial and British Pharmacopoeia official methods. The quality evaluation detected no falsified product; however, it showed that 14.3% of the samples failed the GPHF-Minilab screening test semiquantitatively. Overall, 22.2% of the products analyzed did not meet any of pharmacopoeial specifications assessed: 13%, 12.2%, and 11.1% of the products failed in assay, dissolution, and weight variation, respectively. Additionally, 56.3% of amoxicillin samples, 60% of amoxicillin/clavulanate, 20% of ciprofloxacin, and 54.5% of norfloxacin samples were found to be pharmaceutically nonequivalent with their respective comparator products regarding dissolution profiles. The study showed the presence of substandard antimicrobial medicines in the eastern Ethiopian market.


Subject(s)
Anti-Infective Agents , Counterfeit Drugs , Drugs, Essential , Substandard Drugs , Humans , Ethiopia , Norfloxacin , Cities , Amoxicillin , Ciprofloxacin
20.
Chemosphere ; 352: 141481, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395366

ABSTRACT

The production of cheap, efficient, and stable photocatalysts for degrading antibiotic contaminants remains challenging. Herein, Bi2O3/boron nitride (BN)/Co3O4 ternary composites were synthesized using the impregnation method. The morphological characteristics, structural features, and photochemical properties of the prepared photocatalysts were investigated via X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible (Vis) diffuse reflectance spectrum techniques. BN was used as a charge transfer bridge in the ternary composites, which afforded a heterojunction between the two semiconductors. The formation of the heterojunction substantially enhanced the charge separation and improved the photocatalyst performance. The degradation activity of the Bi2O3/BN/Co3O4 ternary composites against norfloxacin (NOR) under Vis light irradiation was investigated. The degradation rate of NOR using 5-wt% Bi2O3/BN/Co3O4 reached 98% in 180 min, indicating excellent photocatalytic performance. The ternary composites also exhibited high photostability with a degradation efficiency of 88.4% after five cycles. Hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+) played a synergistic role in the photocatalytic reaction, where h+ and •O2- were more important than •OH. Consequently, seven intermediates and major photocatalytic degradation pathways were identified. Toxicity experiments showed that the toxicity of the degradation solution to Chlorella pyrenoidosa decreased. Finally, the ecotoxicity of NOR and its intermediates were analyzed using the Toxicity Estimation Software Tool, with most intermediates exhibiting low toxicity.


Subject(s)
Boron Compounds , Chlorella , Cobalt , Norfloxacin , Oxides , Norfloxacin/toxicity , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...